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One of the cutting-edge topics today is the use of magnetic field sensors for applications such as

magnetocardiography, magnetotomography, magnetomyography, magnetoneurography, or their application in

point-of-care devices. Types of magnetic field sensors include direct current superconducting quantum interference

devices, search coil, fluxgate, magnetoelectric, giant magneto-impedance, anisotropic/giant/tunneling

magnetoresistance, optically pumped, cavity optomechanical, Hall effect, magnetoelastic, spin wave interferometry,

and those based on the behavior of nitrogen-vacancy centers in the atomic lattice of diamond. Current

developments of magnetometry in biological diagnostics are revised in review paper DOI: 10.3390/s20061569.

magnetic field sensors  biosensors  biomagnetic fields  therapeutic application

noninvasive medical procedures  diagnosis

1. Introduction

The development of magnetic field sensors for biomedical applications primarily focuses on equivalent magnetic

noise reduction or overall design improvement in order to make them smaller and cheaper while keeping the

required values of a limit of detection. Contemporary demands of biological systems diagnostics are for low-cost

fabrication methods, flexibility of usage, and the quick obtaining of test results. At the same time, new diagnostic

platforms have to be more precise and provide the right clinical management decisions. The development of

magnetic field sensors for biomedical applications primarily focuses on equivalent magnetic noise reduction or

overall design improvement in order to make them smaller and cheaper while keeping the required values of a limit

of detection.

Applications of magnetic sensing technology in biomedical fields can be subdivided into two main categories:

Measuring a magnetic field produced by human organs

Detecting magnetically labeled biomolecules.

Magnetic field sensors suitable for biomedical applications are:

Search Coil Magnetometers [ ]

Direct current superconducting quantum interference devices (dc SQUIDs) Magnetometers [ ]

Fluxgate Magnetometers [ ]
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Magnetometers based on the Anisotropic/Giant/Tunneling Magnetoresistance (AMR/GMR/TMR) Effects [

]

Magnetoelectric Magnetometers [ ]

Giant Magneto-Impedance (GMI) Magnetometers [ ]

Optically Pumped Atomic Magnetometers [ ]

Cavity Optomechanical Magnetometers [ ]

Magnetometry utilizing Nitrogen-Vacancy Centers in Diamond [ ]

Hall Effect Magnetometers [ ]

Magnetoelastic Magnetometers [ ]

Spin Wave Interferometry Based Magnetometers [ ]

A list of magnetic sensors depending on the type of application (for biomagnetic signals detection or for point-of-

care devices) is presented in Figure 1. The list of magnetic sensors is constituted from their potential use in

systems for sensing many kinds of biomagnetic signals including point-of-care devices. The working principles and

detailed explanation of the potential use of these sensors are presented in the full version of this review [ ].

Figure 1. A list of the common and modern magnetic field sensors with the potential to be used for the detection of

biomagnetic signals (magnetocardiography (MCG), magnetoencephalography (MEG), magnetomyography (MMG),

magnetoneurography (MNG)) and for point-of-care devices [ ].

2. Magnetic Field Sensors for Detection of Biomagnetic
Signals
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Biomagnetic signals from a human body provide a lot of useful information about the heart, nervous system, brain

or muscle activity. However, magnetic fields generated by most biosystems have a low amplitude in comparison

with noise sources [ ]. The adult heart signal is the largest of the biological magnetic signals with a peak

magnitude of about 25 pT [ ]. For each biomagnetic signal source, one can determine the required limits of

detectable magnetic field strength and frequency in terms of an equivalent magnetic noise spectral density. To

study magnetocardiography [ ], magnetoneurography [ ], magnetoencephalography [ ] and

magnetomyography [ ], the magnetic field sensor must fulfill those conditions. A chart showing sensors capable

of detecting corresponding biomagnetic signals is shown in Figure 2.

Figure 2. A chart showing how various magnetic sensor technologies (y-axis) relate to the detection of biomagnetic

signals (x-axis). For precise details of the sensors, refer to the text and referenced publications.

In the field of biomagnetic signal detection, there are some well-established as well as new state-of-the-art

magnetometry techniques worth mentioning. Nowadays, the most used technique is SQUID magnetometry [ ].

However, this method is complicated to achieve in practice, because it generally relies on the use of a magnetically

shielded room and cooling of the sensing element with liquid nitrogen or helium [ ]. The resolution problems

may be overcome by the implementation of specific hardware and software shielding technologies. Also, new

developments in the high-T  SQUIDs (not requiring liquid helium) provide the possibility of placing sensing

elements close to the system to be measured, unfortunately, also followed by a higher noise level [ ].

Optically pumped magnetometers achieving measurements less than 1 fT/√Hz [ ] have great potential to replace

SQUID magnetometers in some areas, but measuring methods can still be improved in the design, setup, and

signal-to-noise ratio [ ]. Also, these devices measure the magnitude of the field giving no information on its

direction. Moreover, there could be zones of zero sensitivity in certain directions. Latest examples of detection

limits in the low-frequency regime (<10 Hz) for different volumes of vapor cells include: 7 fT/√Hz by Krzyzewski et
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al. [ ], 15 fT/√Hz by Knappe et al. [ ], 10 fT/√Hz by Boto et al. [ ]. The versions based on a nonlinear

magneto-optical rotation regime are not commonly considered when measuring biomagnetic signals but there is

some research devoted to the improvement of their limit of detection [ ].

Both SQUID and optically pumped magnetometers achieve a limit of detection of the order of fT/√Hz only while

having milli- or micrometer spatial resolution. The achievement of nanometer spatial resolution with these types of

sensors is cost expensive and is followed with the huge drop of detection limit. In turn, nanometer spatial resolution

can be provided by one of the newest and most promising types of magnetometers based on the behavior of

nitrogen-vacancy (NV) centers in the atomic structure of diamond. Though for now these magnetometers

commonly have a nT/√Hz [ ] or pT/√Hz [ ] limit of detection, they have a number of noteworthy applications

due to their special features. In addition, such sensors have potential in fields of magnetocardiography,

magnetomyography and magnetoencephalography, due to the possibility of achieving the required limit of

detection. Nevertheless, the physics of detection based on NV centers in diamond is complicated and differs from

sample to sample. Thus, theoretical studies describing the physics of the processes in the structures considered

are still ongoing.

The sensors discussed previously have restrictions on their operating temperature or on the optical excitation

power, and there is a demand on the magnetic field sensor operating at room temperature whilst maintaining

optimum performance. One of the most promising candidates for this purpose is the cavity optomechanical

magnetometer. This currently has low energy consumption, high spatial resolution, and requires no cooling

systems [ ].

An additional type of magnetometer having low energy consumption, wide temperature range and competitive

sensitivity is the spin wave interferometry-based magnetometer. One of the latest works devoted to the advantages

of this new technique predicts the value of the detection limit of 1 pT/√Hz [ ].

Highly sensitive and localized magnetic field sensors already discussed are ether technically sophisticated or cost

expensive. The topic of relatively simple and cheap magnetic field sensors having sensitivities at a level suitable for

magnetocardiography or magnetomyography is expanding. One relatively cheap and available magnetic field

sensor able to measure biomagnetic signals is the fluxgate magnetometer. Recently, a new type of flux-gate sensor

which utilizes epitaxial iron garnet films with a specially designed edge profile as a core was developed, claiming a

reduction of noise level at room temperature down to 0.1 pT/√Hz. This magnetometer was successfully applied in

magnetocardiography experiments on animals [ ].

Magnetic field sensors competing with the fluxgate for magnetocardiography are those based (separately) on the

magnetoimpedance, magnetoelectric and magnetoresistive effects. With the use of GMI gradiometers in a

magnetically unshielded environment, the magnetic heart signal from a human subject was detected at nine

spatially separated points demonstrating the possibility of obtaining more information in comparison with

electrocardiography [ ]. For these measurements, the noise level was approximately 2 pT/√Hz. The possibility

of detection with GMI gradiometers of other biomagnetic signals as a magnetic field around a muscle tissue sample
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was also shown [ ]. Amongst magnetoresistive sensors, TMR-based sensors are good candidates for

measuring fields from the heart and, possibly, the brain [ ]. A future challenge for the low cost, portable magnetic

MR sensors is to non-invasively monitor the heart of an unborn baby in the womb, being an area presently covered

by SQUID magnetometers. The signals from the electrical activity of the brain, however, are much smaller, so to

monitor these a sensitivity in the femto-Tesla range is required - which is currently beyond the range of MR

sensors.

3. Magnetic Field Sensors for Point-of-Care Devices

Some recent studies have been dedicated to the development of point-of-care devices for biomedical diagnostics

[ ]. Although biological objects are generally non-ferromagnetic, the latest developments in magnetic

nanoparticles’ systems have produced specific magnetic markers which have affinities to conjugating ligands for

cells, proteins, nucleic acids, etc. Magnetically labeled targets can be detected by magnetic field sensors or

concentrated by a magnetic field on the surface of sensors thus allowing an improvement in the detection

efficiency. Point-of-care technologies are generally associated with lab-on-a-chip systems where magnetic

nanoparticles can employ different functions [ ]. For example:

Capture, preconcentration, and separation of analytes bonded with the specifically functionalized surface of the

particles;

Mixing of lateral flows;

Creation of contrast in magnetic susceptibility of the biological medium for future sensing.

This set of features opens doors for completely new applications as well as for the significant improvement of

existing methods. For instance, the lateral flow immunoassay is a well-established method of biodetection which is

very prominent because of the immunochromatographic strip test for ascertaining pregnancy [ ]. This can be

improved with the use of magnetic nanoparticles. Recent developments show that the approach of focusing

magnetically labeled rare protein biomarkers for early diagnosis of cervical cancer can significantly improve

sensitivity [ ]. Quantitative analysis can be achieved through an optical signal detected by the camera of a

smartphone or by the naked eye [ ]. In some cases, however, the traditional optical methods are not acceptable

due to the high background noise or the low sensitivity of detecting devices. Because of these reasons, magnetic

sensors have been employed [ ].

Magnetic field sensors in such devices are used for detection of drugs, cellular proteins or other biomarkers which

are usually labeled with magnetic particles (or beads) as shown in Figure 3. There are also tests for blood

coagulation, measurement of forces or stresses in artificial bones and the mass evaluation of cell cultures. Typical

sensors being used in lab-on-a-chip systems are GMR/TMR [ ], search coils [ ], GMI [ ], and

Hall effect [ ] magnetometers while for bioengineering purposes the most commonly used magnetic sensors are

based on magnetoelasticity [ ]. A significant advantage of magnetoresistive sensors in these applications is that

they are fabricated with the same overall technology used to produce silicon chips, so it is relatively easy to

manufacture them as part of an integrated lab-on-a-chip system.
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Figure 3.  Example of a biochip based on magnetic label detection using a magnetic thin-film sensor. The chip

consists of an array of probe biomolecules (1) of known identity immobilized onto the surface of the sensor (2),

magnetic labels (3) functionalized with target biomolecules (4) that bind to the sensor surface through biomolecular

recognition. The magnetic particle stray field H  resulting from the magnetic moment of the label induced by the

applied magnetic field H  is measured by the sensor.

Magnetoelastic magnetic field sensors are used for the monitoring of glucose concentration, growth of bacteria, pH,

biliary stent monitoring and other noteworthy in vitro applications [ ]. This is useful in the mechanical

detection of loads on orthopedic implants or in vivo monitoring of the force information in bones and joints.

In the field of microfluidics and lateral flow bioanalysis, there is a need for high sensitivity and fast response. A lot of

proposed biosensing platforms meeting these needs are based on the magnetoresistive effect. One of the

noteworthy articles is dedicated to tuberculosis point-of-care diagnostics with a magnetoresistive biosensor having

a limit of detection of 10  cells/mL [ ]. Recently, AMR-based microstructures [ ] were proposed for

magnetic beads detection, but, nowadays, because of the low change of resistivity [ ] (around 2%),

magnetoresistive biosensors based on GMR [ ] and TMR [ ] are more popular. For detailed information

about exchange-biased AMR sensors tailored for magnetic bead sensing in lab-on-a-chip systems, we refer to the

overview [ ].

Detection of biomarkers can also be performed with magnetic field sensors based on the magnetoimpedance

effect. An example of this is the detection of a-fetoprotein bioconjugates with a GMI magnetometer (with the 100

fg/mL limit of detection) [50]. Also, GMI based magnetic field sensors can be used in microfluidic chips achieving a

detection limit of 0.1 ng∙mL  and working in the 0.1 ng/mL–20 ng/mL biomarker concentration range [ ].

4. Conclusions and Future Perspectives
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In the field of biomagnetic signal detection, SQUID magnetometry remains the most common tool for

magnetocardiography, magnetomyography, magnetoneurography or magnetoencephalography while having the

best sensitivity approaching fT/√Hz. In spite of the usefulness of SQUID magnetometers, the requirement of low

operating temperature and magnetically shielded room makes it relatively hard to use in practice. The future

prospects for SQUID magnetometers may lie in miniaturization and, also, in the reduction of the operational noise

values whilst remaining at a low limit of detection.

Among all magnetic field sensors, the most promising candidate for replacing SQUID-based sensors are optically

pumped magnetometers (particularly ones based on the spin relaxation free regime). Their potential lies in their

ability to achieve a limit of detection of several fT/√Hz while keeping the sensing area (restricted by linear

dimensions of vapor cells) to a few tenths of mm . In comparison with SQUIDs, these magnetometers produce less

operational noise and need heating of vapor cells to a temperature up to around 400 K, which is easier to realize.

Still, optically pumped magnetometers require a real-time precise magnetic shielding system and some

construction issues for the implementation of such sensors in biomedicine are yet to be solved [ ].

In addition, great progress has been achieved in magnetometry using a detection system based on nitrogen-

vacancy centers in diamond material. Though the sensitivity of such devices commonly does not extend beyond

tenths of pT/√Hz, they operate at room temperature while allowing nanoscale sensing and providing a way to

develop novel magnetic field sensors. Due to these prospects, further and current research is mostly aimed at

extending the sensitivity and resolution of magnetometers of this type.

Due to recent developments in nano- and microfabrication techniques, new approaches to miniaturize magnetic

field sensors with competitive sensitivities may be realized in spin wave interferometry or cavity optomechanical

magnetometers. However, these magnetometers are still technically complicated, so magnetometers based on

well-established and more simply fabricated AMR/GMR/TMR, GMI, fluxgate, and magnetoelectric technologies are

enough for many biomagnetic field measurements.

Concerning point-of-care technologies, sensor integration into lab-on-a-chip, and microfluidic technologies could

lead to the replacement of many diagnostic systems currently used in laboratories and clinics. As the sensitivity

requirements are determined by a particular device, the path to the miniaturization of diagnostic systems lies in

overall design improvements. New advances in the fields of micro- and nano-fabrication will also help to overcome

current limitations of the usage of magnetic sensors in this field because of issues concerning high power

consumption, single-target detection and system complexity. The most promising magnetic sensors to overcome

these limitations are GMR/TMR and GMI magnetometers due to the fact of their flexibility and the convenience of

the low-cost integration process. This means that not only the sensor but the complete signal processing system

can be built on the same chip using closely related technologies.
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