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Recent advancements in natural fiber composites have minimized the usage of man-made fibers, especially in the

field of structural applications such as aircraft stiffeners and rotor blades. However, large variations in the strength

and modulus of natural fiber degrade the properties of the composites and lower the safety level of the structures

under dynamic load. Without compromising the safety of the composite structure, it is significant to enrich the

strength and modulus of natural fiber reinforcement for real-time applications.

natural fiber composite  woven natural fiber  orientation

1. Introduction

This century has already perceived notable achievements in green technology, especially in the domain of

materials science, with the evolution of high-performance materials made from natural resources for various

structural, manufacturing, bio-medical, aerospace, and automotive applications . Due to their natural

abundance, ease of processing, design flexibility, and feasibility of manufacturing complex shapes, natural fiber

composites are good alternatives to conventional materials. They are also light in weight and hazardless to the

environment . The main problem with natural fibers is the variation of properties and characteristics, such as

strength and modulus . The cellulose composition of the cell wall, environmental circumstances during growth,

geographical considerations, microfibrillar angle, and other factors all influence the fiber’s strength . The structure

of the natural fiber is shown in Figure 1. Properties of natural fiber composites depend on several parameters,

such as processing technique, fiber strength, interfacial bonding between fiber and matrix, type of reinforcement,

weaving pattern, and fiber orientation .
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Figure 1. Structure of natural fiber.

In the last two decades, natural fiber has found extensive usage in aerospace, naval, and structural fields . The

main reasons behind the higher usage of natural fiber composites for weight-sensitive and structural applications

such as stiffener, truss members, bio-medical, automobile interior parts, etc., by industries are the potential

environmental, end-of-life discarding, and health advantages in contrast to man-made composite materials .

Furthermore, man-made composite materials have a high density, are expensive, and are hazardous to the

environment compared to natural fiber composites . As proof, natural fibers such as jute, flax, banana, hemp,

and sisal have replaced synthetic fibers such as glass, carbon, Kevlar, and boron in fields that require a load-

carrying capacity in the medium and low range . Tarasen and Reddy  established the usage of natural fibers

(bamboo and jute) in several areas, such as fiber-reinforced columns, special joints, packaging material, and

pillars. Moreover, some natural fibers are the best sources for extracting nanocellulose fibers. These nanofibers

can be added as a second reinforcement to naturally based composites. Figure 2 depicts different natural fibers

utilized in composites, and Figure 3 displays the classification of natural fibers. Moreover, composites consist of

two phases: One is the matrix phase and the other is the reinforcement phase. The reinforcement phase consists

of lignocellulose, which is generally referred to as natural fiber composite. The fibers directly extracted from a living

organism are called natural fibers. The fibers derived from synthetic materials are called synthetic fibers.

[8]
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Figure 2. Common natural fibers used in composites: (a) bamboo (grass fiber type); (b) banana (leaf fiber type);

(c) coir (fruit fiber type); (d) cotton (seed fiber type); (e) kenaf (bast fiber type); (f) flax (bast fiber type); (g) hemp

(bast fiber type); (h) jute (bast fiber type); (i) nettle (grass fiber type); (j) oil palm (fruit fiber type); (k) ramie (bast

fiber type); (l) sisal (leaf fiber type).

Figure 3. Classification of natural fibers.

The large variation in strength and modulus makes NFCs incompatible under dynamic load and minimizes the

safety level of the component. To overcome this drawback, NFCs are reinforced with NFRs in the polymer matrix to

improve the structural applications’ strength, modulus, and safety.

Most researchers have developed NFCs with random orientation and short natural fibers as reinforcements in the

polymer matrix, creating non-uniform stress distribution due to fiber discontinuity, which further leads to early failure

of composites. The modulus of natural fibers can be enriched by reinforcing them with natural fibers in plain,

braided, and knitted arrangements. It is observed that the Young’s modulus of NFCs reinforced with NFRs in

distinctive patterns in weavings such as basket, plain, stain, twill, etc. have increased promisingly. Similarly,

braided NRCs enriched the Young’s modulus of jute-fiber reinforcement by 30% compared to conventional weaving

. Sapuan and Maleque  developed less expensive telephone stands using banana fabric (woven type) in

an epoxy matrix. By substituting fiberglass with jute fiber composites, Alves et al.  highlighted the advantages of

NFCs in the manufacture of automobile hoods.

[12][13] [13]
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Reinforcing the NFC with synthetic fiber enhances its mechanical properties and load-carrying capacities and can

be used for different structural applications . Damodaran et al.  applied a basic sandwich model to develop a

traditional drum (Chenda) using a carbon epoxy composite and balsa core material. Comparing the acoustic

performance of the traditional drum and a composite drum suggested that the high damping properties of sandwich

composites could replace the wood used in the traditional drum. Based on the mechanical properties, many

researchers are focusing on working on identifying fibers (plant-based) suitable for use in medium and low load

applications . The benefits of woven fabric natural composites (WFNCs) have led to an

increase in their use in a variety of structural applications. When compared to randomly oriented and unidirectional

NFCs, WFNCs provide higher stiffness and strength for the same amount of fibers employed. NFCs’ fracture

toughness is also improved by the usage of woven fabric. Riedel et al. studied the usage of WFNCs in several

structural applications and concluded that using woven fabric would improve composite stiffness .

2. Disadvantages of Composites including Short Natural
Fibers

Many researchers have investigated the mechanical, dynamic mechanical, and tribological properties of randomly

oriented and short natural fibers as reinforcements in the polymer matrix. The main problem associated with short-

form reinforcement in a high-density polymer matrix is that achieving uniform distribution is difficult. It affects the

advantages of natural fiber composites seriously and makes them incompatible for structural applications. Almeida

et al.  investigated the mechanical characteristics of coir fiber in a polyester matrix with a fraction of up to 80

wt% coir fiber. They found that composites with 50 wt% exhibited enhanced mechanical properties. Further

addition resulted in less strength and a lower modulus of the composites due to random distribution and poor

bonding between the fiber and matrix.

Another problem associated with randomly distributed short natural fibers is that the polymer matrix is

agglomerates as it affects the composites properties. A similar problem was reported by Joseph et al.  regarding

the mechanical properties of sisal/polypropylene composites. The authors concluded that fiber length, loading, and

orientation affect the performance of the composites. A schematic diagram of a randomly oriented short fiber-

reinforced composite is illustrated in Figure 4.

[15] [16]
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[25]

[26]

[27]



Natural Fiber Composites | Encyclopedia.pub

https://encyclopedia.pub/entry/22712 6/24

Figure 4. Schematic diagram of randomly oriented short fiber composite.

Arib et al.  studied the mechanical properties of pineapple leaf fiber-reinforced polypropylene composites and

found that a higher volume percentage diminished the mechanical properties of the pineapple composites. Shekeil

et al.  investigated the mechanical characteristics of kenaf fiber–thermoplastic polyurethane composites as a

function of fiber weight %. They discovered that adding 30 wt% to the composites enhanced the mechanical

characteristics of the composites and that adding more resulted in the composites’ modulus, flexural, and tensile

strength decreasing.

Researchers also found that the random distribution of NFR affects the stiffness of composites due to poor stress

transfer at the interface during loading. The dynamic behavior of banana–sisal hybrid short fiber-reinforced

polyester composites was investigated by Idicula et al. . At 0.40 Vf, they observed a minimum peak height and

maximum width for the material loss factor. It was revealed that composites with 0.40 Vf possessed higher stiffness

and maximum energy. Further increasing the fiber content in the matrix reduced its stiffness due to the non-uniform

fiber distribution. Similar variations were observed by Doan et al. in jute fiber/polypropylene composites . Pothan

et al.  found that 40 wt% fiber loading enhanced the storage modulus and glass transition temperature of

banana fiber composite materials. They also observed that high fiber loading decreased the stiffness of the

composites.

[28]
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Kumar et al.  compared the free vibration and damping behavior of short banana and sisal fiber polyester

composites. The authors found that banana fiber with a length of 4 mm and sisal fiber with a length of 3 mm at 50

wt% improved the damping and mechanical characteristics. For longer fiber length, the damping properties of

composites decreased due to agglomeration. Tayeb  investigated the tribological properties of sugarcane fiber–

polyester composites and found that the wear rate of composites decreased when fiber length varied from 1 to 5

mm. Further, increasing the length of the fiber resulted in an increased wear rate and friction coefficient of the

composite material. Higher fiber length increased the amorphous nature of the composite. Shalwan and Yousif 

investigated the mechanical and tribological behavior of polymeric composites based on natural fibers. They came

to the conclusion that the properties of composite materials are impacted by fiber orientation, fiber length, and

volume fraction. Yusuf et al.  looked into the tribological characteristics of oil-palm fiber-reinforced polyester

composites and discovered that oil palm/polyester composites had better wear properties.

From the results of these reported studies, it is concluded that the properties of natural fibers with short form

depend on the fiber aspect ratio, and improvements in properties are generally observed only up to a certain wt%.

The main problem associated with short and randomly oriented fibers in composites is achieving uniform

distribution in the polymer matrix . Furthermore, it creates a poor interfacing bond between the fiber and the

matrix due to a higher weight percentage, resulting in poor mechanical properties.

3. Woven Natural Fiber Composite

To overcome the disadvantage of natural fiber with short and random orientation, researchers focused more on the

reinforcement effect by incorporating WNFR to enhance the properties of NFCs for low and medium load

applications. Because of its ease of processing, low fabrication cost, and improved characteristics, the idea of

employing WNFR to produce NFCs was generally adopted. Due to stronger fiber–matrix bonding, the gap between

warp and weft acts as a mechanical interlock among the polymer matrix, increasing resistance to failure under

load. In addition, the chances of failure are less/delayed due to fiber pullout under dynamic loading conditions. In

recent years, tremendous development in the textile sector has motivated researchers to explore the possibilities of

improving natural fiber composite properties, making them suitable for many applications. Nowadays, natural fibers

are used in continuous and woven forms, which further increases the inherent properties of NFCs. Several

researchers analyzed the outcome of weaving patterns such as plain, twill, stain, and basket weaving patterns on

the mechanical properties of NFCs. Results revealed that NFCs reinforced with NFR with varied weaving patterns

exhibit improved mechanical properties. John et al.  and Pothan et al.  explained the advantages of various

weaving structures such as plain, basket, twill, and satin. Out of these four patterns, plain weave gives uniform

distribution, good stability, and porosity. A continuous yarn moves in the warp and weft directions in a regular 1x1

pattern in a plain weave. Plain weave has the major drawback of having a larger crimp in the warp, and the weft

impacts the properties of the succeeding composite. To enhance the properties of composite materials,

researchers investigated various weaving patterns and evaluated them against plain weave as a reference.

Alavudeen et al.  tested a woven banana/kenaf polyester composite against a randomly oriented fiber composite

with the same wt%. In comparison to the short fiber composite, they discovered that the woven composite had

[33]
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better mechanical characteristics. As a result, it has been demonstrated that continuous natural fiber improves

composite performance when compared to composites made with short natural fiber with random distribution.

3.1. Mechanical Properties

The mechanical properties of natural fiber composites, such as impact, flexural, and tensile strength, are influenced

by fiber percentage in the matrix, fiber strength, fiber–matrix adhesion, fiber orientation, concentration, and

treatment type . Steel, titanium, and aluminum were formerly the materials of choice for engineering, civil,

aircraft, and automotive applications. WNFR composites, on the other hand, offer favorable weight characteristics

and bulk strength, making them a feasible substitute for traditional materials since they have stiffness and superior

strength . Schematic diagrams of basic weaving patterns used in the composite field are illustrated in

Figure 5.

[41][42]

[43][44][45]
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Figure 5. Schematic of various woven mats: (a) plain; (b) basket; (c) twill; (d) satin.

In an experimental investigation, Asim et al.  evaluated the flexural characteristics and tensile strength of tri-

layer palm oil and woven jute fiber–epoxy composites to palm oil–epoxy and woven jute–epoxy composites. Three-

layer palm oil and woven jute fiber–epoxy composites had greater mechanical properties than identical composites

made with other combinations. It was also discovered that the kind of fiber and its hybridization had an impact on

composite characteristics. The mechanical characteristics of Cotton and Kapok fabrics as reinforcing components

in a polypropylene matrix were examined by Mwaikambo et al. . They discovered that adding fabric to the

composite material enhanced its rigidity. Sapuan et al.  studied the mechanical characteristics of woven

banana/epoxy composites and discovered that woven banana composites had a higher strength and modulus. The

influence of a stacking arrangement on the mechanical properties of sansevieria cylindrical–coconut sheath

polyester composites was investigated by Bennet et al. . The maximum modulus was seen when the mat fiber

was kept as an exterior layer and short-fiber mat was used as the core material.

Carmisciano et al.  investigated the flexural properties of a basalt woven fiber-reinforced vinyl ester composite

and a glass fiber composite. Basalt woven fiber composites outperformed glass fiber composites. Venkateshwaran

and Elayaperumal  investigated the mechanical properties of woven banana–jute–epoxy composites with

various stacking sequences. They discovered that adding jute fiber as a core layer increased the flexural and

tensile properties of the composite over the jute and banana composites individually. The flexural characteristics of

woven pandanus and banana fabric composites with short fiber reinforcement were compared by Mariatti et al. .

They discovered that at the same volume %, the woven fabric composite exhibited a high modulus and strength.

Finally, Khan et al.  investigated the mechanical characteristics of non-woven jute and plain-woven jute

composites in the warp direction. They observed that in the warp direction, the woven mat composite outperformed

the non-woven composite in terms of mechanical properties.

Rajesh and Pitchaimani  analyzed the effect of weaving patterns on mechanical properties compared with

composites reinforced with randomly oriented natural fibers. Results revealed that for the same weight percentage,

the woven composite improved the mechanical properties of the composites whereas randomly oriented SNFR

failed relatively. Short-form reinforcement experienced higher stress concentrations as fiber discontinuity affected

the bonding strength between the fibers and the matrix. It led to early failure of the composites compared to woven

fabric reinforcement. The individual strength of the yarn and the amount of fiber present in the reinforcement

influenced the load-carrying behavior of the composites. Similar observations were made by Alavudeen et al. .

They analyzed the effect of fiber strength and weaving patterns on the mechanical properties of polyester

composites and compared them with randomly oriented composites. They found that irrespective of fiber strength,

the weaving pattern significantly affected the strength of the composites.

Figure 5 depicts commonly used weaving patterns in the composite field, such as plain, basket, twill, and satin

weaves. The main advantage associated with plain and basket weaving is the uniform orientation of the fibers in

the weft and warp directions. In satin and twill weaves, the fabric will bias diagonally, which influences the load-

carrying behavior of the composites. In plain and basket weaves, stress is distributed uniformly along with the warp

[46]
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[53]
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and weft directions, which affects the mechanical properties of the composites. In twill and satin weaves, stress

transfers non-uniformly and diagonally to the warp and weft directions, leading to earlier failure of the composite

under loading. In the textile industry, the huckaback style is commonly used in fabrics. Due to the periodic yarn

arrangement in both the warp and weft directions, the huckaback pattern enhances the fabric’s surface roughness.

The gaps between subsequent strands in the warp and weft orientations are the fundamental drawback of

huckaback woven composites, which causes them to break prematurely. As a result, there is a higher

concentration of tension during loading. Goutianos et al.  studied the effects of yarn twist for woven composites.

Results indicated that a higher yarn twist improved the properties of the composites, whereas a lower yarn twist

exacerbated insufficient loading capacity. Pothan et al.  evaluated the mechanical characteristics of several

types of woven sisal fiber composites and discovered that plain-woven fabric improved the composite’s properties.

Shibata et al.  investigated the flexural strength of bamboo/kenaf fiber-reinforced composites that were

unidirectional and randomly oriented. They concluded that the woven fabric, regardless of material, flexural

strength, and modulus of the composite, was improved. Table 1 shows the mechanical properties of frequently

used plant fibers in the field of composites.

Table 1. Mechanical properties of plant fiber-reinforced polymeric biocomposites.

[55]

[56]

[57]

Composites
Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Tensile
Strength

(MPa)

Tensile
Modulus

(GPa)

Elongation
at Break

(%)

Author and
Year Ref.

Jute/polypropylene 77.32 4.34 56.71 1.82 –
Chandekar et

al. (2020)

ramie (5-layer) /epoxy
98.73 ±

5.98
–

99.04 ±
2.85

– –
Darshan and

Suresha
(2021)

Kenaf/polypropylene 45.56 2.37 24.67 2.35 –
Akthar et al.

(2016)

Sisal/epoxy
252.39
± 12.11

11.32 ±
1.02

83.96 ±
6.94

1.58 ±
0.08

–
Gupta and
Srivastava

(2016)

Rice straw/LDPE 33.7 1.6 13.7 0.144 24.10
Xia et al.
(2018)

Pineapple/epoxy ~100 –
80.12 ±

2.23
8.15 ±
0.23

–
Odusote and
Oyewo (2016)

Rice straw/polypropylene
36.5 ±

0.5
1.28 ±
0.027

33.2 ±
0.5

1.66 ±
0.025

23.9 ± 2.9
Hidalgo-

Salazar and
Salinas (2019)

Reed/citric acid 12.51 2.45 – – 0.54 Ferrandez-
Garcia et al.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
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3.2. Dynamic Mechanical Properties

Thermal and dynamic mechanical characteristics of newly developed materials are significant parameters to be

examined primarily for structural applications. At higher temperatures, the interactions between molecules in

Composites
Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Tensile
Strength

(MPa)

Tensile
Modulus

(GPa)

Elongation
at Break

(%)

Author and
Year Ref.

(2019)

Basalt fiber/silk fiber/epoxy 151.42 6.20 118.85 2.15 –
Georgiopoulos

et al. (2016)

Sisal/cotton/polyester 270 ± 4
12.62 ±

0.41
65 ± 5

0.52 ±
0.015

12.31
Sathishkumar
et al. (2017)

Hemp/sisal/epoxy
44.47 ±

2
1.892 ±
0.061

31.76 ±
0.88

1.173 ±
0.32

3.2 6 ±
0.41

Thiagamani et
al. (2019)

Sisal/chitosan/epoxy
136 ±
2.8

7.023 ±
0.61

46.70 ±
3.5

3.821 ±
0.13

2.176
±0.82

Soundhar et
al. (2019)

Sisal/bagasse/epoxy 0.76 – 27.36 – 0.06
James et al.

(2020)

Jute/hemp/flax/epoxy 66 ± 4
1.25 ±
0.23

60 ± 3
1.88 ±
0.21

5.8 ± 2.2
Chaudhary et

al. (2018)

Banana/ramie/polypropylene 30   35 ± 2    
Sai krishnan et

al. (2020)

sisal/banana/coir/epoxy 48.60 3.45 26.35 1.20 –
Balaji et al.

(2019)

Date palm/flax/thermoplastic
starch

73.6 5 31 2.8 5.25
Ibrahim et al.

(2014)

Kenaf fiber/phenolic resin 62.12 2.63 15.8 4.350 2.89
Naresh Kumar

et al. (2021)

Banana/jute fiber/vinylester 70 3.26 17.98 1.89 4.5
Ravindran et

al. (2021)

Red banana/ramie/vinyl
ester

80 – 42 – –
Sai krishnan et

al. (2020)

Flax/jute/polypropylene
58.79 ±

1.73
1.39 ±
0.11

39.48 ±
1.61

2.85 ±
0.12

2.90 ±
0.18

Karaduman et
al. (2015)

Coconut sheath/epoxy 76.80 – 58.60 – –
Suresh Kumar
et al. (2014)

Areca sheath/palm leaf
sheath fiber/epoxy

51 – 46 – 0.18
Ganesh et al.

(2020)

Kenaf/jute fiber 57.2 4.62 43.21 3.60 2.1
Khan et al.

(2019)

[66]

[67]
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[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]



Natural Fiber Composites | Encyclopedia.pub

https://encyclopedia.pub/entry/22712 12/24

materials made out of conventional materials will be higher, which increases energy dissipation and lowers the

stiffness. The fiber or yarn arrangement, reinforcement, amount of fiber in the matrix, and adhesion between the

matrix in the space between two fiber yarns influence the dynamic characteristics of composite materials. Rajesh

and Pitchaimani  investigated the dynamic mechanical characteristics of composite materials using weaving

patterns and fiber strengths. They discovered that in the glassy zone, regardless of the weaving pattern, the

composite had a small change in storage modulus. However, compared to satin, plain, huckaback, and twill woven

composites, the basket-design jute composite significantly increased the storage modulus after the glassy area. At

higher temperatures, the basket-design composite enhanced structural stiffness and improved resistance to free

molecular movement. The basket-woven fabric’s fiber yarn arrangement also reduced stress concentration and

supported more weight between two consecutive yarns in the weft and warp directions. Furthermore, the list of

published research work that has been conducted to demonstrate the dynamic mechanical properties is tabulated

in Table 2.

Table 2. Some of the research work related to dynamic mechanical properties.

Composites
Flexural
Strength

(MPa)

Flexural
Modulus

(GPa)

Tensile
Strength

(MPa)

Tensile
Modulus

(GPa)

Elongation
at Break

(%)

Author and
Year Ref.

Banana/kenaf/epoxy 24 2.32 54 0.291 18.5
Sathish et al.

(2017)
[82]

[83]

No. Composites Observations Authors and
Year Ref.

1.
Kenaf and hemp bast
fiber-reinforced
polyester

The composites had a relatively higher storage
modulus than other samples.

Aziz and Ansell
(2004)

2.
Natural fiber-reinforced
polyethylene

The developed composite had relatively better shear
properties than other samples.

Franco and
Valadez (2005)

3.
Coir fiber-reinforced
natural rubber

Interfacial bonding influence energy dissipation was
observed.

Geethamma et
al. (2005)

4.
Jute fiber-reinforced
green composites

The developed composites had relatively better
tensile property and toughness.

Hossain et al.
(2011)

5.
Doum fiber-reinforced
polypropylene
composites

The usage of a coupling agent in the composites
improved the rheological properties.

Essabir et al.
(2013)

6.
Flax- and linen-fabric-
reinforced epoxy

Improved fiber/matrix adhesion reduced the
damping ratio of the composite.

Yan (2012)

7.
Coconut sheath fiber
epoxy

The enhanced interface bonding reduced the
damping ratio of the fiber.

Kumar et al.
(2014)

8.
Banana fiber-reinforced
phenol formaldehyde
resole

The developed composite had a better glass
transition temperature and storage modulus.

Indira et al.
(2014)

9.
Woven coconut
sheath/polyester
composite

The developed composites demonstrated better
damping characteristics than the counterpart
materials.

Rajini et al.
(2013a)

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]



Natural Fiber Composites | Encyclopedia.pub

https://encyclopedia.pub/entry/22712 13/24

The impact of weaving patterns on the dynamic mechanical behavior of banana–epoxy composites was

investigated by Venkateshwaran and Elayaperumal . The composite enhanced the storage modulus of the

composite laminate while having no influence on the glass transition temperature compared to twill and satin

weaves. According to the authors, the orientation of natural fiber yarns in the warp and weft directions influenced

the storage modulus of the plain-woven composite. In plain weave, a different strand arrangement in the warp and

weft orientations enhances stability and minimizes porosity. The high crimp present in both the warp and weft

directions is the fundamental issue with plain weave. Plain weave, however, is more rigid than satin or twill.

Fangueiro and Rana  investigated the viscoelastic behavior of twill and plain-woven hemp fiber-reinforced

polylactic acid composites. They discovered that twill weave improved the composites’ viscoelastic and mechanical

characteristics, as well as their loss and storage moduli. Gupta  discovered that plain-weave reinforcement

improved the composite’s dynamic mechanical characteristics more than short fibers. A dynamic mechanical

investigation of oil-palm empty fruit bunch (EFB)/woven jute fiber (Jw) epoxy hybrid composites was explored by

Jawaid et al. . The woven jute composite’s storage modulus was found to be higher than that of the hybrid

composites. It revealed that the hybridization of oil-palm empty fruit bunches with woven jute fabric affects the

performance of the composite under the thermal environment due to the addition of oil-palm empty fruit bunches

minimizing the resistance of free molecule movement in the polymer chain. Thus, it minimizes the resistance

against free molecular movement and reduces stiffness. Asim et al.  studied the influence of jute fiber loading

on the dynamic mechanical behavior of oil-palm epoxy composites. The inclusion of jute fiber in the oil-palm–epoxy

No. Composites Observations Authors and
Year Ref.

10.
Banana/polyester hybrid
composites

Reducing the red-mud particle composition
increased the damping properties of the composites.

Uthayakumar
et al. (2014)

11.
Ensete stem
fibers/polyester
composites

The storage modulus of the constructed composites
made from ensete fibers treated with 5.0% NaOH
was 1412 MPa, i.e., it was 108% more than that of
untreated ensete-fiber polyester composites.

Negawo et al.
(2019)

12.
Date palm fibers/epoxy
composites

The storage modulus and loss modulus were
improved by including date palm fibers (DPF) in
epoxy. However, 50% DPF loading showed greater
performance than 40% or 60% DPF loading.

Gheith et al.
(2019)

13.

Banana fiber
(BF)/recycled high-
density polyethylene
composites (RHDPEs)

The modulus of the RHDPE matrix was significantly
increased when BF was added. An increase in the
storage modulus value of about 20.42% was found
while adding BF to RHDPE.

Sukanya and
Kothapalli

(2018)

14.

Pineapple leaf fiber
(PALF) hybridized with
basalt-reinforced epoxy
composite

Changes in fiber orientations were discovered to
have a significant impact on the loss tangent and
storage modulus.

Doddi et al.
(2020)

15.
Luffa cylindrical/
polyester composite

The effects of fiber surface treatment (with NaOH,
silane, and Ca(OH) ) and fiber content on the
generated vegetable fiber (luffa cylindrica) polyester
composite were investigated (30%, 40%, and 50%).
The Ca(OH) -treated fiber had a high peak in the
damping factor (at 50%), whereas silane-treated
fiber had a higher loss modulus (at 50%).

Kalusuraman
et al. (2020)
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composites increased their storage modulus. It showed that adding high-strength jute fiber to the matrix prevented

free molecule movement and improved the composite material’s stiffness at higher temperatures. The dynamic

mechanical behavior of PLA–hemp bio-composites was studied by Durante et al. . They discovered that

increasing the fiber ratio in the PLA matrix enhanced the composite material’s glass transition temperature and

storage modulus. The dynamic mechanical behavior of aliphatic–aromatic co-polyester and green composites

consisting of woven flax cloth matrix was studied by Chandrasekar et al. . Conferring to the results, the addition

of woven fabric significantly increased the storage modulus of the green composite.

3.3. Free Vibration Behaviour

The materials used for structural applications must have superior damping properties, along with strength and

stiffness. These properties are significantly influenced by the manufacturing process, type of reinforcement, and

matrix. Researchers have fabricated composite laminates using a compression-molding process and compared

them with a hand lay-up technique. Results revealed that composites fabricated using the compression-molding

technique exhibited improved properties compared to those produced using the hand lay-up method. Kumar et al.

 reported that the compression-molding process showed enhanced material properties and stiffness, along with

energy dissipating properties. For structural applications, it is important to reduce the resonant amplitude of

vibration to protect the components and structures from failure. The modal damping associated with each mode of

the structure has a considerable impact on the resonant amplitude of vibration. A small exciting force can induce

high amplitude vibrations at resonance due to any sizeable vibratory inertia force. In general, fiber-reinforced

composites have higher damping properties than conventional materials due to viscoelastic behavior and fiber–

matrix interaction.

Free vibration properties such as natural frequency and damping characteristics of fiber-reinforced composites

have been analyzed by several researchers using experimental, analytical, and numerical methods. In free

vibration analysis, the composite material’s natural frequency and corresponding damping factor were found using

the fast Fourier transfer (FFT) algorithm. It changes a time-domain signal to a frequency response signal and

provides an incessant peak for the corresponding natural frequency of the composite material. Chandradass et al.

 experimentally analyzed the outcome of nanoclay additions on free vibration characteristics of a glass fiber-

reinforced composite structure. The second-phase nanoscale dispersion in the matrix and E-glass fiber greatly

improved the internal damping of the hybrid composites, according to the dynamic results. Gibson  analyzed

the modal vibration response quantities of composite materials and structures. Results revealed that impulsive

excitation methods gave accurate values for the characterization of intrinsic material properties.

Recently, synthetic fibers have been replaced by natural fibers as reinforcements in the polymer matrix because of

their better energy-dissipating behavior . The development of green composites increases the usage of

plant wastes, thereby reducing their carbon footprint. The free vibration behavior of woven reinforced materials

improves the natural frequency of the composite material . Rouf  analyzed the influence of plain, twill,

and satin weaving patterns on the dynamic behavior of woven fabric composites. The author found that plain

weave increased the damping properties of composites more than satin composites. Duc et al.  conducted a
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modal analysis to determine the natural frequency and damping behavior of unidirectional, laminated, and woven

flax fiber (FF)/epoxy composites. They critically evaluated the factors affecting the natural frequency and damping

factor of the composite material. They found that the impregnation quality, fiber/matrix adhesion, strength of the

fibers, twist of the fiber yarns, and yarn crimp significantly affected the fundamental natural frequency and

corresponding damping factor of the composite structure.

Similarly, the effects of structure type, type of fibers, and physical properties such as density, thickness, and

manufacturing process on the stiffness of the composite laminate influence the dynamic properties . Mishra and

Sahu  carried out extensive experimental work on the free vibrational behavior of woven composites with

different boundary conditions. They found that the number of layers, fiber orientation, aspect ratio, and different

boundary conditions of the woven fiber composite significantly influenced their stiffness values.

According to Chandra et al. , fiber-reinforced composites offer better strength and stiffness, as well as a

stronger damping effect, than traditional materials. Da et al.  measured the frequency and conducted modal

damping analysis for jute/sisal hybrid polyester composites using the impulse hammer technique. They found that

the average damping factor attained for the jute/sisal hybrid composite was 1.15 times higher than the composite

reinforced with the jute layer alone. It was due to differences in the flexural stiffness of the jute/sisal hybrid

polyester composite. Rajini et al.  discussed the free vibration behavior of coconut woven mat with different

percentages of nanoclay added to the polyester composite. The introduction of nanoclay increased the natural

frequency of the composite by up to 3 wt%, whereas further addition reduced the matrix stiffness. The damping

characteristics of the composite material improved as the wt% of the nanoclay increased, owing to the efficient

interaction between the fiber and matrix, which boosted the composite material’s energy dissipation. Rajesh et al.

 reported similar observations for a banana–jute intra-ply hybrid composite. Results showed that the use of a

basket-woven composite as reinforcement enhanced the first three fundamental natural frequencies of the

composite material. Fiber orientation within the yarn plays an essential role in determining natural frequencies 

. Rajesh and Pitchaimani  analyzed the natural frequency of woven natural fiber composites under a

buckling load. Results revealed that the weaving patterns influenced the resistance against a buckling load.
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