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Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the last discovered member of the family of proprotein

convertases (PCs), mainly synthetized in hepatic cells. This serine protease plays a pivotal role in the reduction of the

number of low-density lipoprotein receptors (LDLRs) on the surface of hepatocytes, which leads to an increase in the level

of cholesterol in the blood. The main anti-atherosclerotic effect of PCSK9 inhibitors results from their lipid-lowering

efficiency.
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1. Introduction

Proprotein convertases (PCs) are a family of nine serine proteases, which also includes proprotein convertase

subtilisin/kexin type 9 (PCSK9). Each of those proteases plays a key role in post-translational modifications of propeptides

leading to the formation of mature particles e.g., growth factors, enzymes, hormones, and transcriptional factors. Taking

into consideration an ability for the activation of many substrates, to date, there seem to be a lot of physiological and

pathophysiological processes that PCs take part in .

2. PCSK9 and Atherosclerosis

One of the main causes for the development of atherosclerosis is the deposition of excess LDL-C within the

subendothelial matrix of selected arteries. Then transformed in the processes of oxidation, lipolysis and proteolysis into

more reactive form—oxidized low-density lipoprotein (ox-LDL), it plays a key role in the initiation of atherogenesis .

Studies from the last few years have confirmed that PCSK9 accelerates the development of atherosclerosis due to the

mechanism associated with increasing plasma concentration of LDL-C, but also by direct influence on the cells which

build the arterial walls and atherosclerotic plaques . Analysis of the metabolic pathways and PCSK9 functions in the

vascular walls allows to predict the potentially beneficial anti-atherosclerotic effects associated with the therapeutical use

of PCSK9 inhibitors .

The main anti-atherosclerotic effect of PCSK9 inhibitors results from their lipid-lowering efficiency. Data from the OSLER

study indicate a significant reduction of LDL-C in the group of patients using evolocumab . Similar results were observed

in patients included in the ODYSSEY LONG TERM study, whose plasma LDL-C levels, after using alirocumab, were

reduced by up to 62% compared with the placebo group .

Previous experiments revealed that PCSK9 inhibitors have a positive effect on the stabilization and morphology of

atherosclerotic plaques, making them less vulnerable . They also improve the function of platelets by reducing their

thrombogenic potential . Studies in which intravascular ultrasound (IVUS) was used suggest that the

concentration of PCSK9 affects the size of the necrotic core within the atherosclerotic plaque, regardless of the

concentration of LDL-C . More detailed research carried out in 2020 showed that the use of PCSK9 inhibitors in therapy

does not affect the size of the entire atherosclerotic plaque, but significantly improves its stabilization by reducing the lipid

core burden index .

Arterial stiffness is acknowledged as one of the early predictors of cardiovascular disease . For its indirect noninvasive

assessment, pulse wave velocity (PWV) is widely used . Positive correlation between circulating PCSK9 levels and

arterial stiffness suggests another way (beyond lipid mechanism) for PCSK9 to affect cardiovascular risk . Studies

confirm improvements in arterial stiffness during therapy with PCSK9 inhibitors in patients with familial

hypercholesterolemia .
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3. Inflammation

Inflammatory processes play an important role in the pathophysiology of atherosclerosis . Their intensification is

associated with the development of atherogenesis. PCSK9 is capable of inducing the expression of pro-inflammatory

cytokines such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) or interleukin-6 (IL-6). Moreover, it enhances the

translocations of transcriptional factors for pro-inflammatory cytokine genes into the cell nucleus and reduces the

formation of anti-inflammatory cytokines in macrophages . Furthermore, it was shown that PCSK9 regulates the

concentration of sirtuins—a family of proteins involved in histone deacetylation, playing a key role in metabolic driver

inflammation .

One of the first meta-analyses carried out on the influence of PCSK9 inhibitors on the inflammatory process did not show

any correlation between these drugs and the concentration of C-reactive protein (CRP), a basic marker of the ongoing

inflammatory process assessed in clinical practice . Nevertheless, in the assessment of any single biomarker (such as

CRP), a certain percentage of subjects with false positive and false negative results should be taken into consideration. To

avoid these biases and improve diagnostic sensitivity, biomarker panels and index scores have been introduced in

research for several years . On the other hand, some studies reveal the beneficial effects of inhibition of PCSK9 using

siRNA on lowering the concentrations of pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and TNF-α .

Neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-HDL-cholesterol ratio (MHR) are the novel, widely available

markers of inflammation in cardiovascular diseases . High NLR or MHR ratio increases cardiovascular risk .

Studies show that PCSK9 inhibitors may improve the inflammatory status of patients with familial hypercholesterolemia

(FH) described with the use of the above-mentioned parameters .

4. Monocytes, Macrophages and Foam Cells

The cells responsible for the secretion of PCSK9 in the vessels are smooth muscle cells (SMCs) and the endothelial cells

. Fully functional protein is also detected in atherosclerotic macrophages .

The process initiating the development of atherosclerotic plaques is the transformation of monocytes and macrophages

into foam cells due to the accumulation of ox-LDL inside them. The influx of lipoproteins through the cell membrane takes

place with the participation of many proteins, such as scavenger receptors (SRs), CD36, CD68, lectin-like ox-LDL

receptor-1 (LOX-1) . Macrophages excrete the excess of toxic cholesterol into the extracellular space and HDL-C by

using membrane transporters, e.g., Adenosine Triphosphate Binding Cassette A1 (ABCA1). PCSK9 shifts the balance of

cholesterol transport towards the interior of macrophages by regulating the expression of appropriate membrane proteins,

contributing to the formation of foam cells and intensification of atherogenesis .

Apolipoprotein E (apoE), produced in macrophages and smooth muscle cells, is an anti-atherosclerotic protein. It acts via

apolipoprotein E receptor-2 (apoER2), which reduces intracellular lipoprotein accumulation and inhibits the formation of

foam cells and promotes the anti-inflammatory phenotype of macrophages. . PCSK9 reduces apoER2 expression,

attenuating the protective effect of apoE .

A very important mechanism of action of PCSK9 inhibitors, which reduces the diapedesis of monocytes into

atherosclerotic plaques, is associated with the elevation of the concentration of anti-inflammatory interleukin-10 (IL-10).

The increase in its concentration leads to the drop of the expression of TNF-α and C-C chemokine receptor type 2

(CCR2), which are responsible for the influx of monocytes into the atherosclerotic plaque .

5. Endothelial Cells

Endothelial cell apoptosis promoted by ox-LDL increases its dysfunction and creates favorable conditions for the

development of atherosclerosis . Experiments on human endothelial cells obtained from umbilical cord blood indicate

that PCSK9 is involved in the enhancement of apoptosis caused by ox-LDL via the Bcl/Bax–caspase-9–caspase-3

pathway .

In response to the disturbed balance between the accumulation and removal of excess ox-LDL from the foam cells of the

subendothelial matrix, the endothelial cells that are lining them receive a signal to produce pro-inflammatory and adhesive

cytokines. One of the signal components is the presence of PCSK9 .

Reactive oxygen species (ROS) produced in excess in mitochondria, e.g., in the course of inflammation, a cornerstone in

the pathogenesis of atherosclerosis , are capable of inducing endothelial cells damage, as well as activating
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inflammatory cells and thus intensifying the inflammatory process within the arterial wall . Cells with silenced PCSK9
genes produce fewer ROS in their mitochondria , which may lead to the conclusion that inhibition of PCSK9 might

reduce the risk of endothelial damage. To date, there are no clinical trials that would confirm such an effect of PCSK9

inhibitors.

6. Smooth Muscle Cells (SMCs)

Under the influence of PCSK9, smooth muscle cells acquire the ability to proliferate, migrate, synthesize collagen and

uptake lipoproteins . This cumulatively accelerates the formation of atherosclerotic plaques . Moreover, under the

influence of PCSK9, within SMCs, there is an increase in the production of vascular cell adhesion molecule 1 (VCAM-1),

facilitating the process of macrophage infiltration into the atherosclerotic plaque . So far, no studies have been carried

out to assess the effect of PCSK9 inhibition on the concentration of adhesive factors in SMCs.

7. Coagulation and Platelet Aggregation

After several clinical trials, such as JUPITER, showed that the use of lipid-lowering therapy with statins reduces the

cardiovascular risk much more strongly than it would result just from the decrease in plasma lipids, scientists began to

consider other beneficial mechanisms responsible for this phenomenon . Similar observations regarding cardiovascular

risk were also made in the case of PCSK9 inhibitors .

One of the possible explanations indicates that cardiovascular risk might be related to thrombotic processes caused by

inflammation in the vascular endothelium. CD46 and LOX-1 are involved in them  and, accompanied by ox-LDL

binding protein, play a key role in the formation of blood clots . A separate mechanism is associated with the toll-like

receptor 2 (TLR-2) stimulation, which activates the process of platelet aggregation through lipid-peroxide-modified

phospholipids in the transport of Lp(a) .

Due to the mechanisms described above, the use of PCSK9 inhibitors may limit the process of platelet aggregation in

several ways, thus reducing the cardiovascular risk. The first one is by lowering the cholesterol level in the cell membrane

of platelets, which results in the drop of their activity . The second one is by decline in the LOX-1 and ox-LDL

concentration . The ultimate is by reduction of Lp(a) plasma level which decreases the activity of platelets via

peroxide-modified phospholipids . The above-mentioned ways of weakening the activity of platelets by inhibiting

PCSK9 were unequivocally confirmed in a clinical trial from 2017, with the use of alirocumab and evolocumab, and

associated with the reduction of cardiovascular risk .

Noteworthy is the influence of PCSK9 inhibitors on the incidence of venous thromboembolism, which is related to the

inflammatory process in the endothelium and the atherogenesis . The studies conducted so far have not shown a

correlation between the concentration of LDL-C and the occurrence of venous thromboembolism , however, such a

correlation was observed when Lp(a) levels were taken into account . It is crucial in case of PCSK9 inhibitors, which in

contrast to statins reduce both, to consider the plasma concentration of LDL-C, and Lp(a) . For this reason, clinical

trials have been conducted to assess the impact of alirocumab on the incidence of venous thromboembolism. The results

clearly confirmed the beneficial effect of alirocumab therapy on the reduction of the risk of venous thromboembolism

incidents, which was associated with a significant reduction in Lp(a) concentration . The second plausible

antithrombotic mechanism of PCSK9 inhibitor action, which requires further experimental studies, is associated with their

ability to increase the clearance of blood-clotting factor VIII (FVIII)—the essential protein in coagulation processes .
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