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One of the cutting-edge topics today is the use of magnetic field sensors for applications such as

magnetocardiography, magnetotomography, magnetomyography, magnetoneurography, or their application in point-of-

care devices. Types of magnetic field sensors include direct current superconducting quantum interference devices, search

coil, fluxgate, magnetoelectric, giant magneto-impedance, anisotropic/giant/tunneling magnetoresistance, optically

pumped, cavity optomechanical, Hall effect, magnetoelastic, spin wave interferometry, and those based on the behavior of

nitrogen-vacancy centers in the atomic lattice of diamond. Current developments of magnetometry in biological

diagnostics are revised in review paper DOI: 10.3390/s20061569 (https://doi.org/10.3390/s20061569).
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1. Introduction

The development of magnetic field sensors for biomedical applications primarily focuses on equivalent magnetic noise

reduction or overall design improvement in order to make them smaller and cheaper while keeping the required values of

a limit of detection. Contemporary demands of biological systems diagnostics are for low-cost fabrication methods,

flexibility of usage, and the quick obtaining of test results. At the same time, new diagnostic platforms have to be more

precise and provide the right clinical management decisions. The development of magnetic field sensors for biomedical

applications primarily focuses on equivalent magnetic noise reduction or overall design improvement in order to make

them smaller and cheaper while keeping the required values of a limit of detection.

Applications of magnetic sensing technology in biomedical fields can be subdivided into two main categories:

Measuring a magnetic field produced by human organs

Detecting magnetically labeled biomolecules.

Magnetic field sensors suitable for biomedical applications are:

Search Coil Magnetometers [ ]

Direct current superconducting quantum interference devices (dc SQUIDs) Magnetometers [ ]

Fluxgate Magnetometers [ ]

Magnetometers based on the Anisotropic/Giant/Tunneling Magnetoresistance (AMR/GMR/TMR) Effects [

]

Magnetoelectric Magnetometers [ ]

Giant Magneto-Impedance (GMI) Magnetometers [ ]

Optically Pumped Atomic Magnetometers [ ]

Cavity Optomechanical Magnetometers [ ]

Magnetometry utilizing Nitrogen-Vacancy Centers in Diamond [ ]

Hall Effect Magnetometers [ ]

Magnetoelastic Magnetometers [ ]

Spin Wave Interferometry Based Magnetometers [ ]

A list of magnetic sensors depending on the type of application (for biomagnetic signals detection or for point-of-care

devices) is presented in Figure 1. The list of magnetic sensors is constituted from their potential use in systems for

sensing many kinds of biomagnetic signals including point-of-care devices. The working principles and detailed

explanation of the potential use of these sensors are presented in the full version of this review [ ].
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Figure 1. A list of the common and modern magnetic field sensors with the potential to be used for the detection of

biomagnetic signals (magnetocardiography (MCG), magnetoencephalography (MEG), magnetomyography (MMG),

magnetoneurography (MNG)) and for point-of-care devices [ ].

2. Magnetic Field Sensors for Detection of Biomagnetic Signals

Biomagnetic signals from a human body provide a lot of useful information about the heart, nervous system, brain or

muscle activity. However, magnetic fields generated by most biosystems have a low amplitude in comparison with noise

sources [ ]. The adult heart signal is the largest of the biological magnetic signals with a peak magnitude of about 25 pT

[ ]. For each biomagnetic signal source, one can determine the required limits of detectable magnetic field strength and

frequency in terms of an equivalent magnetic noise spectral density. To study magnetocardiography [ ],

magnetoneurography [ ], magnetoencephalography [ ] and magnetomyography [ ], the magnetic field sensor must

fulfill those conditions. A chart showing sensors capable of detecting corresponding biomagnetic signals is shown in

Figure 2.

Figure 2. A chart showing how various magnetic sensor technologies (y-axis) relate to the detection of biomagnetic

signals (x-axis). For precise details of the sensors, refer to the text and referenced publications.

In the field of biomagnetic signal detection, there are some well-established as well as new state-of-the-art magnetometry

techniques worth mentioning. Nowadays, the most used technique is SQUID magnetometry [ ]. However, this method is

complicated to achieve in practice, because it generally relies on the use of a magnetically shielded room and cooling of

the sensing element with liquid nitrogen or helium [ ]. The resolution problems may be overcome by the

implementation of specific hardware and software shielding technologies. Also, new developments in the high-T  SQUIDs

(not requiring liquid helium) provide the possibility of placing sensing elements close to the system to be measured,

unfortunately, also followed by a higher noise level [ ].
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Optically pumped magnetometers achieving measurements less than 1 fT/√Hz [ ] have great potential to replace SQUID

magnetometers in some areas, but measuring methods can still be improved in the design, setup, and signal-to-noise

ratio [ ]. Also, these devices measure the magnitude of the field giving no information on its direction. Moreover, there

could be zones of zero sensitivity in certain directions. Latest examples of detection limits in the low-frequency regime

(<10 Hz) for different volumes of vapor cells include: 7 fT/√Hz by Krzyzewski et al. [ ], 15 fT/√Hz by Knappe et al. [ ],

10 fT/√Hz by Boto et al. [ ]. The versions based on a nonlinear magneto-optical rotation regime are not commonly

considered when measuring biomagnetic signals but there is some research devoted to the improvement of their limit of

detection [ ].

Both SQUID and optically pumped magnetometers achieve a limit of detection of the order of fT/√Hz only while having

milli- or micrometer spatial resolution. The achievement of nanometer spatial resolution with these types of sensors is cost

expensive and is followed with the huge drop of detection limit. In turn, nanometer spatial resolution can be provided by

one of the newest and most promising types of magnetometers based on the behavior of nitrogen-vacancy (NV) centers

in the atomic structure of diamond. Though for now these magnetometers commonly have a nT/√Hz [ ] or pT/√Hz

[ ] limit of detection, they have a number of noteworthy applications due to their special features. In addition, such

sensors have potential in fields of magnetocardiography, magnetomyography and magnetoencephalography, due to the

possibility of achieving the required limit of detection. Nevertheless, the physics of detection based on NV centers in

diamond is complicated and differs from sample to sample. Thus, theoretical studies describing the physics of the

processes in the structures considered are still ongoing.

The sensors discussed previously have restrictions on their operating temperature or on the optical excitation power, and

there is a demand on the magnetic field sensor operating at room temperature whilst maintaining optimum performance.

One of the most promising candidates for this purpose is the cavity optomechanical magnetometer. This currently has low

energy consumption, high spatial resolution, and requires no cooling systems [ ].

An additional type of magnetometer having low energy consumption, wide temperature range and competitive sensitivity

is the spin wave interferometry-based magnetometer. One of the latest works devoted to the advantages of this new

technique predicts the value of the detection limit of 1 pT/√Hz [ ].

Highly sensitive and localized magnetic field sensors already discussed are ether technically sophisticated or cost

expensive. The topic of relatively simple and cheap magnetic field sensors having sensitivities at a level suitable for

magnetocardiography or magnetomyography is expanding. One relatively cheap and available magnetic field sensor able

to measure biomagnetic signals is the fluxgate magnetometer. Recently, a new type of flux-gate sensor which utilizes

epitaxial iron garnet films with a specially designed edge profile as a core was developed, claiming a reduction of noise

level at room temperature down to 0.1 pT/√Hz. This magnetometer was successfully applied in magnetocardiography

experiments on animals [ ].

Magnetic field sensors competing with the fluxgate for magnetocardiography are those based (separately) on the

magnetoimpedance, magnetoelectric and magnetoresistive effects. With the use of GMI gradiometers in a magnetically

unshielded environment, the magnetic heart signal from a human subject was detected at nine spatially separated points

demonstrating the possibility of obtaining more information in comparison with electrocardiography [ ]. For these

measurements, the noise level was approximately 2 pT/√Hz. The possibility of detection with GMI gradiometers of other

biomagnetic signals as a magnetic field around a muscle tissue sample was also shown [ ]. Amongst

magnetoresistive sensors, TMR-based sensors are good candidates for measuring fields from the heart and, possibly, the

brain [ ]. A future challenge for the low cost, portable magnetic MR sensors is to non-invasively monitor the heart of an

unborn baby in the womb, being an area presently covered by SQUID magnetometers. The signals from the electrical

activity of the brain, however, are much smaller, so to monitor these a sensitivity in the femto-Tesla range is required -

which is currently beyond the range of MR sensors.

3. Magnetic Field Sensors for Point-of-Care Devices

Some recent studies have been dedicated to the development of point-of-care devices for biomedical diagnostics [ ].

Although biological objects are generally non-ferromagnetic, the latest developments in magnetic nanoparticles’ systems

have produced specific magnetic markers which have affinities to conjugating ligands for cells, proteins, nucleic acids, etc.

Magnetically labeled targets can be detected by magnetic field sensors or concentrated by a magnetic field on the surface

of sensors thus allowing an improvement in the detection efficiency. Point-of-care technologies are generally associated

with lab-on-a-chip systems where magnetic nanoparticles can employ different functions [ ]. For example:
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Capture, preconcentration, and separation of analytes bonded with the specifically functionalized surface of the

particles;

Mixing of lateral flows;

Creation of contrast in magnetic susceptibility of the biological medium for future sensing.

This set of features opens doors for completely new applications as well as for the significant improvement of existing

methods. For instance, the lateral flow immunoassay is a well-established method of biodetection which is very prominent

because of the immunochromatographic strip test for ascertaining pregnancy [ ]. This can be improved with the use of

magnetic nanoparticles. Recent developments show that the approach of focusing magnetically labeled rare protein

biomarkers for early diagnosis of cervical cancer can significantly improve sensitivity [ ]. Quantitative analysis can be

achieved through an optical signal detected by the camera of a smartphone or by the naked eye [ ]. In some cases,

however, the traditional optical methods are not acceptable due to the high background noise or the low sensitivity of

detecting devices. Because of these reasons, magnetic sensors have been employed [ ].

Magnetic field sensors in such devices are used for detection of drugs, cellular proteins or other biomarkers which are

usually labeled with magnetic particles (or beads) as shown in Figure 3. There are also tests for blood coagulation,

measurement of forces or stresses in artificial bones and the mass evaluation of cell cultures. Typical sensors being used

in lab-on-a-chip systems are GMR/TMR [ ], search coils [ ], GMI [ ], and Hall effect [ ]

magnetometers while for bioengineering purposes the most commonly used magnetic sensors are based on

magnetoelasticity [ ]. A significant advantage of magnetoresistive sensors in these applications is that they are

fabricated with the same overall technology used to produce silicon chips, so it is relatively easy to manufacture them as

part of an integrated lab-on-a-chip system.

Figure 3. Example of a biochip based on magnetic label detection using a magnetic thin-film sensor. The chip consists of

an array of probe biomolecules (1) of known identity immobilized onto the surface of the sensor (2), magnetic labels (3)

functionalized with target biomolecules (4) that bind to the sensor surface through biomolecular recognition. The magnetic

particle stray field H  resulting from the magnetic moment of the label induced by the applied magnetic field H  is

measured by the sensor.

Magnetoelastic magnetic field sensors are used for the monitoring of glucose concentration, growth of bacteria, pH, biliary

stent monitoring and other noteworthy in vitro applications [ ]. This is useful in the mechanical detection of loads on

orthopedic implants or in vivo monitoring of the force information in bones and joints.

In the field of microfluidics and lateral flow bioanalysis, there is a need for high sensitivity and fast response. A lot of

proposed biosensing platforms meeting these needs are based on the magnetoresistive effect. One of the noteworthy

articles is dedicated to tuberculosis point-of-care diagnostics with a magnetoresistive biosensor having a limit of detection

of 10  cells/mL [ ]. Recently, AMR-based microstructures [ ] were proposed for magnetic beads detection,

but, nowadays, because of the low change of resistivity [ ] (around 2%), magnetoresistive biosensors based on GMR

[ ] and TMR [ ] are more popular. For detailed information about exchange-biased AMR sensors tailored for

magnetic bead sensing in lab-on-a-chip systems, we refer to the overview [ ].

Detection of biomarkers can also be performed with magnetic field sensors based on the magnetoimpedance effect. An

example of this is the detection of a-fetoprotein bioconjugates with a GMI magnetometer (with the 100 fg/mL limit of

detection) [50]. Also, GMI based magnetic field sensors can be used in microfluidic chips achieving a detection limit of 0.1

ng·mL  and working in the 0.1 ng/mL–20 ng/mL biomarker concentration range [ ].
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4. Conclusions and Future Perspectives

In the field of biomagnetic signal detection, SQUID magnetometry remains the most common tool for

magnetocardiography, magnetomyography, magnetoneurography or magnetoencephalography while having the best

sensitivity approaching fT/√Hz. In spite of the usefulness of SQUID magnetometers, the requirement of low operating

temperature and magnetically shielded room makes it relatively hard to use in practice. The future prospects for SQUID

magnetometers may lie in miniaturization and, also, in the reduction of the operational noise values whilst remaining at a

low limit of detection.

Among all magnetic field sensors, the most promising candidate for replacing SQUID-based sensors are optically pumped

magnetometers (particularly ones based on the spin relaxation free regime). Their potential lies in their ability to achieve a

limit of detection of several fT/√Hz while keeping the sensing area (restricted by linear dimensions of vapor cells) to a few

tenths of mm . In comparison with SQUIDs, these magnetometers produce less operational noise and need heating of

vapor cells to a temperature up to around 400 K, which is easier to realize. Still, optically pumped magnetometers require

a real-time precise magnetic shielding system and some construction issues for the implementation of such sensors in

biomedicine are yet to be solved [ ].

In addition, great progress has been achieved in magnetometry using a detection system based on nitrogen-vacancy

centers in diamond material. Though the sensitivity of such devices commonly does not extend beyond tenths of pT/√Hz,

they operate at room temperature while allowing nanoscale sensing and providing a way to develop novel magnetic field

sensors. Due to these prospects, further and current research is mostly aimed at extending the sensitivity and resolution

of magnetometers of this type.

Due to recent developments in nano- and microfabrication techniques, new approaches to miniaturize magnetic field

sensors with competitive sensitivities may be realized in spin wave interferometry or cavity optomechanical

magnetometers. However, these magnetometers are still technically complicated, so magnetometers based on well-

established and more simply fabricated AMR/GMR/TMR, GMI, fluxgate, and magnetoelectric technologies are enough for

many biomagnetic field measurements.

Concerning point-of-care technologies, sensor integration into lab-on-a-chip, and microfluidic technologies could lead to

the replacement of many diagnostic systems currently used in laboratories and clinics. As the sensitivity requirements are

determined by a particular device, the path to the miniaturization of diagnostic systems lies in overall design

improvements. New advances in the fields of micro- and nano-fabrication will also help to overcome current limitations of

the usage of magnetic sensors in this field because of issues concerning high power consumption, single-target detection

and system complexity. The most promising magnetic sensors to overcome these limitations are GMR/TMR and GMI

magnetometers due to the fact of their flexibility and the convenience of the low-cost integration process. This means that

not only the sensor but the complete signal processing system can be built on the same chip using closely related

technologies.
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