

# Gold Nanoclusters in Tumor Theranostic and Combination Therapy

Subjects: **Materials Science, Biomaterials**

Contributor: Sisi Liu , Junyao Wang , Yuxin Song , Shuya He , Huixin Tan

The rising incidence and severity of malignant tumors threaten human life and health, and the current lagged diagnosis and single treatment in clinical practice are inadequate for tumor management. Gold nanoclusters (AuNCs) are nanomaterials with small dimensions ( $\leq 3$  nm) and few atoms exhibiting unique optoelectronic and physicochemical characteristics, such as fluorescence, photothermal effects, radiosensitization, and biocompatibility.

gold nanoclusters

cancer diagnosis

combination therapy

## 1. Introduction

The high incidence and mortality rate of cancer pose grave risks to the lives and well-being of all humans. It has long been a focus of research in life science to improve the accuracy of the early detection of malignant tumors and to address the dearth of effective tumor treatments [1]. With the rapid development of nanotechnology, the diversity of structures and functions of biological nanomaterials has been further enriched and spread at an alarming rate to life sciences and clinical medicine, especially new nanomaterials that integrate multiple modes of diagnostic and therapeutic strategies in one, making precise diagnosis and treatment integration and synergistic treatment possible, and this is eagerly anticipated around the globe [2][3].

Gold nanoparticles (AuNPs) are a type of colloidal or agglomerated particle with diameters between a few and hundreds of nanometers, composed of gold cores and surface shell layers. Due to their unique optical properties (surface plasmon resonance, surface-enhanced Raman scattering, etc.) and excellent catalytic properties, they hold great promise in a variety of applications, including biosensing, bioimaging, disease diagnosis, and treatment [4][5][6][7].

Gold nanoclusters (AuNCs) are gold nanomaterials with significantly smaller dimensions ( $\leq 3$  nm) and typically comprise a few to tens of atoms [8]. Due to the quantum-limited effect, AuNCs have superior fluorescence properties and are utilized in a variety of scientific fields, including environmental detection, molecular labeling, and bioimaging [9][10][11][12][13]. In addition, because AuNCs are smaller than the renal threshold, they are easier to eliminate from the body than AuNPs, resulting in greater biosafety and in vivo application potential [14]. Physical, chemical, and biological techniques are now used by production enterprises and lab researchers to create AuNCs. In situ synthesis employing biomolecules (DNA, proteins, peptides, etc.) as templates are one of the chemical techniques that is gaining popularity among researchers [15][16][17]. The principal causes are as follows. Firstly, the

biomolecular template contains numerous active functional groups, such as -SH, -COOH, -NH<sub>2</sub>, and -OH, which can bind gold atoms and improve their stability [18][19]. Secondly, some reducing amino acids (e.g., tryptophan, tyrosine) can reduce Au<sup>3+</sup> ions to Au atoms in the presence of an appropriate pH environment, avoiding the use of strong reducing agents (e.g., NaBH4, CTAB) and have an improved biocompatibility [20]. Thirdly, the physical and chemical properties of AuNCs, such as the number of atoms, particle size, and optical properties, can be rapidly modified by adjusting the template amino acid or nucleotide sequences [21][22][23]. Lastly, the biological activities and functional binding sites of biomolecules provide a rich platform for further multi-functionalization of AuNCs [24][25].

Meanwhile, for tumor tissue enrichment, small AuNCs with high permeability and long retention are preferable. Surface-modified AuNCs can reduce the reticuloendothelial system (RES) and non-specific uptake, as well as specifically bind to overexpressed tumor cell receptors to enhance tumor cell accumulation, resulting in an enhanced cytotoxic effect against tumor cells [26][27]. The AuNCs can be rapidly excreted via the kidney, thereby minimizing damage to healthy tissues [14]. In comparison to large AuNPs, AuNCs possess a larger specific surface area and, consequently, greater surface energy. Due to this surface effect, the surface atoms of AuNCs are reactive and readily bondable with other atoms. Large payloads of drugs, genes, and other therapeutic molecules can be effectively trapped and protected from enzymatic degradation in complex physiological microenvironments [28][29][30]. Various internal and external stimuli may be used to regulate the release of drug-carrying molecules from functionalized AuNCs (e.g., pH, glutathione, light) [31][32]. As a result, they can be used as carriers for efficient targeted transport of therapeutic molecules, to enhance drug aqueous solubility, to prevent drug leakage in healthy tissues prematurely, and mitigate potential side effects.

Indeed, numerous reviews have been conducted on the design and application of AuNCs, particularly in terms of fluorescence imaging. Nonetheless, an increasing number of studies are currently attempting to fully integrate the various properties of AuNCs (**Scheme 1**).



**Scheme 1.** Primary preparation strategies, distinctive properties, and combined applications in diagnosis and therapies of AuNCs(created with BioRender.com).

## 2. AuNCs as Imaging Agents in Tumor Theranostic

Since the successful construction of ultra-small AuNCs, the unique photoelectric effect resulting from their quantum size effect has been valued by researchers and utilized in a variety of sensing, detection, and bioimaging fields [33] [34] [35] [36]. AuNCs are ideally suited for integrated medical applications in diagnostics and treatment due to their superior biocompatibility and functional versatility [37] [38]. The atomic-level investigation of AuNCs has accelerated recently. Due to their precise size and composition, researchers have discovered that AuNCs have outstanding self-assembly and crystallization properties which endow them with more unique and diverse fluorescence

properties [39][40]. To start, the researchers summarize the recent studies on the integration and visualization of AuNCs for diagnosis and treatment based on different imaging modalities of AuNCs, respectively (**Table 1**).

**Table 1.** Application of AuNCs.

| Multifunctional Nanoplatform | Role of AuNCs          | Therapeutic Agent                     | Size (nm) | Imaging Mode | Cancer Types                   | Therapy Method    | Activity             | Ref  |
|------------------------------|------------------------|---------------------------------------|-----------|--------------|--------------------------------|-------------------|----------------------|------|
| AuNCs-Ag@Keratin-Gd          | Imaging                | NM                                    | 5         | FL, MRI      | Breast cancer                  | Chemotherapy      | In vivo and in vitro | [37] |
| CDGM NPs                     | Imaging, drug delivery | CAD, Ce6                              | 2         | FL           | Lung cancer                    | PDT               | In vivo and in vitro | [41] |
| AuS-U11                      | PTT-carrier            | U11 peptide, cyanine dye Cy5.5, 5-ALA | 10        | FL           | Pancreatic carcinoma           | PTT, PDT          | In vivo and in vitro | [42] |
| Au NBPs@PDA/AuNCs            | Imaging                | Au NBPs@PDA                           | 2.1, 3.3  | FL           | Breast cancer, hepatocarcinoma | PTT               | In vitro             | [43] |
| Dox@HG-CAHs                  | Imaging                | HA-ALD, Dox                           | 2.8       | FL, CT       | Osteosarcoma                   | PTT, chemotherapy | In vivo and in vitro | [44] |

| Multifunctional Nanoplatform | Role of AuNCs                                                         | Therapeutic Agent                                   | Size (nm) | Imaging Mode | Cancer Types     | Therapy Method    | Activity             | Ref  |
|------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|-----------|--------------|------------------|-------------------|----------------------|------|
| AuNCs-LHRHa                  | Imaging, PTT                                                          | LHRH analogues                                      | 2.4       | FL, CT       | Prostatic cancer | PTT               | In vitro             | [45] |
| GTSL-CYC-HER2                | Changed the zeta potential of liposomes, superior photothermal effect | HER2-modified thermosensitive liposome, cyclopamine | NA        | CT, PTI      | Breast cancer    | Chemotherapy, PTT | In vivo and in vitro | [46] |
| Ce6&AuNCs/Gd-LDH             | Imaging                                                               | Ce6                                                 | ~2        | MRI, FL      | Hepatocarcinoma  | PDT               | In vivo and in vitro | [47] |
| AuNCs-ICG                    | Imaging, radiosensitizing effects                                     | ICG                                                 | ~1        | FL, PAI, CT  | Breast cancer    | PDT, RT           | In vivo and in vitro | [48] |
| Qu-GNCs                      | Imaging                                                               | Qu                                                  | 1–3       | FL           | Lung cancer      | Chemotherapy      | In vitro             | [49] |
| Fe3O4@PAA/AuNCs/ZIF-8 NPs    | Imaging                                                               | DOX                                                 | NA        | MRI, CT, FL  | Hepatocarcinoma  | Chemotherapy      | In vivo and in vitro | [50] |
| AuNCs@GTMS-FA                | Imaging, phototherapeutic agents                                      | FA                                                  | 2.8       | FL           | Breast cancer    | PTT, PDT          | In vitro             | [51] |

| Multifunctional Nanoplatform              | Role of AuNCs                           | Therapeutic Agent        | Size (nm) | Imaging Mode | Cancer Types               | Therapy Method             | Activity             | Ref  |
|-------------------------------------------|-----------------------------------------|--------------------------|-----------|--------------|----------------------------|----------------------------|----------------------|------|
| AuNCs/Dzs-Dox                             | NSET effect, shelter therapeutic cargos | Dzs-Dox                  | ~1.76     | FL           | Breast cancer              | Gene therapy, chemotherapy | In vivo and in vitro | [52] |
| HG-GNCs/GO-5FU                            | Bioimaging, phototherapeutic            | HA, 5FU                  | 2         | FL           | Lung cancer, breast cancer | Chemotherapy, PDT, PTT     | In vitro             | [53] |
| AuNCs@mSiO <sub>2</sub> @MnO <sub>2</sub> | Photosensitizer                         | MnO <sub>2</sub> nanzyme | NA        | MRI          | Breast cancer              | PDT                        | In vivo and in vitro | [54] |
| Au8NC                                     | Radiosensitizing effects                | Levonorgestrel           | ~2        | FL           | Esophagus cancer           | RT                         | In vivo and in vitro | [55] |
| Au <sub>4</sub> -IO NP-cRGD               | Imaging, radiosensitizing effects       | IO nanocluster           | 2         | FL, MRI      | Breast cancer              | RT, chemotherapy           | In vivo and in vitro | [56] |
| PML-MF nanocarrier                        | Imaging                                 | IO@AuNPs                 | NA        | FL           | Cervical cancer            | PPTT, chemotherapy         | In vitro             | [57] |

## References

- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* 2018, **68**, 394–424.

| Multifunctional Nanoplatform                           | Role of AuNCs                                            | Therapeutic Agent                            | Size (nm)  | Imaging Mode     | Cancer Types    | Therapy Method    | Activity             | Ref  |
|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------|------------------|-----------------|-------------------|----------------------|------|
| WLPD-Au <sub>25</sub>                                  | Photosensitizer, drug delivery                           | WS2 nanoparticles, Dex, Captopril            | 2.5        | CT               | Breast cancer   | PTT, PDT          | In vivo              | [58] |
| AuNCs/Cas9–gRNA                                        | Imaging, drug delivery                                   | Cas9–sgRNA plasmid                           | ~1.56      | FL               | Osteosarcoma    | Gene therapy      | In vitro             | [59] |
| K-AuNCs                                                | Imaging, drug delivery                                   | K                                            | 1–3        | FL               | Lung cancer     | Chemotherapy      | In vitro             | [60] |
| EA-AB                                                  | Imaging                                                  | EB                                           | NM         | FL, MSOT Imaging | Breast cancer   | Chemotherapy, PTT | In vivo and in vitro | [61] |
| Ce6-GNCs-Ab-CIK                                        | Drug delivery                                            | Ce6, CD3 antibody                            | NA         | FL               | Gastric cancer  | Chemotherapy, PDT | In vivo and in vitro | [62] |
| Au <sub>4</sub> Cu <sub>4</sub> /Au <sub>25</sub> @Lip | Photothermogenesis effect, photoluminescence performance | Au <sub>4</sub> Cu <sub>4</sub> nanoclusters | ~2         | FL, PTI          | Cervical cancer | PTT, PDT          | In vivo and in vitro | [63] |
| 1 MB-loaded Au NC-mucin NPs                            | Imaging                                                  | MB                                           | 1.9 ± 0.34 | FL               | Cervical cancer | PDT               | In vitro             | [64] |

11. Liu, H.; Zhu, N.; Li, M.; Huang, X.; Wu, P.; Hu, Z.; Shuai, J. Induced fluorescent enhancement of protein-directed synthesized gold nanoclusters for selective and sensitive detection of flame retardants. *Sci. Total Environ.* 2020, 713, 136488.
12. Guo, T.; Li, W.; Qian, L.; Yan, X.; Cui, D.; Zhao, J.; Ni, H.; Zhao, X.; Zhang, Z.; Li, X.; et al. Highly-selective detection of EGFR mutation gene in lung cancer based on surface enhanced Raman spectroscopy and asymmetric PCR. *J. Pharm. Biomed. Anal.* 2020, 190, 113522.
13. Nonappa, N. Luminescent gold nanoclusters for bioimaging applications. *Beilstein. J. Nanotechnol.* 2020, 11, 533–546.
14. Zheng, B.; Wu, Q.; Jiang, Y.; Hou, M.; Zhang, P.; Liu, M.; Zhang, L.; Li, B.; Zhang, C. One-pot synthesis of (68)Ga-doped ultrasmall gold nanoclusters for PET/CT imaging of tumors. *Mater. Sci. Eng.* 2020, 2020, 1–10.

| Multifunctional Nanoplatform | Role of AuNCs  | Therapeutic Agent | Size (nm) | Imaging Mode | Cancer Types        | Therapy Method | Activity             | Ref  |
|------------------------------|----------------|-------------------|-----------|--------------|---------------------|----------------|----------------------|------|
| 1 ISQ@BSA-AuNC@AuNR@DAC@DR5  | SERS substrate | DAC, ISQ          | NA        | NM           | Amelanotic Melanoma | PTT, PDT       | In vivo and in vitro | [65] |

17. Cui, H.; Shao, Z.S.; Song, Z.; Wang, Y.B.; Wang, H.S. Development of gold nanoclusters: From preparation to applications in the field of biomedicine. *J. Mater. Chem. C* 2020, 8, 14312–14333.
18. Zhang, X.D.; Chen, J.; Luo, Z.; Wu, D.; Shen, X.; Song, S.S.; Sun, Y.M.; Liu, P.X.; Zhao, J.; Huo, S.; et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. *Adv. Healthc. Mater.* 2014, 3, 133–141.
19. Ramesh, B.S.; Georgakis, E.; Lopez-Davila, V.; Dastidar, Zhenhua, A.R.K.; Lefeld, M. Detection of cell surface carboxylates as a potential cancer biomarker using Near-infrared emitting gold nanoclusters. *Nanotechnology* 2016, 27, 285101.
20. Wu, H.; Qiao, J.; Hwang, Y.H.; Xu, C.; Yu, T.; Zhang, R.; Cal, H.; Kim, D.P.; Qi, L. Synthesis of fycin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. *Talanta* 2019, 200, 547–552.

### 3. AuNCs as Transport Agents in Combined Therapy

21. Purohit, R.; Singh, S. Fluorescent gold nanoclusters for efficient cancer cell targeting. *Int. J. Nanomed.* 2018, 13, 15–17.
- AuNCs are widely used for drug delivery and controlled release in vivo and ex vivo as one of the metallic nanomaterials with the longest research history. As one of the special ultra-small size nanostructures, AuNCs have a greater potential for combinatorial applications. [66] Initially, AuNCs have a stable and inert internal core that can shield encapsulated drug molecules. Further, AuNCs have a high surface to volume ratio and can be loaded with a substantial quantity of small-molecule drugs via reasonable surface modification. [67] In addition, AuNCs can be targeted for in vivo tumor transport via passive accumulation (e.g., enhanced permeability and retention effect) or active targeting (e.g., modified target molecules), thereby enhancing the bioavailability of drugs [50][67]. Moreover, the ultra-small nanostructures enable precise targeting of subcellular organelle structures such as the nucleus and mitochondria for detection and therapeutic strategies. In combination with the unique optoelectronic and chemotherapeutic properties of AuNCs, they can achieve controlled and precise strikes against the internal environmental response of tumors and external signal stimuli, consequently reducing the toxic side effects that accompany chemotherapy.
22. El-Sayed, N.; Schneider, M. Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. *J. Mater. Chem. B* 2020, 8, 8952–8971.
23. Liu, J.M.; Chen, J.T.; Yan, X.P. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. *Anal. Chem.* 2013, 85, 3238–3245.
24. Liu, J.M.; Chen, J.T.; Yan, X.P. Gold nanoclusters hybrid for multimodal imaging and drug delivery. *ACS Appl. Mater. Interfaces* 2017, 9, 6941–6949.
25. Hada, A.M.; Craciun, A.M.; Focsan, M.; Borlan, R.; Soritau, O.; Todea, M.; Astilean, S. Folic acid functionalized gold nanoclusters for enabling targeted fluorescence imaging of human ovarian cancer cells. *Talanta* 2021, 225, 121960.
- The covalent modification of the AuNP surface generally adopts sodium borohydride reduction and ligand replacement methods, and the non-covalent binding mainly includes electrostatic interaction and hydrophobic interaction to adsorb the surrounding molecules thus reducing the surface free energy. Jiang et al. [2018, 188, 259–265] loaded mitoxantrone with adriamycin by a “green chemistry” approach using green tea extract, in which adriamycin was co-polymerized with the nanoclusters by π-π superposition and electrostatic interactions. The drug delivery system

27 as ligand; Chong, and Ian Yig, Chanty, Bin. Fabrication of gold and silver core-shell nanoclusters for therapy and chitosan sensing.<sup>[62]</sup> The overexpression of folic acid receptor in tumor cells. *Talanta*. 2016; 158: 118–124.

28. Xie, J.; Liang, R.; Li, Q.; Wang, K.; Hussain, M.; Dong, L.; Shen, C.; Li, H.; Shen, G.; Zhu, J.; et al. can be released from Au-Cys-MTX/DOX NCs in the absence of protease.<sup>[63]</sup> Photosensitizer-loaded gold nanocages for immunogenic phototherapy of aggressive melanoma.

Acta Biomater. 2022; 142: 264–273.

## 4. AuNCs as Therapeutic Agents in Combined Therapy

29. Peng, L.H.; Niu, J.; Zhang, C.Z.; Yu, W.; Wu, J.H.; Shan, Y.H.; Wang, X.R.; Shen, Y.Q.; Mao,

30. Z.W.; Jiang, W.Q.; et al. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. *Biomaterials* 2014; 35: 5605–5618.

Radiation therapy is an effective oncology treatment that uses ionizing radiation to target cancer cells. A part of the 30. Lei, Y.; Tang, L.; Xie, Y.; Xianyu, Y.; Zhang, L.; Wang, P.; Hamada, Y.; Jiang, K.; Zheng, W.; Jiang, high-energy radiation will nonetheless be transferred to the normal tissues around the tumor, inflicting irreparable X. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. damage.<sup>[70][71]</sup> Gold has a high atomic number and much greater electron density than soft tissues, which may Nat. Commun. 2017; 8: 15130.

boost photoelectric absorption and secondary electron yield, improve local energy deposition in tumor tissues, and

31. Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. Theranostic size-reducible and no-donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational

32. Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast

cells when exposed to 200 kVp X-rays both *in vitro* and *in vivo* tests.<sup>[75]</sup>

33. Hong, G.; Zou, Z.; Huang, Z.; Deng, H.; Chen, W.; Peng, H. Split type electrochemiluminescent gene assay platform based on gold nanocluster probe for human papillomavirus diagnosis.

The enhanced permeability and retention (EPR) effect may enhance the aggregation of AuNCs in the tumor, since smaller nanoclusters (<5 nm) can more easily penetrate tumor tissues and cross blood vessels than larger nanoparticles (>10 nm). Additionally, the tumor tissue's decreased lymphatic outflow makes it difficult for

34. Peng, H.P.; Jian, M.L.; Huang, Z.N.; Wang, W.J.; Deng, H.H.; Wu, W.H.; Liu, A.L.; Xia, X.H.; Chen, W. Facile electrochemiluminescence sensing platform based on high quantum-yield gold trastuzumab and folic acid targeting human epidermal growth factor receptor 2 (HER2) to AuNCs. Rochayeh et al. demonstrated that the targeted AuNCs may infiltrate breast cancer SK-BR3 cells through HER-2-mediated mechanisms.<sup>[78]</sup> Luo et al. created therapeutic AuNCs that can function as prostate cancer (PCa)-

35. Yu, Q.; Gao, P.; Zhang, K.Y.; Tong, X.; Yang, H.; Liu, S.; Du, J.; Zhao, Q.; Huang, W. Luminescent targeted radiosensitizers and chemotherapy carriers. Using PSMA-MMAE as a template and the reduction of Au-gold nanocluster-based sensing platform for accurate H2S detection *in vitro* and *in vivo* with by the reactive group, PSMA-AuNC-MMAE couples were synthesized. The gold nanocluster-attached prostate-specific membrane antigen (PSMA) could improve the targeting of AuNCs; the bound monomethyl auristatin E

36. Yang, W.; Xie, H.; Xie, T.; Wang, Z.; Zhang, R.; He, H.; Peng, G.; Zhang, J.; et al. Building with AuNC and MMAE could also break the tight junctions mainly by inhibiting the cells in the G2/M phase due to PSMA and tumor amplification. PC3 tumor cells maintained considerably more 2D and 3D complexes in PC3pip tumor-bearing animals than in PC3flu tumor-bearing mice, as shown by *in vivo* tests.<sup>[79]</sup> Wu et al. created transformable

37. Li, Y.; Cao, Y.; Wei, L.; Wang, J.; Zhang, M.; Yang, X.; Wang, W.; Yang, G. The assembly of gold nanocluster (AuNC) aggregates (called AuNC-ASON) using antisense oligonucleotides (ASON) that target protein-templated gold nanoclusters for enhanced fluorescence emission and multifunctional survivin mRNA. The acidic tumor microenvironment modifies the electrostatic interactions between the applications. *Acta Biomater.* 2020; 101: 436–443.

polyelectrolyte poly(allylamine) (PAH) and glutathione surface ligands that stabilize AuNC, causing gold nanocluster aggregates to separate into 2 nm AuNCs and triggering the release of loaded antisense

38. **Matchless Gold Nanoclusters for Making in-Human Atomically Precise Gold Nanoclusters Towards an Optimal AuNC-ASON with Biocompatible System and an Effective Experimental Strategy.** *Small* **2021**, *17*, 2005499.

39. **Moreover, real-time polymerase chain reaction (real-time PCR) research revealed that the expression of survivin mRNA in 4T1 cells followed the same pattern as cell viability, validating the mechanism of tumor cell eradication based on survivin gene silencing. With the aid of survivin gene interference, this treatment approach may increase gold nanocluster.** *Nat. Commun.* **2022**, *13*, 2607.

40. **and enhance the radiosensitivity of cancer cells and enable the simultaneous use of tumor radiation and gene therapy.** <sup>80</sup> *V.; Zhang, H.; Nonappa; Kostiainen, M.A.; Ikkala, O. From Precision Colloidal Hybrid*

**Materials to Advanced Functional Assemblies.** *Acc. Chem. Res.* **2022**, *55*, 1785–1795.

41. **The effectiveness of radiotherapy is contingent upon radiosensitivity, and a hypoxic tumor microenvironment renders tumor cells more resistant to ionizing radiation. As radiosensitizers, AuNCs may be used with oxygen carriers to reduce tumor hypoxia by generating reactive oxygen species (ROS) generation and enhancing the effectiveness of radiation. In the cRGD multifunctional treatment system, Au<sub>4</sub>-IO NP-cRGD triggered the death of**

42. **4T1 cells by producing substantial quantities of reactive oxygen species in response to X-ray exposure. Experiments in vivo have shown that this multifunctional treatment platform is capable of directing Fenton response assisted improved radiotherapy using dual mode imaging based on magnetic resonance imaging of iron oxide (IO) nanoclusters and fluorescence imaging of Au<sub>4</sub> clusters.** <sup>56</sup>

43. **Wang, J.; Gao, Y.; Liu, P.; Xu, S.; Luo, X. Core-Shell Multifunctional Nanomaterial-Based All-in-One Nanoplatform for Simultaneous Multilayer Imaging of Dual Types of Tumor Biomarkers and Photothermal Therapy.** *Anal. Chem.* **2020**, *92*, 15169–15178.

44. **Due to the combination of physical, chemical, and biological factors, radiosensitization is a complicated phenomenon.** <sup>81</sup> The processes by which AuNCs exhibit radiosensitizing effects, particularly the biological pathways involved, are not well understood. In addition, the efficacy of the functionalized modification of AuNCs

45. **targeted to tumor tissues when administered in vivo, as well as the harm to healthy tissues and non-specific accumulation of long-term damage to persons, need more research. In the meantime, the increase in the size of AuNCs after different surface modifications reduces the clearance rate in the organism and increases the accumulation in the liver. However, it has not been conclusively determined whether there is an influence on the gene expression of individuals.**

46. **Wang, Z.; He, L.; Che, S.; Xing, H.; Guan, L.; Yang, Z.; Li, X.; Zvyagin, A.V.; Lin, Q.; Qu, W.**

**AuNCs-LHRHa nano-system for FL/CT dual-mode imaging and photothermal therapy of targeted prostate cancer.** *J. Mater. Chem. B* **2022**, *10*, 5182–5190.

47. **In fact, tumor tissues grow at inconsistent rates in all directions with irregular edges. Whether AuNCs can be conformally distributed according to the different shapes of tumors needs to be further investigated. In conclusion, more animal experiments and preclinical trials are needed for the practical translation of AuNCs to ensure that the multifunctional system of AuNCs can be efficiently and safely applied in the clinic.**

**Nanobiotechnol.** **2021**, *19*, 293.

## 4.2. Photothermal Conversion

48. **Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D.G.; Duan, X. Hydrotalcite monolayer toward high performance synergistic dual-modal imaging and cancer therapy.**

**As was mentioned earlier, the excellent photothermal conversion efficiency of AuNCs allows them to be used as ideal photothermal agents for multimodal imaging and therapeutic implementation. Therefore, examples of**

49. **combined treatment based on the photothermal effect of AuNCs have been reported.** *X.; Zheng, H.; et al.*

**Ulrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy.** *Biomater. Sci.* **2020**, *8*, 973–987.

**Focusing on the optimization aspect of the photothermal effect of AuNCs, recently, Yin's group developed AuNCs as highly efficient photothermal treatment agents and provided a semiquantitative technique for determining their resonant frequency and absorption efficiency by integrating practical medium approximation theory with full-wave nanomaterial in anticancer and bio-imaging disciplines.** *Colloids Surf. B Biointerfaces* **2019**, *178*,

electrodynamic simulations. Guided by this theory, they created a space-confined seeded growth approach to prepare AuNCs. Under optimum growth circumstances, they obtained a record photothermal conversion efficiency of 84% for gold-based nanoclusters, due to collective plasmon-coupling-induced near-unity absorption efficiency. *In vivo* drug delivery by metal-organic framework based composite nanoparticles. *Biomater. Sci.* 2015, 3, 1270–1278. They showed the improved exceptional photothermal treatment performance of AuNCs *in vivo*. Their study shows the potential and effectiveness of AuNCs as nanoscale photothermal treatment agents [82].

51. Ovais, M.; Mukherjee, S.; Pramanik, A.; Das, D.; Mukherjee, A.; Raza, A.; Chen, C. Designing Latent Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. *Adv Mater* 2020, 32, e200065. This work was developed to improve the photothermal conversion efficiency. Due to the target specificity of folate receptors for cancer cells, the hybrid material exhibited high *in vitro* therapeutic efficacy after folic acid conjugation. More importantly, the nanoarchitecture of the hybrid material had no significant influence on the optical and thermal properties of either AuNCs or AuNRs, but exerted enhanced photothermal effects [83].
52. Sun, H.; Ma, W.; Duan, S.; Huang, J.; Jia, R.; Cheng, H.; Chen, B.; He, X.; Wang, K. An endogenous stimulus detonated nanocluster-bomb for contrast-enhanced cancer imaging and combination therapy. *Chem. Sci.* 2021, 12, 12118–12129.
53. Yang, Y.; Wang, S.; Wang, C.; Tian, C.; Shen, Y.; Zhu, M. Engineered Targeted Hyaluronic Acid-Glutathione-Stabilized Gold Nanoclusters/Graphene Oxide-5-Fluorouracil as a Smart Theranostic Platform for Stimulus-Controlled Fluorescence Imaging-Assisted Synergetic Chemo/Phototherapy. *Chem. Asian J.* 2019, 14, 1418–1423.
54. Yin, Z.; Ji, Q.; Wu, D.; Li, Z.; Fan, M.; Zhang, H.; Zhao, X.; Wu, A.; Cheng, L.; Zeng, L. H2O2-Responsive Gold Nanoclusters @ Mesoporous Silica @ Manganese Dioxide Nanozyme for “Off/On” Modulation and Enhancement of Magnetic Resonance Imaging and Photodynamic Therapy. *ACS Appl. Mater. Interfaces* 2021, 13, 14928–14937.
55. Jia, T.T.; Yang, G.; Mo, S.J.; Wang, Z.Y.; Li, B.J.; Ma, W.; Guo, Y.X.; Chen, X.; Zhao, X.; Liu, J.Q.; et al. Atomically Precise Gold-Levonorgestrel Nanocluster as a Radiosensitizer for Enhanced Cancer Therapy. *ACS Nano* 2019, 13, 8320–8328.
56. Hua, Y.; Wang, Y.; Kang, X.; Xu, F.; Han, Z.; Zhang, C.; Wang, Z.Y.; Liu, J.Q.; Zhao, X.; Chen, X.; et al. A multifunctional AIE gold cluster-based theranostic system: Tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. *J. Nanobiotechnol.* 2021, 19, 438.
57. Pan, U.N.; Sanpui, P.; Paul, A.; Chattopadhyay, A. Protein-Nanoparticle Agglomerates as a Plasmonic Magneto-Luminescent Multifunctional Nanocarrier for Imaging and Combination Therapy. *ACS Appl. Bio Mater.* 2019, 2, 3144–3152.
58. Zhou, J.; Wang, Q.; Geng, S.; Lou, R.; Yin, Q.; Ye, W. Construction and evaluation of tumor nucleus-targeting nanocomposite for cancer dual-mode imaging—Guiding photodynamic therapy/photothermal therapy. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2019, 102, 541–551.
59. Tao, Y.; Yi, K.; Hu, H.; Shao, D.; Li, M. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. *J. Mater. Chem. B* 2021, 9, 94–100.
60. Govindaraju, S.; Roshini, A.; Lee, M.H.; Yun, K. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. *Int. J. Nanomed.* 2019, 14,

5147–5157.

61. Zhan, C.; Huang, Y.; Lin, G.; Huang, S.; Zeng, F.; Wu, S. A Gold Nanocage/Cluster Hybrid Structure for Whole-Body Multispectral Optoacoustic Tomography Imaging, EGFR Inhibitor Delivery, and Photothermal Therapy. *Small* 2019, 15, e1900309.
62. Xia, F.; Hou, W.; Liu, Y.; Wang, W.; Han, Y.; Yang, M.; Zhi, X.; Li, C.; Qi, D.; Li, T.; et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. *Biomaterials* 2018, 170, 1–11.
63. Liu, X.; Yang, Y.; Wang, X.; Liu, X.; Cheng, H.; Wang, P.; Shen, Y.; Xie, A.; Zhu, M. Self-assembled Au4Cu4/Au25 tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT. *J. Mater. Chem. B* 2021, 9, 6396–6405.
64. Dutta, D.; Sailapu, S.K.; Simon, A.T.; Ghosh, S.S.; Chattopadhyay, A. Gold-Nanocluster-Embedded Mucin Nanoparticles for Photodynamic Therapy and Bioimaging. *Langmuir* 2019, 35, 10475–10483.
65. Sujai, P.T.; Joseph, M.M.; Karunakaran, V.; Saranya, G.; Adukkadan, R.N.; Shamjith, S.; Thomas, R.; Nair, J.B.; Swathi, R.S.; Maiti, K.K. Biogenic Cluster-Encased Gold Nanorods as a Targeted Three-in-One Theranostic Nanoenvelope for SERS-Guided Photochemotherapy against Metastatic Melanoma. *ACS Appl. Bio Mater.* 2019, 2, 588–600.
66. Li, H.; Li, H.; Wan, A. Luminescent gold nanoclusters for in vivo tumor imaging. *Analyst* 2020, 145, 348–363.
67. Jiang, M.; Lin, Y.; Fang, X.; Liu, M.; Ma, L.; Liu, J.; Chen, M.; Yang, Y.; Wang, C. Enhancement of gold-nanocluster-mediated chemotherapeutic efficiency of cisplatin in lung cancer. *J. Mater. Chem. B* 2021, 9, 4895–4905.
68. Jiang, X.; Sun, Y.; Shang, L.; Yang, C.; Kong, L.; Zhang, Z. Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. *J. Mater. Chem. B* 2019, 7, 5972–5982.
69. Wu, S.; Yang, X.; Luo, F.; Wu, T.; Xu, P.; Zou, M.; Yan, J. Biosynthesis of flower-shaped Au nanoclusters with EGCG and their application for drug delivery. *J. Nanobiotechnol.* 2018, 16, 90.
70. Haume, K.; Rosa, S.; Grellet, S.; Smialek, M.A.; Butterworth, K.T.; Solov'yov, A.V.; Prise, K.M.; Golding, J.; Mason, N.J. Gold nanoparticles for cancer radiotherapy: A review. *Cancer Nanotechnol.* 2016, 7, 8.
71. Citrin, D.E. Recent Developments in Radiotherapy. *N. Engl. J. Med.* 2017, 377, 1065–1075.
72. Taggart, L.E.; McMahon, S.J.; Butterworth, K.T.; Currell, F.J.; Schettino, G.; Prise, K.M. Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. *Nanotechnology* 2016, 27, 215101.

73. Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. *Int. J. Nanomed.* 2020, 15, 9407–9430.
74. Zhang, X.; Chen, X.; Jiang, Y.W.; Ma, N.; Xia, L.Y.; Cheng, X.; Jia, H.R.; Liu, P.; Gu, N.; Chen, Z.; et al. Glutathione-Depleting Gold Nanoclusters for Enhanced Cancer Radiotherapy through Synergistic External and Internal Regulations. *ACS Appl. Mater. Interfaces* 2018, 10, 10601–10606.
75. Herold, D.M.; Das, I.J.; Stobbe, C.C.; Iyer, R.V.; Chapman, J.D. Gold microspheres: A selective technique for producing biologically effective dose enhancement. *Int. J. Radiat. Biol.* 2000, 76, 1357–1364.
76. Ejigah, V.; Owoseni, O.; Bataille-Backer, P.; Ogundipe, O.D.; Fisusi, F.A.; Adesina, S.K. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. *Polymers* 2022, 14, 2601.
77. Islam, R.; Maeda, H.; Fang, J. Factors affecting the dynamics and heterogeneity of the EPR effect: Pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. *Expert Opin. Drug Deliv.* 2022, 19, 199–212.
78. Samani, R.K.; Tavakoli, M.B.; Maghsoudinia, F.; Motaghi, H.; Hejazi, S.H.; Mehrgardi, M.A. Trastuzumab and folic acid functionalized gold nanoclusters as a dual-targeted radiosensitizer for megavoltage radiation therapy of human breast cancer. *Eur. J. Pharm. Sci.* 2020, 153, 105487.
79. Luo, D.; Wang, X.; Walker, E.; Springer, S.; Ramamurthy, G.; Burda, C.; Basilon, J.P. Targeted Chemoradiotherapy of Prostate Cancer Using Gold Nanoclusters with Protease Activatable Monomethyl Auristatin E. *ACS Appl. Mater. Interfaces* 2022, 14, 14916–14927.
80. Wu, C.; Du, X.; Jia, B.; Zhang, C.; Li, W.; Liu, T.C.; Li, Y.Q. A transformable gold nanocluster aggregate-based synergistic strategy for potentiated radiation/gene cancer therapy. *J. Mater. Chem. B* 2021, 9, 2314–2322.
81. Ghahremani, F.; Kefayat, A.; Shahbazi-Gahrouei, D.; Motaghi, H.; Mehrgardi, M.A.; Haghjooy-Javanmard, S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. *Nanomedicine* 2018, 13, 2563–2578.
82. Chen, J.; Gong, M.; Fan, Y.; Feng, J.; Han, L.; Xin, H.L.; Cao, M.; Zhang, Q.; Zhang, D.; Lei, D.; et al. Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy. *ACS Nano* 2022, 16, 910–920.
83. Nair, R.V.; Puthiyaparambath, M.F.; Chatanathodi, R.; Nair, L.V.; Jayasree, R.S. A nanoarchitecture of a gold cluster conjugated gold nanorod hybrid system and its application in fluorescence imaging and plasmonic photothermal therapy. *Nanoscale* 2022, 14, 13561–13569.

Retrieved from <https://encyclopedia.pub/entry/history/show/84968>