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The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of
intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability
of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based
therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses,
need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the
field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications.
Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-
viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-
based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and
resistance to proteolysis. In this review, we discuss the most recent efforts towards novel non-viral delivery systems,
focusing on strategies and mechanisms of peptide-based delivery systems, that can specifically deliver CRISPR
components to different cell types for therapeutic and research purposes.
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| 1. Introduction

The CRISPR genome editing system was first identified as short repeats of DNA downstream of the iap gene of
Escherichia coli . In 2002, it was referred to as “CRISPR”, and the CRISPR-associated genes were discovered as highly
conserved gene clusters located adjacent to the repeats [&. A series of studies later revealed that CRISPR is a bacterial
immune system that dismantles invading viral genetic material and integrates short segments of it within the array of
repeated elements Bl This array is transcribed and the transcript is cut into short CRISPR RNAs (crRNAs) each
carrying a repeated element together with a spacer consisting of the viral DNA segment [5]. This crRNA guides a
CRISPR-associated (Cas) nuclease towards invading viral DNA to cleave it and inactivate viral infection at the next
occurrence &, Starting 2013, the fusion of a crRNA containing a guiding sequence with a trans-activating RNA (tracrRNA)
bearing the repeat, into a single-guide RNA (sgRNA) has opened the doors for gene editing in mammalian cell lines and
many other species [EIAEIL10]

The flexibility of the CRISPR system lies in its programmable Cas nuclease, which utilizes a guide RNA (gRNA) sequence
to reach the desired complementary genomic sequence 1. CRISPR-Cas systems open venues for applications in
genetic functional screening, disease modeling, and gene modification 2. The double-stranded breaks (DSBs) created
by the Cas nuclease makes deletions or insertions at precise genomic loci possible 2. In nature, DSBs can occur
randomly during replication or due to environmental factors and are repaired in our cells using the homologous DNA copy
as a template in a natural DSB DNA repair process called homology-directed repair (HDR) 2. This cellular DNA repair
pathway can thus be employed to copy a co-introduced artificial DNA template (donor) carrying a desired sequence into
the target cleavage site (Figure 1). However, HDR is only activated when the homologous sister chromatid is available,
usually in S and G2 phases, during the cell cycle 13!, Otherwise, HDR is suppressed and DSB repair is maintained
through a distinct repair pathway called non-homologous end-joining (NHEJ) 3l In non-dividing cells, such as neurons,
gene editing is mostly carried out using NHEJ, where broken DNA ends are directly ligated without any requirement of
sequence homology 13l NHEJ mediated repair, however, is error-prone and tends to produce arbitrary mutations at the
site_of ligation of DSBs. Often, these mutations create premature stop codons or frame-shifts that are capable of
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Several promising strategies towards neurodegenerative diseases, currently with no cure, have also been reported. For
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convert the abundant astrocytes in the brain into dopaminergic neurons that are lost in Parkinson’s Disease in order to
restore motor behavior in mice [54]. This latter example highlights the breadth of CRISPR’s therapeutic application
especially because it tackles the disease using a cell-conversion strategy rather than editing a disease-causing mutation.
Indeed, biomedical research has already developed various strategies for CRISPR therapy that can halt or reverse
disease progression. However, the translation of such therapies is contingent upon the development of appropriate modes
of delivery.

| 3. Conclusion

Although the field of CRISPR therapy has flourished during the last decade, there remains a need for developing
appropriate targeted delivery systems to advance its use to the clinic. Developing non-viral delivery systems for CRISPR
have been a subject of immense research to avoid the safety concerns associated with viral vectors. Thus far, most
targeted delivery systems employed for CRISPR-Cas are dependent on ligand-decorated liposomes or nanoparticles,
which require complex design or may be toxic to achieve cell-specific receptor recognition. Peptide-based non-viral
delivery systems contain properties that offer advantages such as chemical diversity, low toxicity, resistance to proteolysis
and ability for specific targeting. The non-covalent complexing of CRISPR-Cas components with peptides through
charge—charge interactions represents a one-step, simple, safe, translatable, and customizable method for specific tissue
targeting. Targeting CRISPR-Cas systems to the cells of interest carries a great deal of hope for biomedical research and
for achieving the safety levels required for clinical translation. More research is needed to test the efficacy of peptide-
based systems for the targeted in vivo delivery of CRISPR-Cas to different tissues.



