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Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete

understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a

powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell

function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of

aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known

about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further

investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and

value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the

prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs

in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing

evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma

therapy.
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1. Introduction

Sarcomas are rare, highly diverse malignancies. They account for just 1% of all adult human cancers, although their

frequency is significantly greater (roughly 20%) among pediatric tumors. These lesions arise from mesenchymal tissue,

where approximately 80% occur in soft tissue and 20% in bone  . Currently, there are over 70 subtypes that classify

lesions based on tissue resemblance and molecular characteristics . Two broad groups of sarcomas exist—those with

simple karyotypes, often characterized by a specific, disease-driving alterations and those with complex karyotypes,

where there are multiple genomic losses, gains, and amplifications . Standard treatment for localized disease remains

surgical resection with adjuvant radiation and/or chemotherapy used in certain types of sarcoma. Regrettably, many

patients experience recurrence and metastasis, requiring systemic therapies that are unfortunately not very effective.

Additionally, since these lesions are heterogeneous, responses to generalized treatments are variable and typically do not

translate between different subtypes . To combat sarcomas more effectively, the key pathways promoting their

development and progression need to be elucidated. Recent advances suggest that activating alterations in cyclin-

dependent kinase (CDK) pathways are major drivers of sarcomagenesis.

CDKs are serine/threonine kinases involved in key cellular processes, primarily cell cycle progression and transcription.

As monomeric proteins, CDKs lack enzymatic activity due to a structural conformation that buries the catalytic and

substrate binding domains . To become active, CDKs require association with a regulatory subunit known as a cyclin,

hence their designation as cyclin-dependent kinases. Humans have 20 CDKs that are classically divided into two main

groups— cell cycle (CDKs 1, 2, 3, 4, 6, and 7) and transcriptional (tCDKs 7, 8, 9, 12, 13, and 19), with CDK7 contributing

to both processes. Many CDKs that control cell cycle progression can bind multiple cyclins, allowing for dynamic

regulation throughout the cell cycle as well as increased substrate possibilities. CDKs associated with transcription bind a

single, specific cyclin, whose expression is not regulated in a cell cycle-dependent manner . “Other” CDKs (5, 10, 11,

14–18, and 20) do not fit into the two canonical roles and, instead, exhibit diverse functions that are often tissue specific.

For example, CDK11 variants have multiple functions in mediating transcription, mitosis, hormone receptor signaling,

autophagy, and apoptosis . Likewise, in the nervous system CDK5 promotes neurite outgrowth and synaptogenesis

while in pancreatic β cells it reduces insulin secretion . As CDKs control crucial processes required for cell survival

and propagation, their hyperactivation (typically through mutation, gene amplification, or altered expression of their

regulators) is commonly observed in cancer.

The rarity and diversity of sarcomas has slowed efforts to identify key mutations driving these cancers. In addition,

sarcomas are sometimes simplistically viewed as a single entity or described in broad, unspecified terms. As our

knowledge of sarcoma biology has increased, there is a growing appreciation for CDK pathway dysregulation in promoting
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disease progression. This review discusses the current knowledge about CDK and CDK-related aberrations in the most

common subtypes of sarcoma in both adult and pediatric patients. Additional consideration is given to CDK-targeted

therapy in the pre-clinical setting as well as recent clinical trials.

Table 1 provides a consolidated listing of the genetic alterations in CDKs and CDK pathways within each human sarcoma,

strongly predicting the hyperactivation of tumor promoting CDKs in these cancers. Notable overlap exists in the genetic

alterations found within multiple sarcomas although there are unique genomic events that also distinguish each sarcoma

type. A recent analysis of genomic profiles and clinical outcomes in two independent datasets of diverse soft tissue

sarcomas identified the most frequently altered genes shared by most sarcomas, namely TP53, CDKN2A, RB1, NF1, and

ATRX . Strikingly, CDKN2A was the only gene whose inactivation was associated with worse overall survival across all

types of localized soft tissue sarcomas. CDKN2A is a fascinating gene in cancer biology as it encodes not just one, but

two powerful tumor suppressors . Through shared DNA sequences that are translated in different reading frames,

CDKN2A yields the p16  inhibitor of CDK4 and CDK6 as well as the ‘Alternative Reading Frame’ protein, ARF .

While p16  functions by activating the retinoblastoma (RB1) tumor suppressor, ARF inhibits cancer through multiple

mechanisms including activation of p53. Thus, the observation that CDKN2A loss correlates with worse patient survival

across many sarcoma types suggests a central role for the p16 -CDK4/6-RB1 and/or ARF signaling pathways in

sarcoma pathogenesis.

 Table 1. Genetic alterations of CDK pathway genes in sarcoma

Gene Protein Alteration Sarcoma Subtype

RB1 Retinoblastoma
Deletion,

Mutation

UPS , MFS , PLPS ,

LMS , CS , OS ,

EwS , MPNST 

CDKN2A p16  and ARF
Deletion,

Mutation

UPS , MFS , LMS ,

MPNST , CS ,

 ARMS , OS , EwS 

CDKN2B p15 Deletion MFS , MPNST 

CCND
1-3

Cyclin D1-3 Amplification MFS , LMS , CS , OS 

CDK4 CDK4 Amplification
UPS , WD/DDLPS , SS , CS , ARMS 

, OS 

CDK6 CDK6 Amplification MFS 

MDM2 Mdm2 Amplification
UPS , MFS , WD/DDLPS , CS , ARMS

, OS 

TP53 p53
Deletion,

Mutation

UPS , MFS , PLPS , CS , ARMS ,

OS , EwS , MPNST , LMS 

KRAS Ras
Amplification

Mutation
UPS , ARMS 

NF1 Neurofibromin Mutation
UPS , MFS , MPNST ,

ARMS 

[10]

[11][12]

INK4a [13]

INK4a

INK4a

[10][14][15] [10][16] [17][18]

[10][17][19] [20] [21][22]

[23] [24]

INK4a

[10][25] [10][16] [26]

[10][27][28][29][30][24][31][32][33][34][35][36] [20]

[37] [21][22] [23]

INK4b [10][16] [10][32][36]

[16] [26] [20] [21][22]

[24] [10][18] [38] [20] [39]

[40] [21][22]

[13][41]

[25] [16] [13][17][18] [20]

[37][40] [21][22]

[13][41] [13][16] [18] [20] [37]

[21][22] [23] [13][24] [13][17][42]

[47] [40]

[13] [13][51] [13][27][28][29][30][24]

[37][40]



ATRX ATRX chromatin remodeler Mutation UPS , MFS , LPS 

TLS
Translocated in

liposarcoma translocation,

(12;16)
M/RCLPS 

CHOP C/EBP homologous protein

MYC Myc Amplification
LMS , ARMS , OS ,

MPNST 

PTEN
Phosphatase and tensin

homolog
Deletion LMS , OS , MPNST 

SUZ12
Suppressor of zeste 12

protein homolog
Mutation MPNST 

EED
Embryonic ectoderm

development
Mutation MPNST 

SSX Synovial sarcoma, X

translocation,

(X;18)
SS 

SS18
Synovial sarcoma

translocation, chr18

IDH Isocitrate dehydrogenase Mutation CS 

CDKN1C p57 Deletion ERMS 

PAX1 Paired box 1
translocation,

(2;13)
ARMS 

FOXO1 Forkhead box O1

BRAF B-Raf Mutation ARMS 

PIK3CA p110a Mutation ARMS 

TWIST1
Twist family bHLH

transcription factor 1
Amplification OS 

CCNE1 Cyclin E1 Amplification OS , MPNST 

EWSR1
Ewing sarcoma breakpoint

region 1
translocation,

(11;22)
EwS 

FLI1
Friend leukemia integration

1

Abbreviations: UPS, undifferentiated pleiomorphic sarcoma; MFS, myxofibrosarcoma; WD/DDLPS, well- and de-

differentiated liposarcoma; M/RCLPS, myxoid/round cell liposarcoma; LMS, leiomyosarcoma; MPNST, malignant

peripheral nerve sheath tumor; SS, synovial sarcoma; CS, chondrosarcoma; ERMS, embryonal rhabdomyosarcoma;
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ARMS, alveolar rhabdomyosarcoma; OS, osteosarcoma; EwS, Ewing sarcoma

2. Summary

Despite the diverse nature of sarcomas, activation of CDK pathways is a common alteration contributing to their

development and progression. One of the more frequent changes is inactivation of the CDKN2A locus, resulting in loss of

ARF-p53 and p16 -RB1 tumor suppressive signaling and consequent hyperactivation of cell cycle CDKs. Loss of

other CDK inhibitors, such as p27, and upregulation of cyclin partners, such as cyclins D and E, are also predominant

events leading to aberrant CDK activation in sarcomas. While more remains to be learned about the roles and

significance of CDKs in the many different types of sarcomas, especially for CDKs with transcriptional or other activities

besides cell cycle regulation, it is clear these kinases are key players in sarcoma biology. Continued studies of CDK

dysfunction in sarcomagenesis are expected to solidify their importance in this disease and further justify CDK-based

therapies for patients. Currently, there is high enthusiasm in the clinic for newer generation CDK inhibitors that target

CDK4 and CDK6, such as palbociclib, as these drugs are more specific and less toxic than earlier, more broadly acting

compounds.

Based on impressive anti-tumor activities in pre-clinical studies, CDK4/6 inhibitors have become a central component of

current phase 1 and 2 clinical trials for various types of sarcoma. These drugs offer promising treatment options for

sarcoma patients who are in dire need of effective therapies to treat their cancers. Most of the ongoing clinical trials for

sarcoma have just started accruing patients and many involve combination therapy to prevent acquired resistance to

CDK-targeted monotherapy. Early phase studies in select soft tissue sarcoma subtypes are showing promising results,

particularly for liposarcoma where there is frequent CDK4 amplification. In a phase 2 study of patients with advanced or

metastatic well-differentiated / dedifferentiated liposarcoma (NCT01209598), palbociclib therapy resulted in occasional

tumor response along with a favorable progression-free survival rate of 57% at 12 weeks . Currently, there is a multi-

center phase 2 trial of palbociclib monotherapy in Spain for patients who have advanced sarcomas with elevated

expression of CDK4 (NCT03242382). Moreover, CDK4/6 inhibitors are recognized as high priority agents by the

Children’s Oncology Group for testing in metastatic, relapsed Ewing sarcoma . As our understanding of the CDKs

expands and we learn more about their individual roles in sarcoma pathogenesis, it is fair to say these kinases represent

increasingly valuable targets in the treatment of sarcomas.
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