
Electroencephalogram-Based Brain–Computer Interface System | Encyclopedia.pub

https://encyclopedia.pub/entry/50590 1/8

Electroencephalogram-Based Brain–Computer
Interface System
Subjects: Engineering, Biomedical

Contributor: Noor Kamal Al-Qazzaz , Alaa A. Aldoori , Sawal Hamid Bin Mohd Ali , Siti Anom Ahmad , Ahmed

Kazem Mohammed , Mustafa Ibrahim Mohyee

Researchers have discovered that brain–computer interface (BCI) techniques can improve communication

between the brain and computer by decoding brain neural signals. There have been several attempts to investigate

the application of BCI, but motor imagery (MI) has received the most attention since it causes the motor cortex to

respond when a person mentally models a specific movement of limbs without activating their muscles.
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1. Introduction

Common symptoms that have a substantial impact on the quality of life of stroke survivors include disability and

cognitive impairment; stroke is the most frequent cause of disability and impairment . Daily activities are

significantly impacted by those impairments . Recent studies have concentrated on developing effective

therapies and rehabilitation programs for stroke victims. Helping the brain repair neuronal connections and make

up for damaged circuits is the goal of therapy and rehabilitation. Though choosing the appropriate course of action

can take weeks, it is still not yet possible to do so objectively .

Researchers have discovered in recent years that brain–computer interface (BCI) techniques can improve

communication between the brain and computer by decoding brain neural signals . There have been several

attempts to investigate the application of BCI, but motor imagery (MI) has received the most attention since it

causes the motor cortex to respond when a person mentally models a specific movement of limbs without

activating their muscles . Even in the presence of significant nerve injury, repetitive training based on MI

encourages neuronal reorganization . In conjunction with specific external assistive technologies, the MI-based

system has the potential to significantly improve the quality of life for individuals with stroke, spinal cord injury, and

amyotrophic lateral sclerosis .

Researchers used event-related desynchronization and event-related synchronization (ERD/ERS) to classify

mental states , because the sensorimotor cortex attenuates oscillatory brain activity within specific frequency

bands , which can be distinguished when the subject imagines moving different sides of the body .

Electroencephalogram (EEG) signals can be used to track a patient’s health and brain activity changes .
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All prior research contributes significantly to the MI classification task. Classifiers such as support vector machines

(SVM), linear discriminant analyses (LDA), and random forests (RF) have all been employed . Nevertheless,

most previous research only employs a single conventional filter during the preprocessing (denoising) stage, and

most forecast MI EEG data analysis techniques overlook the benefits of using a hybrid filtering strategy for

denoising the EEG signal before deploying algorithms. Most previous research has employed feature extraction

approaches that are specific to a single domain, such as CSP or WT , during the feature extraction step.

Existing research has not shown a variety of feature extraction and dimensionality reduction techniques to evaluate

the MI EEG’s complexity and irregularity, an area where much opportunity exists to enhance classification

accuracy.

Apart from other studies, the preprocessing stage was where the conventional filters and independent component

analysis (ICA) denoising technique were initially applied. Then, nonlinear features were retrieved, such as fractal

dimension (𝐹𝐷), Hurst exponent (𝐻𝑢𝑟), and Tsallis entropy (𝑇𝑠𝐸𝑛), as well as dispersion entropy (𝐷𝑖𝑠𝑝𝐸𝑛), as

dynamic entropy parameters. Two-way analysis of variance (ANOVA) was used to statistically analyze four MI-

based classes. Due to the effectiveness of the used features, they were combined into 𝐶𝑜𝑚𝑝𝐸𝑛 integrated feature

set. Laplacian Eigenmap (𝐿𝐸) dimensionality reduction algorithm was applied to the feature set to improve the

classification performance of the motor imagery (MI)-based BCI stroke patients.

Not all of the time will a decision BCI MI-based EEG dataset system show promising outcomes; its advantages and

disadvantages should be weighed carefully. In particular, unlike other methods that involve a great deal of training

and expensive sensors, EEGs are a wireless, low-cost device that can automatically recognize MI from EEG data.

When compared to magnetoencephalogram (MEG) systems, the proposed 𝐶𝑜𝑚𝑝𝐸𝑛 integrated feature set can

investigate complexity and irregularity over the entire spectrum of MI-based EEG data with normal throughput and

can be mastered by a greater number of users.

2. Motor Imagery-Based Brain–Computer Interface

EEG is a non-invasive method for identifying conditions and symptoms that affect the brain. Numerous neurological

conditions, including epilepsy, tumors, cerebrovascular lesions, depression, and trauma-related issues, can be

diagnosed with its aid. An emerging method of direct brain-to-computer communication, known as EEG-based BCI,

relies on the interpretation of features that are extracted from the EEG signal with higher resolution than those

found in signals from other devices .

The EEG potentials recorded from the scalp’s surface are bioelectric signals produced by the neuronal activity of

the brain. Many researchers have been concentrating on the fundamentals of BCI in recent years through the

interpretation of EEG-based commands and have worked on controlling a device with this approach . These

research studies continue to contribute to raising the quality of life for those who are paralyzed or have lost limbs

such as their arms and legs . An EEG-based BCI system that Mabrouk et al.  have created shows the user’s

EEG signals and accurately categorizes them as fictitious right and left hand movements.
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According to studies conducted by , the active EEG frequency bands and brain regions that contribute to

cognitive load fluctuate based on the learning state. Moreover, they reported variations in EEG frequency bands in

specific brain regions under cognitive stress when performing activities involving human–computer interaction .

EEG is, therefore, trustworthy and among the most sensitive indicators of brain activities for determining mental

burden brought on by cognitive processing .

Recognizing the most pronounced marks from EEG signals is essential to detecting and identifying brain features

as well as assessing the EEG signal variable under evaluation . From a clinical standpoint, the neurologist

interprets the post-stroke patient’s EEG signal by looking at wave rhythms, amplitudes, asymmetries, changes in

magnitudes, the presence of waves, and the ratio between waves .

The recorded wave activities could be distorted, though, by a variety of artifacts . The abnormal behavior of

the brain can typically be imitated or superimposed by these artifacts. Additionally, significant artifacts that conflict

with EEG, such as eye blinks and ocular movements, cardiac artifacts, muscle activities, and noise from power

lines, may cross EEG frequencies . Thus, it is challenging to categorize EEG signals due to noise .

In order to improve our understanding of how the brain works, it is crucial to quantify the complexity of the EEG

signal . This allows us to obtain insight into the process and distinguishing characteristics of the signal. When

examining the complexity changes caused by events in the functional areas of the brain, nonlinear parameters are

very useful indicators . It should be noted that nonlinear parameters are frequently employed for a range of

neurophysiological investigations and applications utilizing EEG signals . The EEG signal is difficult to acquire,

process, and analyze due to its complexity and nonstationarity. When data processing for feature extraction is

properly prioritized, significant information about the neurophysiological conditions in the brain can be gleaned.

Due to the numerous redundant data reductions and transformations involved in data processing, one must be

extremely careful when selecting the best methodology to prevent information loss. Using advocates of nonlinear

discrete dynamical systems, the authors of previously published studies have examined changes in the temporal

dynamics of the EEG signal under moderate to demanding mental stimulation. However, it has been suggested

that the brain in the majority of these cases functions as a nested network of coupled dynamical systems that

maintains spatial and temporal dynamics and can be identified through nonlinear biomarkers of EEG signal .

The most recent techniques for EEG analysis for MI-based BCI are shown in Table 1, which also includes feature

extraction and classification methods as well as various denoising techniques. Bandpass filters and notch filters

have been used as denoising techniques in many studies, see , but blind source separation algorithms

(BSS) have also been used with ICA in other studies (see ). As in , CSP was also the most

widely used feature extraction technique. In reality, different EEG-based BCI datasets show differences in the brain

regions associated with MI-BCI, making it difficult for conventional methods of feature extraction to demonstrate

accurate classification of different classes.
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Table 1. State-of-the-art: various denoising, feature extraction, and classification approaches are used in EEG

analysis for MI-based BCI.

As far as the authors of this research are aware, the majority of studies computed the nonlinear dynamical

parameters. The complexity and irregularity characteristics used in this research, however, may aid in

understanding how specific spatial information of brain functions changes over time . The majority of EEG-BCI-

based motor imagery studies published in the literature concentrate on separating left from right hand or foot motor

imagery .

As a result, this issue could be resolved by using more effective features that are compatible with the complexity of

the brain and that can be used to elicit the unique performance of subjects following motor imagery (MI)-based BCI

rehabilitation.
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