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As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and,
most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it
has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants,
pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an
excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell
components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung
epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or
damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an
inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to

return to homeostatic conditions.

oxidative stress inflammation respiratory diseases therapeutic strategies

| 1. Introduction

Due to its continuously exposed surface to the external environment, the lung exhibits a formidable defense system
constituted by a high number of interacting mechanisms W2, First, anatomical retention features such as the
nasopharyngeal barrier filter particles or microorganisms higher than 2—-3 pm BI4El, Secondly, there are systems to
expel the external elements, i.e., the cough &, and the mucociliary system . Whether or not the external and
potentially harmful particles overcome these mechanisms, the humoral factors come into play, including
bactericidal and antiviral secretions (mucins, defensins, lactoferrin, complement factors, etc.) B8 and cellular
factors of the innate 2% and adaptive immune system. These include the airway epithelial cells [11: the phagocytic
cells that, in turn, comprise polymorphonuclear (PMN) cells such as neutrophils (the most abundant immune cell
type) 22 or eosinophils [£2: monocytes and macrophages [24I131: natural killer cells (NKC) 18: mastocytes [27: and
dendritic cells [28. All these cells recognize pathogen-associated molecular patterns (PAMPS) such as
lipopolysaccharide (LPS) through pattern recognition receptors (PRRs) 2 and Toll-like receptors (TLR) are the
most studied 29, Their stimulation triggers the activation of antimicrobial genes and inflammatory cytokines and
chemokines, as well as the direct response against antigens [, activating the adaptive immune system, namely B
and T lymphocytes [221[23],

| 2. Reactive Oxygen Species Production in the Airways
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Environmental pollutants such as ozone (Oz) and nitrogen dioxide (NO,) react with several molecules at the
respiratory surface and generate secondary reactive oxygen species (ROS) such as superoxide radicals (O,7),
hydrogen peroxide (H,0,), and hydroxyl radicals (OH’) 241231, Additionally, lung cells generate ROS as by-products
of aerobic metabolism involving enzymatic reactions in the mitochondrial electron transport chain (e.g., through
activity of amine oxidases, a-ketoglutarate dehydrogenase (a-KGDH), and pyruvate dehydrogenase (PDH), and
activation of the p66shc adaptor protein) 28271281 Fyrthermore, ROS can be produced in peroxisomes 22 or by
cytochrome P450 enzymes, cyclooxygenases, and lipoxygenases B9, Nitric oxidase synthases (NOS) expand the
spectrum of ROS producing reactive nitrogen species (NO, or ONOO") [Bll. ROS are also produced as mediators
of biological functions, with a role in inflammatory processes involving epithelial and endothelial cells, alveolar
macrophages, and granulocytes 32338l NADPH oxidases (NOX) enzymes are involved in both bacterial killing and
regulation of inflammatory mediators B4l Indeed, dual oxidases, DUOX1 and DUOX2, the major isoform of NOX,

are expressed preferentially in the respiratory epithelium [E238187],

| 3. Respiratory Surface: Antioxidant Defenses

The air-liquid interface covering the developed airways is an environment subjected to continuous oxidative stress.
Accordingly, the respiratory epithelium is exposed to endogenous and also to environmental ROS. Therefore, it
expresses a variety of antioxidant enzymes. Superoxide dismutases such as SOD3 (an extracellular SOD, EC-
SOD) [38I391149] highly-expressed in the lung at the extracellular matrix and at the cell surfaces “2 generate H,0,
which is detoxified by other enzymes. Catalase, decomposes H,0, into H,O and O,, predominantly within alveolar
macrophages and type Il epithelial cells 4243l Glutathione (GSH) peroxidase (GPX) catalyzes the reduction of
H,0, or other peroxides to glutathione disulfide (GSSG) and H,0O, of which GPXL1 is thought to be responsible for
95% of overall lung tissue GPX activity 4. Peroxiredoxins (PRX), with all six mammalian family members
expressed in different compartments within the lung “2, particularly PRX 1, IlI, V, and VI in the bronchial epithelium,
PRX V and VI in the alveolar epithelium, and PRX | and Il in alveolar macrophages, decompose H,O, and protect
against oxidative stress [28l471148] Thioredoxin (TRX), whose main antioxidant role is related to its ability to
regenerate oxidized forms of PRX 4930 catalyzes the reduction of disulfide bonds, modulates signal transduction
pathways, and has anti-inflammatory properties BUE2 Finally, glutaredoxins (GRX) participate in the reduction of

oxidative modifications involving GSH 3341,

The following small non-enzymatic low-molecular-weight antioxidant molecules are highly relevant: ascorbic acid
(vitamin C) B2, uric acid B8, GSH B158] and a-tocopherol (vitamin E) B9, These non-enzymatic molecules are the
most prominent antioxidants reacting with reactive oxidant gases such as O3 and NO, [BYI61I62]63] ang with the
secondary oxidants generated by them, which can increase the oxidative injury (84, Furthermore, the enzymatic
antioxidants complement the function of these small molecules. Nuclear factor erythroid 2-related factor (Nrf2)

regulates the transcription of both antioxidant genes coding for many of the above-highlighted enzymes and phase
Il detoxification genes [62[681(67][68]

| 4. Inflammation and Oxidative Stress in Pulmonary Diseases
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A variety of immune and non-immune cells are activated during an inflammatory process. Each cell type releases
cytokines and mediators that modify the activities of other cells, inducing an inflammatory network that progresses
and resolves towards healthy homeostatic, or pathological outcomes. The lung is a vital organ for gas exchange
and is constantly exposed to harmful airborne pathogens. Therefore, an immediate and intense
protective/defensive inflammatory action is required to eliminate the invaders as early as possible. Nevertheless,
excessive inflammation can be life threatening [Il. Consequently, a delicate balance between inflammation and
anti-inflammation is essential for lung homeostasis and for the prevention of chronic inflammation 2. Among the
main inflammatory mediators involved in the pathogenesis of respiratory diseases are biochemical mediators such
as histamine, thrombin, complement anaphylatoxins, prostaglandins, nitric oxide (NO), and molecules induced by
oxidative stress 9 These compounds mediate cell signaling and enhance cytokine production, among other

activities.

Thus, airborne toxicants stimulate local ROS production inducing protein oxidation, lipoxidation, glycation end
products, and DNA damage, and leading to mitochondrial dysfunction, cell death, the recruitment of inflammatory
cells (mainly macrophages and neutrophils), profibrotic changes or mucus hypersecretion. These oxidative stress-
mediated cellular processes drive the development of key environmental respiratory diseases such as acute lung
injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis, and

affect the progression of the most common hereditary disease affecting the lung, i.e., cystic fibrosis.

| 5. Prospective Therapeutic Strategies
5.1. ALIIARDS

The scientific rationale for emerging therapies in ARDS is to pursue fundamental processes and mediators of its
complex pathophysiology L. There are emerging therapies in Phase 3 trials assessing the potential benefits of
corticosteroids such as dexamethasone 278l or budesonide/formoterol 4731, Moreover, supplementation with
vitamin D 8 in a Phase 2 trial has shown a reduction in markers of vascular permeability from lung injury patients
following esophagectomy in the post-operative period 2, although another trial using vitamin D to prevent acute
respiratory tract infections has been less conclusive 8. Other emerging therapies in Phase 2 trials include aspirin,
which has attracted interest as a repurposed drug for ARDS 7283 \ith some clinical studies [ that show
significant reduction in neutrophil infiltration into the alveolar space. Alternatively, different studies using
mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) have shown a biological decline in
angiopoietin and a concomitantly reduced 28-day mortality, higher ventilator-free days, and higher ICU-free days
82 vitamin C acts as ROS scavenger, modulator of inflammatory mediators, and cofactor. In mouse models, ALI
prevents the activation of NF-kB, and therefore attenuates the production of proinflammatory cytokines and boosts
ion channel and pump expression, enhancing fluid clearance in the alveolar epithelium 3. The phase 2 CITRIS-
ALl trial is presently investigating the usefulness of vitamin C in sepsis-induced ALI 4! but no positive results have
been reported as yet 83, It was found that nebulized liquid heparin increased the number of ventilator-free days
8681 and a Phase 2 trial to confirm the findings is awaited 871 Anti-tissue factor antibodies such as ALT-836, which

blocks binding to coagulation factor Vlla, have demonstrated attenuation of sepsis-induced ALI in animal models,
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and was successfully tested in a Phase 1 trial for ARDS B8], A Phase 2 trial has been recently completed and
disclosure of the results is pending 2. Dilmapimod, a p38 MAPK inhibitor, has proven useful for reducing the
severity of ALl in animal studies, although in human trials it has been unreliable B9 Neutrophil elastase
inhibitors such as sivelestat, have been shown to increase the ventilator-free days in ARDS patients with a high
extravascular lung water content (>10 mL/kg) as compared with those with low pulmonary edema [£2 although
contradictory results have also been obtained 2384l Ulinastatin (or urinary trypsin inhibitor) is another
physiological inhibitor of human neutrophil elastase with positive results in preclinical studies 2. A meta-analysis
of 29 Chinese randomized controlled trials (RCTs) indicated that ulinastatin was effective ameliorating ARDS 28],
Another multi-center Phase 2 RCT is ongoing to assess its safety and efficacy in ARDS 7. Regarding
granulocyte-macrophage colony stimulating factor (GM-CSF), preclinical models have demonstrated that it can
limit alveolar epithelial cell injury and promote alveolar macrophage maturation. Nevertheless, a Phase 2 RCT
enrolled only two-thirds of its intended number of participants and, although GM-CSF treatment appeared to be
safe, it did not decrease ventilator free days or mortality of the ALI/ARDS patients 28, Anti-CD14 antibodies
protected against septic hypotension in animal models of pneumonia 22, Two Phase 2 trials have been initiated in
this regard, the former, in 2007, failed in recruiting people; and the latter is still recruiting 299 Inhaled
prostaglandins, such as epoprostenol and alprostadil, have been suggested to regionally dilate the pulmonary
vasculature increasing arterial oxygenation in ARDS. However, a meta-analysis of 25 studies concluded that,
although indeed inhaled prostaglandins improved oxygenation in ARDS, they did not improve pulmonary

physiology or mortality 201,

5.2. Asthma

Over the last few years, multiple biologics (typically mAbs) have been developed targeting various participants in
allergies and asthma, but mainly directed toward the complex type 2 endotype 10211031 |n general, they are anti-
inflammatory treatments 194 The most prevalent biologics are omalizumab (anti-IlgE) and mepolizumab (anti-IL-5).
IL-5 has become a major target for both asthma and COPD due to the high proportion of patients with airway
eosinophilia associated with disease severity 193 Currently, three biologics, targeting IL-5 or its receptor, have
been cleared by the Food and Drug Administration (FDA). Omalizumab was initially approved by the FDA in 2003
and binds to both the high-affinity and low-affinity IgE receptors, preventing free IgE from occupying the surface of
mast cells and basophils 19, |t has several disadvantages, i.e., it must be administered by subcutaneous injection
[207] it is expensive 1981 and, moreover, an unusual form of anaphylaxis 199 and a possible higher rate of cardiac
and cerebrovascular events can be ensued by this treatment. Anti-IL-5 (mepolizumab) was approved in late 2014
and receiving patients had decreased eosinophilic inflammation, reduced asthma exacerbations, improved asthma
control markers, better quality of life LI and reduced levels of some of the proteins that drive airway
remodeling 222, |n another study on moderate persistent asthma, despite high-dose ICS, patients also showed
decreased blood and sputum eosinophils but no change in FEV1, symptom scores, or need for rescue inhaler.
After stopping anti-IL-5 treatment, eosinophils and asthma symptoms again increased 112l Reslizumab, another
mMAD targeting IL- 5, approved in 2016 for patients with eosinophilic asthma, has proven beneficial on moderate-to-
severe asthma symptoms, improving lung function and reducing exacerbations as compared with a placebo 1141,

Reslizumab also decreased blood, sputum, and airway eosinophils and, more recently, reduced systemic
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corticosteroid dosing nearly 75% 131161171 Benrglizumab, a mADb targeting the IL-5Ra, was approved recently by
the FDA 118l with positive results in asthma 12120111211 Fing|ly, dupilumab, a mAb approved in 2017 that inhibits
the IL- 4R subunit 122 has also shown encouraging results in asthma 2231241 Regarding relevant future targets
pending approval, lebrikizumab and tralokinumab, mAbs that target 1L-13 [223l126] have not shown positive effects
(127][128] Tezepelumab (AMG157), a humanized mAb currently in Phase 3 129 pinds thymic stromal lymphopoietin,
an epithelial cell-derived cytokine that drives allergic inflammatory responses 139, Additionally, anti-IL-33 therapies
are currently under development 231 Conversely, non-Th2 inflammation targets are also being studied. IL-6 and
IL-17 may promote both Th2 and non-Th2 inflammatory cascades. Brodalumab is a human mAb binding IL-17RA,
which inhibits signaling of IL-17 and IL-25, with disappointing results in clinical trials 2221, Thus, this therapy has not
been further pursued for asthma or COPD. C-X-C motif chemokine receptor 2 (CXCR2) antagonists such as
navarixin (which decrease IL-8 levels) have reduced sputum and blood neutrophils, with no significant change in
FEV1 1381 but has progressed to a Phase 2 trial 134, An antisense oligonucleotide against C-C chemokine
receptor 3 (CCR3) (co-administered with an antisense oligonucleotide that targets the ¢ subunit of the IL-3, IL-5,
and GM-CSF receptors), named TPl ASM8, has shown some efficacy in phase 2 trials (133, |matinib is a tyrosine
kinases inhibitor that has shown promising results in a clinical study, reducing airway hyper-responsiveness as
compared with a placebo 28, Among drugs targeting TNF-a, etanercept stands out as a repositioning drug for
asthma. A few studies employing etanercept have reported satisfactory results reducing bronchial hyperreactivity
(137][138] ' \vhereas other studies have informed poor clinical efficacy in terms of lung function improvement and

quality of life [139], Others have shown a small but significant increase in the quality of life without changes on lung
function 149,

Among anti-inflammatory treatments, antioxidant treatments stand out [141]1142]  \/itamins (E, C, D, and A),
carotenoids (a-carotene, [-carotene, [B-cryptoxanthin, lutein/zeaxanthin, and lycopene), and food supplements
(selenium and zinc) seem to improve the prognosis of the disease [1431144]1145] ' Asthmatic adults with antioxidant-
poor diets have lower forced expiratory volume in the first one second to the forced vital capacity (FEV1/FVC) ratio
scores, increased plasma C-reactive protein, and were more likely to exacerbate than those on an antioxidant-rich
diet 148 |ndeed, dietary antioxidant supplementation notably improved both symptoms and lung function in

exercise induced asthma 1471,

5.3. COPD

Thus far, no anti-IL-5 therapies have been approved for use in COPD. However, two Phase 3 studies using
mepolizumab showed improvements in exacerbation frequency from subjects who had an eosinophilic phenotype
and a history of COPD exacerbations, despite triple therapy 148 Nevertheless, other studies have indicated no
positive effects 149, Reslizumab has yet to be formally evaluated in clinical trials for COPD. Conversely, in a Phase
2 trial including COPD patients with eosinophilia, benralizumab treatment did not significantly reduce the annual
rate of moderate or severe exacerbations 120151 However, significant improvements in FEV1 were observed in
the overall study population, and the results of pre-specified subgroup analyses by baseline blood eosinophil count
in individuals with benralizumab versus placebo have led to an ongoing Phase 3 trial to evaluate this biologic in
COPD 152, As in asthma, non-Th2 inflammation targets include CXCR2 and CCR3. Regarding corticosteroids, in
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contrast to asthma, glucocorticoid treatment of established COPD is rather ineffective in reducing chronic airway
inflammation and progressive airway obstruction 53, Current national and international guidelines endorse the use
of inhaled long acting bronchodilators, ICSs, and their combination for maintenance treatment of moderate-to-
severe stable COPD 224l although adverse effects may arise (133, |n fact, large clinical trials assessing the
combination therapy (ICSs + LABAS) in a single inhaler for stable COPD patients have shown a good safety profile,
a discreet but statistically significant reduction of severe exacerbations, and improvements of FEV1, quality of life,
and respiratory symptoms in these patients 1561571  QOverexpression of histone deacetylase 2 restores
glucocorticoid sensitivity in BAL macrophages from COPD patients 581 Anti-cytokine and anti-chemokine
treatments are being exploited in COPD but scarce trials using blocking antibodies against cytokines and
chemokines or their receptors have proven successful 123, Among those showing positive effects, the CXCR2
inhibitor MK-7123 (also known as SCH527123 or navarixin, already described in asthma) could reduce the
chemotaxis of neutrophils 1581, MK-7123 treatment resulted in a significant reduction of sputum neutrophils and of
sputum and plasma MMP9 and myeloperoxidase levels [£22, Numerous other drugs, including antibodies directed
against specific inflammatory mediators such as cytokines (IL-18, IL-22, IL-23, IL-33, TSLP) and growth factors
(GM-CSF) are under investigation for COPD.

5.4. Idiopathic Pulmonary Fibrosis (IPF)

After several disappointing years of promising therapies that moved into clinical trials but failed to demonstrate
efficacy in IPF 189 the anti-fibrotic drugs pirfenidone and nintedanib have been associated with significantly slower
respiratory deterioration and perhaps prolonged survival [L81[162I163] ' aithough with heterogenous responses and
side effects. The understanding of the complex pathogenesis of IPF continues to increase 184111651 Systained
alveolar epithelial cell injury and abnormal repair are increasingly recognized as the core mediators of the fibrotic
process, with a relevant involvement of environmental triggers. The activation of multiple pathways related to
maladaptive repair, involving fibroblast migration, proliferation, and extracellular matrix deposition has revealed a
variety of prospective molecular targets of novel therapeutic agents currently being tested in early phase clinical
trials. Pentraxin-2 (PTX-2) is a circulating protein that binds to monocytes, promoting epithelial healing and
resolution of fibrosis. Thus, a recombinant human PTX-2 (serum amyloid P) analogue (PRM-151) has been shown
to inhibit monocyte to fibrocyte differentiation and ameliorate fibrosis in a bleomycin-induced animal model of
fibrosis [68I167] A Phase 1 trial showed a non-significant but improving effect of PRM-151 on FVC and six-min
walking distance (6MWD) during the treatment 881 Further Phase 2 studies have demonstrated a significant
reduction in pulmonary function deterioration and stability in 6MWD over 24 weeks as compared with a placebo,
although with relevant adverse events 89170 The |aunch of a Phase 3 trial for PRM-151 in IPF has been
announced, using FVC as a primary end point and 6MWD as a key secondary end point. Among the anti-
connective tissue growth factor antibodies, the antagonist pamreviumab (FG-3019) in the PRAISE study 17 was
established to have a significant effect preventing lung function decline of 160 IPF patients, yet full peer-reviewed
data are still awaited 172, The re-initiation of Phase 3 trials has just been announced. PBI-4050 is a synthetic
analogue of a medium-chain fatty acid acting through G protein-coupled receptors and showing anti-fibrotic
activities such as inhibition of epithelial-mesenchymal transition and fibrocyte/fibroblast recruitment, migration,

proliferation and differentiation, among others 173, A Phase 2 trial has shown no safety concerns 741, While there
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was slowing or stability in FVC, a statistically significant decrease was observed only combining PBI-4050 and
pirfenidone but not PBI-4050 and nintedanib, implying a possible drug—drug interaction. Additional studies of PBI-
4050, either alone or in combination with nintedanib, are currently being considered. In a Phase 2a study [175]
GLPG1690, an oral selective inhibitor of autotaxin (an enzyme increased in IPF and involved in cell apoptosis and
endothelial cell damage) was analyzed and was well tolerated by IPF patients, with a good safety profile. Moreover,
as secondary end points, preliminary efficacy analyses demonstrated target engagement and encouraging results
towards halting FVC decline 278, International Phase 3 trials to assess the efficacy of GLPG1690 in IPF are
ongoing 77, |eukotrienes are also increased in IPF 781179 Thys, additional ongoing trials include leukotriene
antagonists such as tipelukast, currently explored in a Phase 2 trial 282, Among protein kinase inhibitors, a recent
Phase 1 study showed proper safety and tolerability of a selective protein kinase inhibitor of the Rho-associated
coiled-coil containing protein kinase 2 (ROCK2). The trial is currently in Phase 2 [181[182] Moreover, a current
Phase 2 [283] trial is evaluating CC-90001, a second-generation Jun N-terminal kinase (JNK) inhibitor after a first-
generation JNK inhibitor (CC-930) showed a dose-dependent trend of reduction in MMP7 and surfactant protein D
(SP-D) biomarker plasma levels 184, Regarding anti-integrin antibodies, a partial inhibition of integrin avf6 in
rodents blocked the development of pulmonary fibrosis processes without aggravating the inflammatory response
(185 The safety and tolerability of a humanized monoclonal antibody (BG00011) against this integrin has been
analyzed in a Phase 2 trial 288l The study has been completed recently, although its outcome is still pending.
Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/Akt) pathway inhibitors may be associated with halting
fibrosing processes 187 as suggested in a Phase 1 trial 188Il189 and evidenced in another recent study using
omipalisib 229, Sirolimus is currently under examination in a Phase 2 trial 221, The B lymphocyte antigen CD20 is
targeted by rituximab, which is currently being assessed in an IPF Phase 2 study 192, Furthermore, a Phase 2 trial
examined combined plasma exchange, rituximab, and steroids 193], While peer-reviewed results are pending, a
pilot trial stated good outcomes regarding autoantibody reduction for acute IPF exacerbations 124, A Phase 3 trial
testing the antibiotic combination co-trimoxazole (trimethoprim and sulfamethoxazole) is currently operating 1251,
Finally, other anti-inflammatory drugs are likewise in clinical research for IPF, i.e., lebrikizumab 28], tralokinumab

(1971 and azithromycin 198,

5.5. Cystic Fibrosis (CF)

To address the most prevalent causal defects in the CFTR Cl- channel leading to CF, two biomolecular modulators
are needed, i.e., CFTR correctors, to increase the amount of properly folded mutant CFTR protein at the plasma
membrane, and CFTR potentiators, to allow effective gating (channel opening and closing) of the abnormal CFTR
(199[200[201]  Nevertheless, a more thorough division might also include stabilizers, read-through agents, and
amplifiers 2921 Ejther alone or combined, these modulators tend to restore transepithelial CI~ transport to CF
airway epithelia expressing CFTR mutations such as the most prevalent F508del, improving hydration and
restoring mucociliary clearance 203112041 Four drugs have been recently approved by the FDA for that purpose 2011,
the potentiator Ivacaftor (VX-770) for individuals with CF holding a G551D CFTR mutation, and the following three
correctors: Lumacaftor (VX-809), developed to increase the amount of F508del CFTR that reaches the cell surface
(205][206] Tezacaftor (VX-661), and Elexacaftor (VX-445). Furthermore, their combinations are also being assayed,

i.e., Orkambi (lumacaftor/ivacaftor) for patients homozygous for F508del CFTR [297  Symdeko
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(tezacaftor/ivacaftor), and Trikafta (elexacaftor/tezacaftor/ivacaftor). Most recently, there has been an explosion of
novel modulators (298! and others are under investigation including ELX-02, Posenacaftor (PTI-801), Galicaftor

(ABBV-2222), ABBV-3221, FDL169, Deutivacaftor (VX-561), ABBC-974 (GLPG-1837), and Nesolicaftor (PTI-428)
(209][210][21.1][212][213][214][215][216][217][218] 3mong others.

Despite a thorough knowledge of the undergoing inflammatory process in CF, there are relatively few anti-
inflammatory drugs in clinical use (219, Corticosteroids were shown to confer some benefit but their long-term use
is associated with unacceptable side effects [2202211222] The non-steroidal anti-inflammatory agent ibuprofen has
also demonstrated benefits 223224 particularly in younger patients, it has been associated with an increased
survival rate 22312261 pyt it requires a strict dose control and has associated renal and gastrointestinal side effects
[223] A large Phase 2 RCT of the leukotriene B4 (LTB4) receptor antagonist, BIIL 284 BS (amelubant), surprisingly
demonstrated an excess of pulmonary exacerbations as compared with a placebo 227, Conversely, CTX-4430
decreases the production of LTB4, an inflammatory mediator elevated in CF 228 and is presently undergoing a
Phase 2 trial (222, Andecaliximab, an antibody against MMP9, is undergoing a Phase 2b trial 229 but the baseline
FEV1 required for this drug limits its use in very severe CF and this trial has been discontinued. Another compound
in Phase 1 is POL6014, a synthetic neutrophil elastase blocker 231, Other anti-inflammatory compounds under
clinical development are a-1 anti-trypsin 232, the elastase inhibitor AZD9668 [233], and JBT-101 (ajulemic acid, or
Lenabasum), an oral selective cannabinoid receptor type 2 (CB2) agonist that decreases neutrophilic inflammation
inhibiting LTB4 and promotes resolution of inflammation through modulation of arachidonic acid metabolism 234, A
Phase 2, double-blind, placebo-controlled study, in adult CF patients, demonstrated decreased levels of several
sputum inflammatory markers and reduced exacerbations in response to JBT-101, with no serious adverse effects
reported (23512361 A Phase 2b study is underway. Indeed, CB2 activation has shown anti-inflammatory effects
including stimulating lipoxin A4 (LXA4) synthesis, decreasing proinflammatory cytokine secretion, and neutrophil
trafficking to the lung [2371238]

Anti-proteases have been under investigation in CF since 1990. For example, the already described al-antitrypsin
suppressed inflammatory markers including free neutrophil elastase, proinflammatory cytokines, and neutrophils
(239112401 Other neutrophil elastase inhibitors include recombinant secretory leukocyte protease inhibitor (rSLPI) and
the small-molecule drug EPI-hNE4 (depelstat) 221, Among other inflammatory therapies, hydroxychloroquine, a
dihydrofolate reductase inhibitor that increases intracellular pH, was negatively evaluated in a small 28-day study in
CF [242] A CF clinical trial regarding SB-656933, a CXCR2 antagonist, concluded that this molecule might modulate
airway inflammation [243. Conversely to refractory asthma, few CF studies have considered the use of
chemotherapeutics. Low dose of the immunosuppressant cyclosporin A diminished the need for systemic
corticosteroids in one small case series. In a pilot study, methotrexate increased FEV1 and decreased total serum
immunoglobulins in five CF patients after one year of treatment 224! showing tolerable adverse effects. IL-8 decoys
are used as an anti-inflammatory anti-neutrophil elastase strategy [24512461  Other novel anti-inflammatory
compounds under review include the already mentioned lipoxins and resolvins. Arachidonic acid-derived lipoxins
such as LXA4 attenuate neutrophil chemotaxis, respiratory burst, IL-8 production, and accelerate apoptosis 2471248]
(2491 Because of low LXA4 levels in CF airways, stable LXA4 agonists have been developed as prospective

therapeutics. Decosahexanoic acid- and omega-3 eicosapentanoic acid-derived resolvins D1 and E1 also mitigate
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inflammation, preventing chemotaxis and promoting clearance of apoptotic neutrophils [2301251]252][253]
Analogously to LXA4, resolvins stimulate a cytoprotective effect on airway epithelial cells 2242551 Retinoids foster
extracellular matrix homeostasis. Recent Phase 1b studies involving LAU-7b, an oral solid-dosage form of the

retinoid fenretinide, showed safety and tolerability in adult CF patients, encouraging progression to Phase 2 trials
[256]

Antioxidant therapies have not been yet settled in clinical practice 234, In fact, despite the commercial
development of many natural antioxidants as dietary supplements, there is no sound clinical trial evidence of their
effectiveness in any clinical condition 228 with the exception of GSH (administered either orally or by inhalation)
(259][260][261] \jith some drawbacks 262, Though not quite clear 283l high doses of B-carotene appear to improve
lung function and decrease oxidative stress in some cases 264 The application of deferiprone (L1) as an iron
chelating drug/pharmaceutical antioxidant is under way. Its use is being considered as a main, alternative, or
adjuvant therapy in many diseases involving oxidative damage 2621266 N-acetyl cysteine, initially developed as a
mucolytic, is being repurposed as an antioxidant 287 inhibiting H,O, and increasing GSH 289, Of significance is
the malabsorption of fat-soluble antioxidants in CF patients such as tocopherols, carotenoids, and coenzyme Q10
(Co-Q10), and that of essential fatty acids. Vitamin E might become a good supplementation to overcome this
deficiency [2681269112701[271]272] z|ong with carotenoids 223! and ascorbic acid (vitamin C) as nutritional supplements.
Multivitamin supplements with high bioavailability containing Co-Q10 would also be a good alternative 2741275],
One recent study regarding multivitamin supplements showed a decrease in circulating inflammatory markers and
a decrease in pulmonary exacerbations 278, Alternatively, several hydro soluble antioxidants, oligoelements, and
enzymatic antioxidants such as Vitamin C, selenium and selenium-dependent peroxidases [277]12781[279] * zine, and
copper 289 have yielded promising results awaiting further clinical trials. A randomized double-blind placebo-
controlled trial has examined the outcome of short-term melatonin administration (3 mg for three weeks) on sleep
and oxidative stress markers in CF 2811 Accordingly, with the expected activity synchronizing the sleep-wake cycle
and its antioxidant properties, treatment with this hormonal substance reduced nitrite levels in exhaled breath

condensate and improved sleep indices.
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