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The rising incidence and severity of malignant tumors threaten human life and health, and the current lagged

diagnosis and single treatment in clinical practice are inadequate for tumor management. Gold nanoclusters

(AuNCs) are nanomaterials with small dimensions (≤3 nm) and few atoms exhibiting unique optoelectronic and

physicochemical characteristics, such as fluorescence, photothermal effects, radiosensitization, and

biocompatibility.

gold nanoclusters  cancer diagnosis  combination therapy

1. Introduction

The high incidence and mortality rate of cancer pose grave risks to the lives and well-being of all humans. It has

long been a focus of research in life science to improve the accuracy of the early detection of malignant tumors and

to address the dearth of effective tumor treatments . With the rapid development of nanotechnology, the diversity

of structures and functions of biological nanomaterials has been further enriched and spread at an alarming rate to

life sciences and clinical medicine, especially new nanomaterials that integrate multiple modes of diagnostic and

therapeutic strategies in one, making precise diagnosis and treatment integration and synergistic treatment

possible, and this is eagerly anticipated around the globe .

Gold nanoparticles (AuNPs) are a type of colloidal or agglomerated particle with diameters between a few and

hundreds of nanometers, composed of gold cores and surface shell layers. Due to their unique optical properties

(surface plasmon resonance, surface-enhanced Raman scattering, etc.) and excellent catalytic properties, they

hold great promise in a variety of applications, including biosensing, bioimaging, disease diagnosis, and treatment

.

Gold nanoclusters (AuNCs) are gold nanomaterials with significantly smaller dimensions (≤3 nm) and typically

comprise a few to tens of atoms . Due to the quantum-limited effect, AuNCs have superior fluorescence

properties and are utilized in a variety of scientific fields, including environmental detection, molecular labeling, and

bioimaging . In addition, because AuNCs are smaller than the renal threshold, they are easier to

eliminate from the body than AuNPs, resulting in greater biosafety and in vivo application potential . Physical,

chemical, and biological techniques are now used by production enterprises and lab researchers to create AuNCs.

In situ synthesis employing biomolecules (DNA, proteins, peptides, etc.) as templates are one of the chemical

techniques that is gaining popularity among researchers . The principal causes are as follows. Firstly, the
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biomolecular template contains numerous active functional groups, such as -SH, -COOH, -NH , and -OH, which

can bind gold atoms and improve their stability . Secondly, some reducing amino acids (e.g., tryptophan,

tyrosine) can reduce Au  ions to Au atoms in the presence of an appropriate pH environment, avoiding the use of

strong reducing agents (e.g., NaBH4, CTAB) and have an improved biocompatibility . Thirdly, the physical and

chemical properties of AuNCs, such as the number of atoms, particle size, and optical properties, can be rapidly

modified by adjusting the template amino acid or nucleotide sequences . Lastly, the biological activities

and functional binding sites of biomolecules provide a rich platform for further multi-functionalization of AuNCs 

.

Meanwhile, for tumor tissue enrichment, small AuNCs with high permeability and long retention are preferable.

Surface-modified AuNCs can reduce the reticuloendothelial system (RES) and non-specific uptake, as well as

specifically bind to overexpressed tumor cell receptors to enhance tumor cell accumulation, resulting in an

enhanced cytotoxic effect against tumor cells . The AuNCs can be rapidly excreted via the kidney, thereby

minimizing damage to healthy tissues . In comparison to large AuNPs, AuNCs possess a larger specific surface

area and, consequently, greater surface energy. Due to this surface effect, the surface atoms of AuNCs are

reactive and readily bondable with other atoms. Large payloads of drugs, genes, and other therapeutic molecules

can be effectively trapped and protected from enzymatic degradation in complex physiological microenvironments

. Various internal and external stimuli may be used to regulate the release of drug-carrying molecules from

functionalized AuNCs (e.g., pH, glutathione, light) . As a result, they can be used as carriers for efficient

targeted transport of therapeutic molecules, to enhance drug aqueous solubility, to prevent drug leakage in healthy

tissues prematurely, and mitigate potential side effects.

Indeed, numerous reviews have been conducted on the design and application of AuNCs, particularly in terms of

fluorescence imaging. Nonetheless, an increasing number of studies are currently attempting to fully integrate the

various properties of AuNCs (Scheme 1).
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Scheme 1. Primary preparation strategies, distinctive properties, and combined applications in diagnosis and

therapies of AuNCs(created with BioRender.com).

2. AuNCs as Imaging Agents in Tumor Theranostic

Since the successful construction of ultra-small AuNCs, the unique photoelectric effect resulting from their quantum

size effect has been valued by researchers and utilized in a variety of sensing, detection, and bioimaging fields 

. AuNCs are ideally suited for integrated medical applications in diagnostics and treatment due to their

superior biocompatibility and functional versatility . The atomic-level investigation of AuNCs has accelerated

recently. Due to their precise size and composition, researchers have discovered that AuNCs have outstanding

self-assembly and crystallization properties which endow them with more unique and diverse fluorescence
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properties . To start, the researchers   summarize the recent studies on the integration and visualization of

AuNCs for diagnosis and treatment based on different imaging modalities of AuNCs, respectively (Table 1).

Table 1. Application of AuNCs. 
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Multifunctional Nanoplatform Role of AuNCs Therapeutic Agent
Size

(nm)

Imaging

Mode
Cancer Types Therapy Method Activity Ref

AuNCs-Ag@Keratin-Gd Imaging NM 5 FL, MRI Breast cancer Chemotherapy

In

vivo

and

in

vitro

CDGM NPs
Imaging, drug

delivery
CAD, Ce6 2 FL Lung cancer PDT

In

vivo

and

in

vitro

AuS-U11 PTT-carrier

U11 peptide,

cyanine dye

Cy5.5, 5-ALA

10 FL
Pancreatic

carcinoma
PTT, PDT

In

vivo

and

in

vitro

Au NBPs@PDA/AuNCs Imaging
Au

NBPs@PDA

2.1,

3.3
FL

Breast cancer,

hepatocarcinoma
PTT

In

vitro

Dox@HG-CAHs Imaging HA-ALD, Dox 2.8 FL, CT Osteosarcoma
PTT,

chemotherapy

In

vivo

and

in

vitro
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Multifunctional Nanoplatform Role of AuNCs Therapeutic Agent
Size

(nm)

Imaging

Mode
Cancer Types Therapy Method Activity Ref

AuNCs–LHRHa Imaging, PTT
LHRH

analogues
2.4 FL, CT Prostatic cancer PTT

In

vitro

GTSL-CYC-HER2

Changed the zeta

potential of

liposomes, superior

photothermal effect

HER2-modified

thermosensitive

liposome,

cyclopamine

NA CT, PTI Breast cancer
Chemotherapy,

PTT

In

vivo

and

in

vitro

Ce6&AuNCs/Gd-LDH Imaging Ce6 ~2 MRI, FL Hepatocarcinoma PDT

In

vivo

and

in

vitro

AuNCs-ICG

Imaging,

radiosensitizing

effects

ICG ~1
FL, PAI,

CT
Breast cancer PDT, RT

In

vivo

and

in

vitro

Qu-GNCs Imaging Qu 1–3 FL Lung cancer Chemotherapy
In

vitro

Fe3O4@PAA/AuNCs/ZIF-8

NPs
Imaging DOX NA

MRI,

CT, FL
Hepatocarcinoma Chemotherapy

In

vivo

and

in

vitro

AuNCs@GTMS-FA Imaging,

phototherapeutic

agents

FA 2.8 FL Breast cancer PTT, PDT In

vitro

[45]

[46]

[47]

[48]

[49]

[50]

[51]



Gold Nanoclusters in Tumor Theranostic and Combination Therapy | Encyclopedia.pub

https://encyclopedia.pub/entry/37792 6/13

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics
2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185
countries. CA Cancer J. Clin. 2018, 68, 394–424.

Multifunctional Nanoplatform Role of AuNCs Therapeutic Agent
Size

(nm)

Imaging

Mode
Cancer Types Therapy Method Activity Ref

AuNCs/Dzs-Dox
NSET effect, shelter

therapeutic cargos
Dzs-Dox ~1.76 FL Breast cancer

Gene therapy,

chemotherapy

In

vivo

and

in

vitro

HG-GNCs/GO-5FU
Bioimaging,

phototherapeutic
HA, 5FU 2 FL

Lung cancer,

breast cancer

Chemotherapy,

PDT, PTT

In

vitro

AuNCs@mSiO @MnO Photosensitizer
MnO

nanozyme
NA MRI Breast cancer PDT

In

vivo

and

in

vitro

Au8NC
Radiosensitizing

effects
Levonorgestrel ~2 FL

Esophagus

cancer
RT

In

vivo

and

in

vitro

Au -IO NP-cRGD

Imaging,

radiosensitizing

effects

IO nanocluster 2 FL, MRI Breast cancer
RT,

chemotherapy

In

vivo

and

in

vitro

PML-MF nanocarrier Imaging IO@AuNPs NA FL Cervical cancer
PPTT,

chemotherapy

In

vitro
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Multifunctional Nanoplatform Role of AuNCs Therapeutic Agent
Size

(nm)

Imaging

Mode
Cancer Types Therapy Method Activity Ref

WLPD-Au
Photosensitizer,

drug delivery

WS2

nanoparticles,

Dex, Captopril

2.5 CT Breast cancer PTT, PDT
In

vivo

AuNCs/Cas9–gRNA
Imaging, drug

delivery

Cas9–sgRNA

plasmid
~1.56 FL Osteosarcoma Gene therapy

In

vitro

K-AuNCs
Imaging, drug

delivery
K 1–3 FL Lung cancer Chemotherapy

In

vitro

EA-AB Imaging EB NM

FL,

MSOT

Imaging

Breast cancer
Chemotherapy,

PTT

In

vivo

and

in

vitro

Ce6-GNCs-Ab-CIK Drug delivery
Ce6, CD3

antibody
NA FL Gastric cancer

Chemotherapy,

PDT

In

vivo

and

in

vitro

Au Cu /Au @Lip

Photothermogenesis

effect,

photoluminescence

performance

Au Cu

nanoclusters
~2 FL, PTI Cervical cancer PTT, PDT

In

vivo

and

in

vitro

MB-loaded Au NC-mucin

NPs
Imaging MB

1.9 ±

0.34
FL Cervical cancer PDT

In

vitro

25
[58]

[59]

[60]

[61]

[62]

4 4 25
4 4 [63]

[64]



Gold Nanoclusters in Tumor Theranostic and Combination Therapy | Encyclopedia.pub

https://encyclopedia.pub/entry/37792 8/13

Abs: PTT: photothermal therapy; NSET: nanosurface energy transfer; CAD: MMP2 polypeptidecis-aconitic

anhydride-modified doxorubicin; Ce6: photosensitizer chlorin e6; Au NBPs@PDA: polydopamine-capped gold

nanobipyramids; HA-ALD: oxidized hyaluronic acid; Dox: doxorubicin; Ce6: chlorin e6; ICG: indocyanine green; K:

Kaempferol; Qu: Quercetin; EB: Erlotinib; HA: hyaluronic acid; 5FU: 5-fluorouracil; FA: Folic acid; MB: Methylene

blue; DAC: Dacarbazine; Dzs-Dox: DNAzyme, Dox; IO: Iron oxide; Dex: Dexamethasone; FL: fluorescence

imaging; MRI: magnetic resonance imaging; CT: computed tomography; PT: photothermal imaging; PAI:

photoacoustic imaging, MSOT: multispectral optoacoustic tomography; PDT: photodynamic therapy; RT: radiation

therapy; PPTT: plasmonic photothermal therapy; NM: not mentioned; NA: not applicable.

3. AuNCs as Transport Agents in Combined Therapy

AuNCs are widely used for drug delivery and controlled release in vivo and ex vivo as one of the metallic

nanomaterials with the longest research history. As one of the special ultra-small size nanostructures, AuNCs have

a greater potential for combinatorial applications . Initially, AuNCs have a stable and inert internal core that can

shield encapsulated drug molecules. Further, AuNCs have a high surface to volume ratio and can be loaded with a

substantial quantity of small-molecule drugs via reasonable surface modification . In addition, AuNCs can be

targeted for in vivo tumor transport via passive accumulation (e.g., enhanced permeability and retention effect) or

active targeting (e.g., modified target molecules), thereby enhancing the bioavailability of drugs . Moreover,

the ultra-small nanostructures enable precise targeting of subcellular organelle structures, such as the nucleus and

mitochondria, supplement selection, and therapeutic strategies. In combination with the unique optoelectronic and

chemical properties of AuNCs, they can achieve controlled and precise strikes against the internal environmental

response of tumors and external signal stimuli, consequently reducing the toxic side effects that accompany

chemotherapy.

The covalent modification of the AuNP surface generally adopts sodium borohydride reduction and ligand

replacement methods, and the non-covalent binding mainly includes electrostatic interaction and hydrophobic

interaction to adsorb the surrounding molecules, thus reducing the surface free energy. Jiang et al. prepared

AuNCs loaded with adriamycin by a “green chemistry” approach using green tea extract, in which adriamycin was

co-polymerized with the nanoclusters by π-π superposition and electrostatic interactions. The drug delivery system

Eng. C Mater. Biol. Appl. 2021, 128, 112291.

15. Liang, G.; Jin, X.; Zhang, S.; Xing, D. RGD peptide-modified fluorescent gold nanoclusters as
highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 2017, 144, 95–104.

16. Sha, Q.; Guan, R.; Su, H.; Zhang, L.; Liu, B.F.; Hu, Z.; Liu, X. Carbohydrate-protein template
synthesized high mannose loading gold nanoclusters: A powerful fluorescence probe for sensitive
Concanavalin A detection and specific breast cancer cell imaging. Talanta 2020, 218, 121130.

17. Cui, H.; Shao, Z.S.; Song, Z.; Wang, Y.B.; Wang, H.S. Development of gold nanoclusters: From
preparation to applications in the field of biomedicine. J. Mater. Chem. C 2020, 8, 14312–14333.

18. Zhang, X.D.; Chen, J.; Luo, Z.; Wu, D.; Shen, X.; Song, S.S.; Sun, Y.M.; Liu, P.X.; Zhao, J.; Huo,
S.; et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation
therapy. Adv. Healthc. Mater. 2014, 3, 133–141.

19. Ramesh, B.S.; Giorgakis, E.; Lopez-Davila, V.; Dashtarzheneha, A.K.; Loizidou, M. Detection of
cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold
nanoclusters. Nanotechnology 2016, 27, 285101.

20. Wu, H.; Qiao, J.; Hwang, Y.H.; Xu, C.; Yu, T.; Zhang, R.; Cai, H.; Kim, D.P.; Qi, L. Synthesis of
ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. Talanta 2019,
200, 547–552.

21. Purohit, R.; Singh, S. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int. J.
Nanomed. 2018, 13, 15–17.

22. El-Sayed, N.; Schneider, M. Advances in biomedical and pharmaceutical applications of protein-
stabilized gold nanoclusters. J. Mater. Chem. B 2020, 8, 8952–8971.

23. Liu, J.M.; Chen, J.T.; Yan, X.P. Near infrared fluorescent trypsin stabilized gold nanoclusters as
surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal.
Chem. 2013, 85, 3238–3245.

24. Han, L.; Xia, J.M.; Hai, X.; Shu, Y.; Chen, X.W.; Wang, J.H. Protein-Stabilized Gadolinium Oxide-
Gold Nanoclusters Hybrid for Multimodal Imaging and Drug Delivery. ACS Appl. Mater. Interfaces
2017, 9, 6941–6949.

25. Hada, A.M.; Craciun, A.M.; Focsan, M.; Borlan, R.; Soritau, O.; Todea, M.; Astilean, S. Folic acid
functionalized gold nanoclusters for enabling targeted fluorescence imaging of human ovarian
cancer cells. Talanta 2021, 225, 121960.

26. Pan, Y.; Li, Q.; Zhou, Q.; Zhang, W.; Yue, P.; Xu, C.; Qin, X.; Yu, H.; Zhu, M. Cancer cell specific
fluorescent methionine protected gold nanoclusters for in-vitro cell imaging studies. Talanta 2018,
188, 259–265.

Multifunctional Nanoplatform Role of AuNCs Therapeutic Agent
Size

(nm)

Imaging

Mode
Cancer Types Therapy Method Activity Ref

ISQ@BSA-

AuNC@AuNR@DAC@DR5
SERS substrate DAC, ISQ NA NM

Amelanotic

Melanoma
PTT, PDT

In

vivo

and

in

vitro
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has good stability and can significantly inhibit tumors through the synergetic effect of photothermal therapy and

chemotherapy . The Au-Cys-MTX/DOX NCs system constructed by Wu et al. is more stable than the non-

covalent drug delivery system and can choose different drug release mechanisms according to the

microenvironment of different tumor tissues. And due to the solidity of the amide bond, only a small amount of drug

can be released from Au-Cys-MTX/DOX NCs in the absence of protease .

4. AuNCs as Therapeutic Agents in Combined Therapy

4.1. Radiosensitization

Radiation therapy is an effective oncology treatment that uses ionizing radiation to target cancer cells. A part of the

high-energy radiation will nonetheless be transferred to the normal tissues around the tumor, inflicting irreparable

damage . Gold has a high atomic number and much greater electron density than soft tissues, which may

boost photoelectric absorption and secondary electron yield, improve local energy deposition in tumor tissues, and

expedite the death of tumor cells . In addition to the previously reported physical methods, gold clusters may

potentially exert their radiosensitizing effects via biological pathways, for example, controlling the cell cycle,

boosting free radical generation in response to radiation, altering cell autophagy, and causing apoptosis .

Using nanogold for the first time for in vivo tumor radiation sensitization, Herold et al. demonstrated that gold

particles might have a dose-enhancing impact on cells and C.B17/Icr scid mice cultured with EMT-6 mouse tumor

cells when exposed to 200 kVp X-rays both in vitro and in vivo tests .

The enhanced permeability and retention (EPR) effect may enhance the aggregation of AuNCs in the tumor, since

smaller nanoclusters (<5 nm) can more easily penetrate tumor tissues and cross blood vessels than larger

nanoparticles (>10 nm). Additionally, the tumor tissue’s decreased lymphatic outflow makes it difficult for

nanoparticles to be effectively cleared away, which increases their retention in the tumor tissue , hence

improving the radiation treatment impact and reducing the harm to the surrounding normal cells. Attaching

trastuzumab and folic acid targeting human epidermal growth factor receptor 2 (HER2) to 4.2 nm AuNCs,

Roghayeh et al. demonstrated that the targeted AuNCs may infiltrate breast cancer SK-BR3 cells through HER-2-

mediated mechanisms . Luo et al. created therapeutic AuNCs that can function as prostate cancer (PCa)-

targeted radiosensitizers and chemotherapy carriers. Using PSMA-MMAE as a template and the reduction of Au

by the reactive group, PSMA-AuNC-MMAE couples were synthesized. The gold nanocluster-attached prostate-

specific membrane antigen (PSMA) could improve the targeting of AuNCs; the bound monomethyl auristatin E

(MMAE) was a chemotherapeutic prodrug that enhanced the chemotherapeutic effect after binding with AuNC, and

MMAE could also boost the radiosensitizing impact by inhibiting the cells in the G2-M area. Due to PSMA receptor

amplification, PC3pip tumor cells maintained considerably more gold nanocluster complexes in PC3pip tumor-

bearing animals than in PC3flu tumor-bearing mice, as shown by in vivo tests . Wu et al. created transformable

gold nanocluster (AuNC) aggregates (called AuNC-ASON) using antisense oligonucleotides (ASON) that target

survivin mRNA. The acidic tumor microenvironment modifies the electrostatic interactions between the

polyelectrolyte poly(allylamine) (PAH) and glutathione surface ligands that stabilize AuNC, causing gold

nanocluster aggregates to separate into 2 nm AuNCs and triggering the release of loaded antisense
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oligonucleotides for gene silencing. The findings of in vivo tests analyzing the co-localization of AuNC-ASON with

nucleosomes/lysosomes revealed that AuNC-ASON has an excellent nucleosome/lysosome escape capacity.

Moreover, real-time polymerase chain reaction (real-time PCR) research revealed that the expression of survivin

mRNA in 4T1 cells followed the same pattern as cell viability, validating the mechanism of tumor cell eradication

based on survivin gene silencing. With the aid of survivin gene interference, this treatment approach may increase

and enhance the radiosensitivity of cancer cells and enable the simultaneous use of tumor radiation and gene

therapy .

The effectiveness of radiotherapy is contingent upon radiosensitivity, and a hypoxic tumor microenvironment

renders tumor cells more resistant to ionizing radiation. As radiosensitizers, AuNCs may be used with oxygen

carriers to reduce tumor hypoxia by generating reactive oxygen species (ROS) generation and enhancing the

effectiveness of radiation. In the cRGD multifunctional treatment system, Au -IO NP-cRGD triggered the death of

4T1 cells by producing substantial quantities of reactive oxygen species in response to X-ray exposure.

Experiments in vivo have shown that this multifunctional treatment platform is capable of directing Fenton

response-assisted improved radiotherapy using dual-mode imaging based on magnetic resonance imaging of iron

oxide (IO) nanoclusters and fluorescence imaging of Au  clusters .

Due to the combination of physical, chemical, and biological factors, radiosensitization is a complicated

phenomenon . The processes by which AuNCs exhibit radiosensitizing effects, particularly the biological

pathways involved, are not well understood. In addition, the efficacy of the functionalized modification of AuNCs

targeted to tumor tissues when administered in vivo, as well as the harm to healthy tissues and non-specific

accumulation of long-term damage to persons, need more research. In the meantime, the increase in the size of

AuNCs after different surface modifications reduces the clearance rate in the organism and increases the

accumulation in the liver. However, it has not been conclusively determined whether there is an influence on the

gene expression of individuals.

In fact, tumor tissues grow at inconsistent rates in all directions with irregular edges. Whether AuNCs can be

conformally distributed according to the different shapes of tumors needs to be further investigated. In conclusion,

more animal experiments and preclinical trials are needed for the practical translation of AuNCs to ensure that the

multifunctional system of AuNCs can be efficiently and safely applied in the clinic.

4.2. Photothermal Conversion

As was mentioned earlier, the excellent photothermal conversion efficiency of AuNCs allows them to be used as

ideal photothermal agents for multimodal imaging and therapeutic implementation. Therefore, examples of

combined treatment based on the photothermal action of AuNCs will not be repeated in this section.

Focusing on the optimization aspect of the photothermal effect of AuNCs, recently, Yin’s group developed AuNCs

as highly efficient photothermal treatment agents and provided a semiquantitative technique for determining their

resonant frequency and absorption efficiency by integrating practical medium approximation theory with full-wave
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electrodynamic simulations. Guided by this theory, they created a space-confined seeded growth approach to

prepare AuNCs. Under optimum growth circumstances, they obtained a record photothermal conversion efficiency

of 84% for gold-based nanoclusters, due to collective plasmon-coupling-induced near-unity absorption efficiency.

They showed the improved exceptional photothermal treatment performance of AuNCs in vivo. Their study shows

the potential and effectiveness of AuNCs as nanoscale photothermal treatment agents .

Lately, a nanoarchitecture comprising a conjugated gold nanorod (AuNR) and gold cluster hybrid system was

developed to optimize the photothermal conversion efficiency. Due to the target specificity of folate receptors for

cancer cells, the hybrid material exhibited high in vitro therapeutic efficacy after folic acid conjugation. More

importantly, the nanoarchitecture of the hybrid material had no significant influence on the optical and thermal

properties of either AuNCs or AuNRs, but exerted enhanced photothermal effects .
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