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As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most

often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved

to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and

allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated

intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars,

lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These

early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the

airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including

collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions.
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1. Introduction

Due to its continuously exposed surface to the external environment, the lung exhibits a formidable defense system

constituted by a high number of interacting mechanisms . First, anatomical retention features such as the

nasopharyngeal barrier filter particles or microorganisms higher than 2–3 µm . Secondly, there are systems to expel

the external elements, i.e., the cough , and the mucociliary system . Whether or not the external and potentially

harmful particles overcome these mechanisms, the humoral factors come into play, including bactericidal and antiviral

secretions (mucins, defensins, lactoferrin, complement factors, etc.) , and cellular factors of the innate  and

adaptive immune system. These include the airway epithelial cells ; the phagocytic cells that, in turn, comprise

polymorphonuclear (PMN) cells such as neutrophils (the most abundant immune cell type)  or eosinophils ;

monocytes and macrophages ; natural killer cells (NKC) ; mastocytes ; and dendritic cells . All these cells

recognize pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) through pattern recognition

receptors (PRRs) , and Toll-like receptors (TLR) are the most studied . Their stimulation triggers the activation of

antimicrobial genes and inflammatory cytokines and chemokines, as well as the direct response against antigens ,

activating the adaptive immune system, namely B and T lymphocytes .

2. Reactive Oxygen Species Production in the Airways

Environmental pollutants such as ozone (O ) and nitrogen dioxide (NO ) react with several molecules at the respiratory

surface and generate secondary reactive oxygen species (ROS) such as superoxide radicals (O ), hydrogen peroxide

(H O ), and hydroxyl radicals (OH ) . Additionally, lung cells generate ROS as by-products of aerobic metabolism

involving enzymatic reactions in the mitochondrial electron transport chain (e.g., through activity of amine oxidases, α-

ketoglutarate dehydrogenase (α-KGDH), and pyruvate dehydrogenase (PDH), and activation of the p66shc adaptor

protein) . Furthermore, ROS can be produced in peroxisomes , or by cytochrome P450 enzymes,

cyclooxygenases, and lipoxygenases . Nitric oxidase synthases (NOS) expand the spectrum of ROS producing

reactive nitrogen species (NO  or ONOO ) . ROS are also produced as mediators of biological functions, with a role in

inflammatory processes involving epithelial and endothelial cells, alveolar macrophages, and granulocytes . NADPH

oxidases (NOX) enzymes are involved in both bacterial killing and regulation of inflammatory mediators . Indeed, dual

oxidases, DUOX1 and DUOX2, the major isoform of NOX, are expressed preferentially in the respiratory epithelium 
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3. Respiratory Surface: Antioxidant Defenses

The air–liquid interface covering the developed airways is an environment subjected to continuous oxidative stress.

Accordingly, the respiratory epithelium is exposed to endogenous and also to environmental ROS. Therefore, it expresses

a variety of antioxidant enzymes. Superoxide dismutases such as SOD3 (an extracellular SOD, EC-SOD) ,

highly-expressed in the lung at the extracellular matrix and at the cell surfaces , generate H O  which is detoxified by

other enzymes. Catalase, decomposes H O  into H O and O , predominantly within alveolar macrophages and type II

epithelial cells . Glutathione (GSH) peroxidase (GPX) catalyzes the reduction of H O  or other peroxides to

glutathione disulfide (GSSG) and H O, of which GPX1 is thought to be responsible for 95% of overall lung tissue GPX

activity . Peroxiredoxins (PRX), with all six mammalian family members expressed in different compartments within the

lung , particularly PRX I, III, V, and VI in the bronchial epithelium, PRX V and VI in the alveolar epithelium, and PRX I

and III in alveolar macrophages, decompose H O  and protect against oxidative stress . Thioredoxin (TRX),

whose main antioxidant role is related to its ability to regenerate oxidized forms of PRX , catalyzes the reduction of

disulfide bonds, modulates signal transduction pathways, and has anti-inflammatory properties . Finally,

glutaredoxins (GRX) participate in the reduction of oxidative modifications involving GSH .

The following small non-enzymatic low-molecular-weight antioxidant molecules are highly relevant: ascorbic acid (vitamin

C) , uric acid , GSH , and α-tocopherol (vitamin E) . These non-enzymatic molecules are the most

prominent antioxidants reacting with reactive oxidant gases such as O  and NO   and with the secondary

oxidants generated by them, which can increase the oxidative injury . Furthermore, the enzymatic antioxidants

complement the function of these small molecules. Nuclear factor erythroid 2-related factor (Nrf2) regulates the

transcription of both antioxidant genes coding for many of the above-highlighted enzymes and phase II detoxification

genes .

4. Inflammation and Oxidative Stress in Pulmonary Diseases

A variety of immune and non-immune cells are activated during an inflammatory process. Each cell type releases

cytokines and mediators that modify the activities of other cells, inducing an inflammatory network that progresses and

resolves towards healthy homeostatic, or pathological outcomes. The lung is a vital organ for gas exchange and is

constantly exposed to harmful airborne pathogens. Therefore, an immediate and intense protective/defensive

inflammatory action is required to eliminate the invaders as early as possible. Nevertheless, excessive inflammation can

be life threatening . Consequently, a delicate balance between inflammation and anti-inflammation is essential for lung

homeostasis and for the prevention of chronic inflammation . Among the main inflammatory mediators involved in the

pathogenesis of respiratory diseases are biochemical mediators such as histamine, thrombin, complement

anaphylatoxins, prostaglandins, nitric oxide (NO), and molecules induced by oxidative stress . These compounds

mediate cell signaling and enhance cytokine production, among other activities.

Thus, airborne toxicants stimulate local ROS production inducing protein oxidation, lipoxidation, glycation end products,

and DNA damage, and leading to mitochondrial dysfunction, cell death, the recruitment of inflammatory cells (mainly

macrophages and neutrophils), profibrotic changes or mucus hypersecretion. These oxidative stress-mediated cellular

processes drive the development of key environmental respiratory diseases such as acute lung injury/respiratory distress

syndrome, asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis, and affect the progression of the most

common hereditary disease affecting the lung, i.e., cystic fibrosis.

5. Prospective Therapeutic Strategies

5.1. ALI/ARDS

The scientific rationale for emerging therapies in ARDS is to pursue fundamental processes and mediators of its complex

pathophysiology . There are emerging therapies in Phase 3 trials assessing the potential benefits of corticosteroids

such as dexamethasone  or budesonide/formoterol . Moreover, supplementation with vitamin D  in a Phase

2 trial has shown a reduction in markers of vascular permeability from lung injury patients following esophagectomy in the

post-operative period , although another trial using vitamin D to prevent acute respiratory tract infections has been less

conclusive . Other emerging therapies in Phase 2 trials include aspirin, which has attracted interest as a repurposed

drug for ARDS , with some clinical studies  that show significant reduction in neutrophil infiltration into the alveolar

space. Alternatively, different studies using mesenchymal stem cells (MSCs) and multipotent adult progenitor cells

(MAPCs) have shown a biological decline in angiopoietin and a concomitantly reduced 28-day mortality, higher ventilator-

free days, and higher ICU-free days . Vitamin C acts as ROS scavenger, modulator of inflammatory mediators, and

[38][39][40]

[41]
2 2

2 2 2 2
[42][43]

2 2

2
[44]

[45]

2 2
[46][47][48]

[49][50]

[51][52]

[53][54]

[55] [56] [57][58] [59]

3 2
[60][61][62][63]

[64]

[65][66][67][68]

[1]

[69]

[70]

[71]

[72][73] [74][75] [76]

[77]

[78]

[79][80] [81]

[82]



cofactor. In mouse models, ALI prevents the activation of NF-κB, and therefore attenuates the production of

proinflammatory cytokines and boosts ion channel and pump expression, enhancing fluid clearance in the alveolar

epithelium . The phase 2 CITRIS-ALI trial is presently investigating the usefulness of vitamin C in sepsis-induced ALI

 but no positive results have been reported as yet . It was found that nebulized liquid heparin increased the number

of ventilator-free days , and a Phase 2 trial to confirm the findings is awaited . Anti-tissue factor antibodies such as

ALT-836, which blocks binding to coagulation factor VIIa, have demonstrated attenuation of sepsis-induced ALI in animal

models, and was successfully tested in a Phase 1 trial for ARDS . A Phase 2 trial has been recently completed and

disclosure of the results is pending . Dilmapimod, a p38 MAPK inhibitor, has proven useful for reducing the severity of

ALI in animal studies, although in human trials it has been unreliable . Neutrophil elastase inhibitors such as

sivelestat, have been shown to increase the ventilator-free days in ARDS patients with a high extravascular lung water

content (>10 mL/kg) as compared with those with low pulmonary edema , although contradictory results have also

been obtained . Ulinastatin (or urinary trypsin inhibitor) is another physiological inhibitor of human neutrophil

elastase with positive results in preclinical studies . A meta-analysis of 29 Chinese randomized controlled trials (RCTs)

indicated that ulinastatin was effective ameliorating ARDS . Another multi-center Phase 2 RCT is ongoing to assess its

safety and efficacy in ARDS . Regarding granulocyte-macrophage colony stimulating factor (GM-CSF), preclinical

models have demonstrated that it can limit alveolar epithelial cell injury and promote alveolar macrophage maturation.

Nevertheless, a Phase 2 RCT enrolled only two-thirds of its intended number of participants and, although GM-CSF

treatment appeared to be safe, it did not decrease ventilator free days or mortality of the ALI/ARDS patients . Anti-

CD14 antibodies protected against septic hypotension in animal models of pneumonia . Two Phase 2 trials have been

initiated in this regard, the former, in 2007, failed in recruiting people; and the latter is still recruiting . Inhaled

prostaglandins, such as epoprostenol and alprostadil, have been suggested to regionally dilate the pulmonary vasculature

increasing arterial oxygenation in ARDS. However, a meta-analysis of 25 studies concluded that, although indeed inhaled

prostaglandins improved oxygenation in ARDS, they did not improve pulmonary physiology or mortality .

5.2. Asthma

Over the last few years, multiple biologics (typically mAbs) have been developed targeting various participants in allergies

and asthma, but mainly directed toward the complex type 2 endotype . In general, they are anti-inflammatory

treatments . The most prevalent biologics are omalizumab (anti-IgE) and mepolizumab (anti-IL-5). IL-5 has become a

major target for both asthma and COPD due to the high proportion of patients with airway eosinophilia associated with

disease severity . Currently, three biologics, targeting IL-5 or its receptor, have been cleared by the Food and Drug

Administration (FDA). Omalizumab was initially approved by the FDA in 2003 and binds to both the high-affinity and low-

affinity IgE receptors, preventing free IgE from occupying the surface of mast cells and basophils . It has several

disadvantages, i.e., it must be administered by subcutaneous injection , it is expensive  and, moreover, an unusual

form of anaphylaxis  and a possible higher rate of cardiac and cerebrovascular events can be ensued by this

treatment. Anti-IL-5 (mepolizumab) was approved in late 2014 and receiving patients had decreased eosinophilic

inflammation, reduced asthma exacerbations, improved asthma control markers, better quality of life , and reduced

levels of some of the proteins that drive airway remodeling . In another study on moderate persistent asthma, despite

high-dose ICS, patients also showed decreased blood and sputum eosinophils but no change in FEV1, symptom scores,

or need for rescue inhaler. After stopping anti-IL-5 treatment, eosinophils and asthma symptoms again increased .

Reslizumab, another mAb targeting IL- 5, approved in 2016 for patients with eosinophilic asthma, has proven beneficial on

moderate-to-severe asthma symptoms, improving lung function and reducing exacerbations as compared with a placebo

. Reslizumab also decreased blood, sputum, and airway eosinophils and, more recently, reduced systemic

corticosteroid dosing nearly 75% . Benralizumab, a mAb targeting the IL-5Rα, was approved recently by the

FDA  with positive results in asthma . Finally, dupilumab, a mAb approved in 2017 that inhibits the IL- 4R

subunit , has also shown encouraging results in asthma . Regarding relevant future targets pending approval,

lebrikizumab and tralokinumab, mAbs that target IL-13 , have not shown positive effects . Tezepelumab

(AMG157), a humanized mAb currently in Phase 3  binds thymic stromal lymphopoietin, an epithelial cell-derived

cytokine that drives allergic inflammatory responses . Additionally, anti-IL-33 therapies are currently under

development . Conversely, non-Th2 inflammation targets are also being studied. IL-6 and IL-17 may promote both Th2

and non-Th2 inflammatory cascades. Brodalumab is a human mAb binding IL-17RA, which inhibits signaling of IL-17 and

IL-25, with disappointing results in clinical trials . Thus, this therapy has not been further pursued for asthma or COPD.

C-X-C motif chemokine receptor 2 (CXCR2) antagonists such as navarixin (which decrease IL-8 levels) have reduced

sputum and blood neutrophils, with no significant change in FEV1 , but has progressed to a Phase 2 trial . An

antisense oligonucleotide against C-C chemokine receptor 3 (CCR3) (co-administered with an antisense oligonucleotide

that targets the c subunit of the IL-3, IL-5, and GM-CSF receptors), named TPI ASM8, has shown some efficacy in phase

2 trials . Imatinib is a tyrosine kinases inhibitor that has shown promising results in a clinical study, reducing airway

hyper-responsiveness as compared with a placebo . Among drugs targeting TNF-α, etanercept stands out as a
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repositioning drug for asthma. A few studies employing etanercept have reported satisfactory results reducing bronchial

hyperreactivity , whereas other studies have informed poor clinical efficacy in terms of lung function improvement

and quality of life . Others have shown a small but significant increase in the quality of life without changes on lung

function .

Among anti-inflammatory treatments, antioxidant treatments stand out . Vitamins (E, C, D, and A), carotenoids (α-

carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin, and lycopene), and food supplements (selenium and zinc) seem

to improve the prognosis of the disease . Asthmatic adults with antioxidant-poor diets have lower forced

expiratory volume in the first one second to the forced vital capacity (FEV1/FVC) ratio scores, increased plasma C-

reactive protein, and were more likely to exacerbate than those on an antioxidant-rich diet . Indeed, dietary antioxidant

supplementation notably improved both symptoms and lung function in exercise induced asthma .

5.3. COPD

Thus far, no anti-IL-5 therapies have been approved for use in COPD. However, two Phase 3 studies using mepolizumab

showed improvements in exacerbation frequency from subjects who had an eosinophilic phenotype and a history of

COPD exacerbations, despite triple therapy . Nevertheless, other studies have indicated no positive effects .

Reslizumab has yet to be formally evaluated in clinical trials for COPD. Conversely, in a Phase 2 trial including COPD

patients with eosinophilia, benralizumab treatment did not significantly reduce the annual rate of moderate or severe

exacerbations . However, significant improvements in FEV1 were observed in the overall study population, and the

results of pre-specified subgroup analyses by baseline blood eosinophil count in individuals with benralizumab versus

placebo have led to an ongoing Phase 3 trial to evaluate this biologic in COPD . As in asthma, non-Th2 inflammation

targets include CXCR2 and CCR3. Regarding corticosteroids, in contrast to asthma, glucocorticoid treatment of

established COPD is rather ineffective in reducing chronic airway inflammation and progressive airway obstruction .

Current national and international guidelines endorse the use of inhaled long acting bronchodilators, ICSs, and their

combination for maintenance treatment of moderate-to-severe stable COPD , although adverse effects may arise .

In fact, large clinical trials assessing the combination therapy (ICSs + LABAs) in a single inhaler for stable COPD patients

have shown a good safety profile, a discreet but statistically significant reduction of severe exacerbations, and

improvements of FEV1, quality of life, and respiratory symptoms in these patients . Overexpression of histone

deacetylase 2 restores glucocorticoid sensitivity in BAL macrophages from COPD patients . Anti-cytokine and anti-

chemokine treatments are being exploited in COPD but scarce trials using blocking antibodies against cytokines and

chemokines or their receptors have proven successful . Among those showing positive effects, the CXCR2 inhibitor

MK-7123 (also known as SCH527123 or navarixin, already described in asthma) could reduce the chemotaxis of

neutrophils . MK-7123 treatment resulted in a significant reduction of sputum neutrophils and of sputum and plasma

MMP9 and myeloperoxidase levels . Numerous other drugs, including antibodies directed against specific

inflammatory mediators such as cytokines (IL-18, IL-22, IL-23, IL-33, TSLP) and growth factors (GM-CSF) are under

investigation for COPD.

5.4. Idiopathic Pulmonary Fibrosis (IPF)

After several disappointing years of promising therapies that moved into clinical trials but failed to demonstrate efficacy in

IPF , the anti-fibrotic drugs pirfenidone and nintedanib have been associated with significantly slower respiratory

deterioration and perhaps prolonged survival , although with heterogenous responses and side effects. The

understanding of the complex pathogenesis of IPF continues to increase . Sustained alveolar epithelial cell injury

and abnormal repair are increasingly recognized as the core mediators of the fibrotic process, with a relevant involvement

of environmental triggers. The activation of multiple pathways related to maladaptive repair, involving fibroblast migration,

proliferation, and extracellular matrix deposition has revealed a variety of prospective molecular targets of novel

therapeutic agents currently being tested in early phase clinical trials. Pentraxin-2 (PTX-2) is a circulating protein that

binds to monocytes, promoting epithelial healing and resolution of fibrosis. Thus, a recombinant human PTX-2 (serum

amyloid P) analogue (PRM-151) has been shown to inhibit monocyte to fibrocyte differentiation and ameliorate fibrosis in

a bleomycin-induced animal model of fibrosis . A Phase 1 trial showed a non-significant but improving effect of

PRM-151 on FVC and six-min walking distance (6MWD) during the treatment . Further Phase 2 studies have

demonstrated a significant reduction in pulmonary function deterioration and stability in 6MWD over 24 weeks as

compared with a placebo, although with relevant adverse events . The launch of a Phase 3 trial for PRM-151 in

IPF has been announced, using FVC as a primary end point and 6MWD as a key secondary end point. Among the anti-

connective tissue growth factor antibodies, the antagonist pamrevlumab (FG-3019) in the PRAISE study  was

established to have a significant effect preventing lung function decline of 160 IPF patients, yet full peer-reviewed data are

still awaited . The re-initiation of Phase 3 trials has just been announced. PBI-4050 is a synthetic analogue of a
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medium-chain fatty acid acting through G protein-coupled receptors and showing anti-fibrotic activities such as inhibition

of epithelial–mesenchymal transition and fibrocyte/fibroblast recruitment, migration, proliferation and differentiation,

among others . A Phase 2 trial has shown no safety concerns . While there was slowing or stability in FVC, a

statistically significant decrease was observed only combining PBI-4050 and pirfenidone but not PBI-4050 and nintedanib,

implying a possible drug–drug interaction. Additional studies of PBI-4050, either alone or in combination with nintedanib,

are currently being considered. In a Phase 2a study , GLPG1690, an oral selective inhibitor of autotaxin (an enzyme

increased in IPF and involved in cell apoptosis and endothelial cell damage) was analyzed and was well tolerated by IPF

patients, with a good safety profile. Moreover, as secondary end points, preliminary efficacy analyses demonstrated target

engagement and encouraging results towards halting FVC decline . International Phase 3 trials to assess the efficacy

of GLPG1690 in IPF are ongoing . Leukotrienes are also increased in IPF . Thus, additional ongoing trials

include leukotriene antagonists such as tipelukast, currently explored in a Phase 2 trial . Among protein kinase

inhibitors, a recent Phase 1 study showed proper safety and tolerability of a selective protein kinase inhibitor of the Rho-

associated coiled-coil containing protein kinase 2 (ROCK2). The trial is currently in Phase 2 . Moreover, a current

Phase 2  trial is evaluating CC-90001, a second-generation Jun N-terminal kinase (JNK) inhibitor after a first-

generation JNK inhibitor (CC-930) showed a dose-dependent trend of reduction in MMP7 and surfactant protein D (SP-D)

biomarker plasma levels . Regarding anti-integrin antibodies, a partial inhibition of integrin αvβ6 in rodents blocked the

development of pulmonary fibrosis processes without aggravating the inflammatory response . The safety and

tolerability of a humanized monoclonal antibody (BG00011) against this integrin has been analyzed in a Phase 2 trial .

The study has been completed recently, although its outcome is still pending. Phosphatidylinositol 3-kinase/Protein kinase

B (PI3K/Akt) pathway inhibitors may be associated with halting fibrosing processes , as suggested in a Phase 1 trial

 and evidenced in another recent study using omipalisib . Sirolimus is currently under examination in a Phase

2 trial . The B lymphocyte antigen CD20 is targeted by rituximab, which is currently being assessed in an IPF Phase 2

study . Furthermore, a Phase 2 trial examined combined plasma exchange, rituximab, and steroids . While peer-

reviewed results are pending, a pilot trial stated good outcomes regarding autoantibody reduction for acute IPF

exacerbations . A Phase 3 trial testing the antibiotic combination co-trimoxazole (trimethoprim and sulfamethoxazole)

is currently operating . Finally, other anti-inflammatory drugs are likewise in clinical research for IPF, i.e., lebrikizumab

, tralokinumab , and azithromycin .

5.5. Cystic Fibrosis (CF)

To address the most prevalent causal defects in the CFTR Cl– channel leading to CF, two biomolecular modulators are

needed, i.e., CFTR correctors, to increase the amount of properly folded mutant CFTR protein at the plasma membrane,

and CFTR potentiators, to allow effective gating (channel opening and closing) of the abnormal CFTR .

Nevertheless, a more thorough division might also include stabilizers, read-through agents, and amplifiers . Either

alone or combined, these modulators tend to restore transepithelial Cl  transport to CF airway epithelia expressing CFTR

mutations such as the most prevalent F508del, improving hydration and restoring mucociliary clearance . Four

drugs have been recently approved by the FDA for that purpose , the potentiator Ivacaftor (VX-770) for individuals with

CF holding a G551D CFTR mutation, and the following three correctors: Lumacaftor (VX-809), developed to increase the

amount of F508del CFTR that reaches the cell surface , Tezacaftor (VX-661), and Elexacaftor (VX-445).

Furthermore, their combinations are also being assayed, i.e., Orkambi (lumacaftor/ivacaftor) for patients homozygous for

F508del CFTR , Symdeko (tezacaftor/ivacaftor), and Trikafta (elexacaftor/tezacaftor/ivacaftor). Most recently, there

has been an explosion of novel modulators  and others are under investigation including ELX-02, Posenacaftor (PTI-

801), Galicaftor (ABBV-2222), ABBV-3221, FDL169, Deutivacaftor (VX-561), ABBC-974 (GLPG-1837), and Nesolicaftor

(PTI-428) , among others.

Despite a thorough knowledge of the undergoing inflammatory process in CF, there are relatively few anti-inflammatory

drugs in clinical use . Corticosteroids were shown to confer some benefit but their long-term use is associated with

unacceptable side effects . The non-steroidal anti-inflammatory agent ibuprofen has also demonstrated

benefits . Particularly in younger patients, it has been associated with an increased survival rate , but it

requires a strict dose control and has associated renal and gastrointestinal side effects . A large Phase 2 RCT of the

leukotriene B4 (LTB4) receptor antagonist, BIIL 284 BS (amelubant), surprisingly demonstrated an excess of pulmonary

exacerbations as compared with a placebo . Conversely, CTX-4430 decreases the production of LTB4, an

inflammatory mediator elevated in CF  and is presently undergoing a Phase 2 trial . Andecaliximab, an antibody

against MMP9, is undergoing a Phase 2b trial  but the baseline FEV1 required for this drug limits its use in very severe

CF and this trial has been discontinued. Another compound in Phase 1 is POL6014, a synthetic neutrophil elastase

blocker . Other anti-inflammatory compounds under clinical development are α-1 anti-trypsin , the elastase

inhibitor AZD9668 , and JBT-101 (ajulemic acid, or Lenabasum), an oral selective cannabinoid receptor type 2 (CB2)

agonist that decreases neutrophilic inflammation inhibiting LTB4 and promotes resolution of inflammation through
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modulation of arachidonic acid metabolism . A Phase 2, double-blind, placebo-controlled study, in adult CF patients,

demonstrated decreased levels of several sputum inflammatory markers and reduced exacerbations in response to JBT-

101, with no serious adverse effects reported . A Phase 2b study is underway. Indeed, CB2 activation has shown

anti-inflammatory effects including stimulating lipoxin A4 (LXA4) synthesis, decreasing proinflammatory cytokine

secretion, and neutrophil trafficking to the lung .

Anti-proteases have been under investigation in CF since 1990. For example, the already described α1-antitrypsin

suppressed inflammatory markers including free neutrophil elastase, proinflammatory cytokines, and neutrophils .

Other neutrophil elastase inhibitors include recombinant secretory leukocyte protease inhibitor (rSLPI) and the small-

molecule drug EPI-hNE4 (depelstat) . Among other inflammatory therapies, hydroxychloroquine, a dihydrofolate

reductase inhibitor that increases intracellular pH, was negatively evaluated in a small 28-day study in CF . A CF

clinical trial regarding SB-656933, a CXCR2 antagonist, concluded that this molecule might modulate airway inflammation

. Conversely to refractory asthma, few CF studies have considered the use of chemotherapeutics. Low dose of the

immunosuppressant cyclosporin A diminished the need for systemic corticosteroids in one small case series. In a pilot

study, methotrexate increased FEV1 and decreased total serum immunoglobulins in five CF patients after one year of

treatment , showing tolerable adverse effects. IL-8 decoys are used as an anti-inflammatory anti-neutrophil elastase

strategy . Other novel anti-inflammatory compounds under review include the already mentioned lipoxins and

resolvins. Arachidonic acid-derived lipoxins such as LXA4 attenuate neutrophil chemotaxis, respiratory burst, IL-8

production, and accelerate apoptosis . Because of low LXA4 levels in CF airways, stable LXA4 agonists have

been developed as prospective therapeutics. Decosahexanoic acid- and omega-3 eicosapentanoic acid-derived resolvins

D1 and E1 also mitigate inflammation, preventing chemotaxis and promoting clearance of apoptotic neutrophils 

. Analogously to LXA4, resolvins stimulate a cytoprotective effect on airway epithelial cells . Retinoids

foster extracellular matrix homeostasis. Recent Phase 1b studies involving LAU-7b, an oral solid-dosage form of the

retinoid fenretinide, showed safety and tolerability in adult CF patients, encouraging progression to Phase 2 trials .

Antioxidant therapies have not been yet settled in clinical practice . In fact, despite the commercial development of

many natural antioxidants as dietary supplements, there is no sound clinical trial evidence of their effectiveness in any

clinical condition  with the exception of GSH (administered either orally or by inhalation)  with some

drawbacks . Though not quite clear , high doses of β-carotene appear to improve lung function and decrease

oxidative stress in some cases . The application of deferiprone (L1) as an iron chelating drug/pharmaceutical

antioxidant is under way. Its use is being considered as a main, alternative, or adjuvant therapy in many diseases

involving oxidative damage . N-acetyl cysteine, initially developed as a mucolytic, is being repurposed as an

antioxidant , inhibiting H O  and increasing GSH . Of significance is the malabsorption of fat-soluble antioxidants

in CF patients such as tocopherols, carotenoids, and coenzyme Q10 (Co-Q10), and that of essential fatty acids. Vitamin E

might become a good supplementation to overcome this deficiency , along with carotenoids  and

ascorbic acid (vitamin C) as nutritional supplements. Multivitamin supplements with high bioavailability containing Co-Q10

would also be a good alternative . One recent study regarding multivitamin supplements showed a decrease in

circulating inflammatory markers and a decrease in pulmonary exacerbations . Alternatively, several hydro soluble

antioxidants, oligoelements, and enzymatic antioxidants such as Vitamin C, selenium and selenium-dependent

peroxidases , zinc, and copper  have yielded promising results awaiting further clinical trials. A randomized

double-blind placebo-controlled trial has examined the outcome of short-term melatonin administration (3 mg for three

weeks) on sleep and oxidative stress markers in CF . Accordingly, with the expected activity synchronizing the sleep-

wake cycle and its antioxidant properties, treatment with this hormonal substance reduced nitrite levels in exhaled breath

condensate and improved sleep indices.
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