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Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system,

which seriously affects the patient’s body function and quality of life. Saponins are a class of compounds with

diverse structures, consisting of sapogenin and glycosyl groups. The common ones of the saccharides that make

up saponins are D-glucose, D-galactose, D-xylose, L-arabinose, and L-rhamnose, etc.

neuropathic pain  saponins  mechanism

1. Ginsenosides

Ginsenosides are the major biologically active components of Ginseng, which have a wide range of

pharmacological activities. According to the skeleton of their aglycones, ginsenosides can be classified into two

groups, tetracyclic triterpene dammarane-type saponins (protopanaxadiol (PPD)-, protopanaxatriol (PPT)-type)

(Figure 1A) and tetracyclic triterpene oleanane-type saponins . So far, more than 100 different ginsenoside

monomers have been isolated, such as ginsenosides Rb1, Rb2, Rc, Rd, Re, Rg1, and Rf, the pharmacological and

pharmacokinetic properties of which are different .

[1][2][3]
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Figure 1. Chemical structures of ginsenosides (A), saikosaponins (B), astragaloside IV (C), and diosgenin and

dioscin (D) (Note: PPD, protopanaxadiol; PPT, protopanaxatriol; Glc, glucoside; Rha, rhamnoside; Fuc, fructoside).

Data based on animal models have shown that ginsenosides play a beneficial role in neuropathic pain. In a study

conducted by Jee Youn Lee et al. , peripheral and central neuropathic pain was induced by tail nerve injury or

contusive spinal cord injury (SCI) in male SD rats, respectively. Remarkable analgesic effects were shown after the

application of oral total saponin extract (TSE), ginsenoside Rb1. The research found that TSE and ginsenoside

Rb1 inhibited the activation of microglia/astrocytes, and attenuated inflammatory factors levels, such as interleukin-

1β (IL-1β), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Further

results demonstrated that TSE, ginsenoside Rb1, and Rb1-metabolite-compound, K, also exerted analgesic effects

that might be mediated through the estrogen receptor. Other research conducted by Gao Chao et al. reported that

intrathecal injection of ginsenoside Rg1 significantly inhibited chronic constrictive injury (CCI)-induced thermal

hyperalgesia in a dose-dependent manner. It might be mediated by inhibiting the expression of phosphorylated p38

mitogenactivated protein kinase (p-p38MAPK) and nuclear factor kappa-B (NF-κB) subunit phosphorylated p65,

and the activation of ionized calcium binding adaptor molecule-1 (IBA-1) in the spinal microglia, resulting in

downregulation of the central sensitization . In addition, other studies showed that ginsenoside Rf robustly

decreased IL-1β and IL-6, but increased the expression of IL-10 in the dorsal root ganglion (DRG), in both the

spinal cord and DRG of CCI rats . Thus, ginsenoside Rf may adjust the balance between proinflammatory and

anti-inflammatory factors to promote its antinociceptive effect in neuropathic pain.

[6]

[7]

[8]
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Many studies have revealed the key role of proinflammatory cytokines in the pathophysiology of neuropathic pain

. The above studies all explained that related ginsenosides inhibited inflammation through different

pathways to relieve neuropathic pain. Furthermore, other studies have shown that ginsenoside Rb1 inhibits

neuronal apoptosis  and promotes the neurogenesis and regulates the expressions of brain-derived

neurotrophic factor (BDNF) and caspase-3 to play a neuroprotective effect . On the other hand, clinically chronic

pain patients are often accompanied by depression, and some depressive patients also have chronic somatic pain

symptoms . Therefore, the relationship between pain and the occurrence of depression has become the focus of

recent studies. It has shown that intraperitoneal injection of ginsenoside Rg2 not only alleviates the mechanical

allodynia and thermal hyperalgesia, but also relieves anxiety and depression in CCI rats , though its underlying

mechanism needs to be further explored. So far, most of the analgesic mechanisms of ginsenosides in the

neuropathic pain are limited to the exploration of inflammatory factors, lacking in-depth analysis of its targeted

molecular targets. In addition, whether the regulatory effects of ginsenosides are related with different neuropathic

pain-related brain regions is still largely unknown. Further studies focusing on these points may provide a research

basis for the precise regulation of drugs.

2. Saikosaponins

Saikosaponins are derived from Bupleurum or Bupleurum scorzonerifolium in the Umbelliferae, one of the

traditional Chinese herbal medicines, and are the main active ingredients of Bupleurum . So far, more than 100

kinds of saikosaponins have been isolated from Bupleurum, the main ones of which are oleanane and ursolic

pentacyclic triterpene saponins . According to their chemical structure, saikosaponins are divided into

-A, -B, -C, -D, -M, -N, -P, and -T categories, and Saikosaponin D (SSD) is considered to be the most active one,

followed by Saikosaponin A (SSA) . Their chemical structures are shown in Figure 1B.

Both in vivo and in vitro experimental studies have shown that saikosaponins can inhibit the activation of transient

receptor potential ankyrin 1 (TRPA1) and significantly reduce the nociceptive response of animals induced by allyl

isothiocyanate (AITC) . Molecular docking and site-directed mutagenesis analyses demonstrated that

saikosaponins bind to the TRPA1 hydrophobic pocket near the Asn855 residue, which once mutated to Ser and

was previously united with enhanced pain perception in humans . Gyeongbeen also reported that multiple

administrations of SSD could significantly relieve mechanical hypersensitivity induced by vincristine, which was

carried out partially by suppressing the activity of TRPA1 . Therefore, it can be further speculated that SSD

might play a certain therapeutic role in the neuropathic pain that is induced by chemotherapeutics, diabetes, or

CCI, in which the expression and sensitivity of TRPA1 were changed as well, resulting in abnormal pain response

and perception . However, the analgesic effect of SSD is different between streptozotocin (STZ)- and

paclitaxel-induced pain models. Short-term oral administration was effective in the former, while multiple

administrations were required for the pain relief of the latter . This indicates that the analgesic effect of SSD may

not only act as an antagonist of TRPA1, but also exert anti-inflammatory activity to reduce the oxidative stress

caused by nerve damage. Related research reported that SSD could restrain the translocation of the glucocorticoid

receptor to the mitochondria, and decrease the H O -induced phosphorylation of extracellular-regulated kinase
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(ERK), c-Jun N-terminal kinase (c-JNK), and p38MAPK to downregulate the activity of neuronal PC12 cells 

.

It is well known that activation of NF-κB in both DRG and spinal cord neurons is associated with the transduction

and processing of nociceptive messages. Therefore, inhibition of NF-κB can alleviate chronic painful states .

Studies have shown that SSA alleviates neuropathic pain by inhibiting CCI-induced elevation of p-p38 MAPK and

NF-κB levels in the spinal cord . In addition, cytokine dysregulation is one of the characteristic manifestations of

neuropathic pain symptoms . It could also be found that SSA significantly inhibited the expression of certain

immune-related cytotoxic factors, including COX-2 and iNOS, and, likewise, the pro-inflammatory cytokines, such

as TNF-α, IL-1β, and IL-6. Meanwhile, the expression of the important anti-inflammatory cytokine IL-10 was

significantly upregulated, suggesting that it had anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated

macrophages . Further research showed that SSA blocked the NF-κB signaling pathway by preventing

phosphorylation of the NF-κB inhibitor α (IκBα), thereby allowing p65 NF-κB to remain in the cytoplasm, preventing

it from translocating to the nucleus. In addition, SSA inhibited the MAPK signaling pathway by downregulating the

phosphorylation of p38 MAPK, c-JNK, and ERK to exert the anti-inflammatory activity . On the basis, SSA

appeared to counteract the neurological function deficits after traumatic brain injury via inbiting aquaporin-4 (AQP-

4) and matrix metalloprotein-9 (MMP-9) to account for its neuroprotective effects . On the other hand, a study of

Seong Shoon Yoon et al. expressed that SSA exhibited a significant inhibitory effect on morphine-reinforced

behavior and drug addiction predominantly via mediating GABAB receptors . Davoud Ahmadimoghaddam et

al. reported that Bupleurum falcatum L. roots essential oil, of which SSA was one of the main constituents ,

exerted its antinociceptive and antiallodynic effects through the regulation of L-arginine-NO-cGMP-KATP channel

pathways, as well as interaction with opioid, peroxisome proliferator-activated, and cannabinoid receptors . The

voltage-gated sodium channel Nav1.7 is a tetrodotoxin-sensitive sodium channel subtype and is encoded by

SCN9A. It is well known that the dysfunction of Nav1.7 has the correlation with pain disorders . Relevant

research showed that SSA displayed the analgesic effects on the thermal pain and formalin-induced pain in mice

via strong inhibitory effect on the peak currents of Nav1.7 .

The above studies have shown that SSD and SSA can exert analgesic effects in different neuropathic pain models

through multiple pathways, and their mechanisms of action have similarities and differences. In the follow-up, 

authors can combine their structural characteristics with the mechanisms of action for deep analysis to provide a

research basis for the precise regulation of the targets.

3. Astragalosides

Astragali Radix, the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao,

or Astragalus membranaceus (Fisch.) Bge., is known as a high-grade traditional Chinese medicine . There are

three main types of compounds in astragalus: saponins, flavonoids, and polysaccharides, and triterpene saponins

are the major constituents . It is reported that more than 40 kinds of saponins have been isolated and

identified from the dried astragalus roots via HPLC and GC-MS, such as astragalosides I–VIII, acetylastragaloside,

isoastragaloside I, III, astramembrannin II, cycloastragenol, cycloascauloside B, brachyoside B, astrasieversianin
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X, etc. . Among these, astragaloside IV (AS-IV) is known as the major active ingredient and qualitative

control biomarker. AS-IV is 3-O-beta-d-xylopyranosyl-6-O-beta-d-glucopyranosyl-cycloastragenol (Figure 1C), the

molecular formula is C H O  .

It is generally accepted that the transient receptor potential vanilloid 1 (TRPV1) channel is a polymodal receptor for

various stimuli such as noxious heat and capsaicin, and is also an important pain sensor . TRPV1 is

overexpressed in Aδ fibers and C fibers in the situation of inflammation or nerve injury . In addition, purinergic

P2 × 3 receptors are ligand-gated nonselective cation channels, highly selectively expressed in small-diameter and

medium-diameter sensory neurons related to nociceptive information, and play a key role in the generation and

maintenance of pathological pain . In the research by Guo-Bing Shi et al., AS-IV not only dramatically

downregulated the expression of TRPV1 in Aδ fibers to remarkably upregulate the nociceptive threshold, but also

inhibited P2 × 3 expression in DRG neurons to attenuate the mechanical allodynia . Meanwhile, AS-IV restored

the histological structure of the damaged sciatic nerve by accumulating glial cell-derived neurotrophic factor family

receptorα1 (GFRα1), the glial cell derived neurotrophic factor (GDNF) selective receptor, in the debris of myelin

between the Schwann cells and the damaged axon . It also reduced the levels of GFRα1 and GDNF in DRG,

which were highly expressed and induced by CCI, contributing to the restoration of injured nerve fibers .

In the peripheral nervous system, the appropriate dose of AS-IV could also greatly promote the regeneration of

peripheral nerves . Growth-associated protein 43 is lower in spinal cord segments L4–6 but active in growing

neuronal axons in normal Balb/c mice. As a particular biomarker in nerve injury, it plays a vital role in nerve growth,

and strongly associates with neuronal axon growth . Previous research showed that AS-IV significantly

upregulated the expression of growth-related protein 43 in regenerated nerve tissue, thereby increasing the

number and diameter of myelinated nerve fibers in the sciatic nerve of mice, while elevating motor nerve

conduction velocity and action potential amplitude . Moreover, AS-IV also conducted analgesic effects on

peripheral neuropathy in STZ-induced diabetic rats. Firstly, it reduced blood glucose and glycosylated hemoglobin

(HbA C) levels, and increased plasma insulin levels in diabetic rats . It is crucial to control the levels of HbA C

because its concentration is closely related to the incidence of diabetes-related complications, which has been

proven by clinical trials . Secondly, AS-IV enhanced the activity of glutathione peroxidase in nerves, suppressed

the activation of aldose reductase in erythrocytes, and decreased the accumulation of advanced glycation end

products in both nerves and erythrocytes, which might not only activate the cellular antioxidant defense system, but

also aggrandize the ability of antioxidative stress injury on peripheral nerves. Thirdly, AS-IV acted as the AR

inhibitor, and then enhanced Na , K -ATPase activity, improved the delayed motor nerve conduction velocity,

increased nerve blood flow, and prevented structural nerve fiber damage to correct peripheral nerve defects .

4. Diosgenin

Diosgenin is a naturally occurring steroidal sapogenin and is abundant in nature. Primary sources of diosgenin

include the three Dioscorea species and one Heterosmilax species, namely, D. zingiberensis, D. septemloba, D.

collettii, and H. yunnanensis . Diosgenin can also be obtained from fenugreek (T. foenum graecum Linn)

and Costus speciosus . It is a C27 spiroketal steroid sapogenin, 3β-hydroxy-5-spirostene (Figure 1D), and
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its molecular formula is C H O  . As a representational phytosteroid, diosgenin is an important basic raw

material for the production of steroid hormone drugs and has received increasing attention in the pharmaceutical

industry for decades . In addition, diosgenin itself has a wide range of biological effects. The following studies

mainly describe its role in neuropathic pain.

Neuropathic pain, one of the common complications of diabetes mellitus, manifests as increased sensitivity to

noxious stimuli . To evaluate the effects of diosgenin in the treatment of diabetes-induced neuropathic pain, an in

vivo study was performed on a rat model of STZ-induced diabetes. It was demonstrated that diosgenin upturned

mechanical and thermal nociceptive thresholds and lowered pain scores at the late phase of the formalin test in

diabetic rats . Since elevated oxidative stress is one of the key factors in diabetes-related neurological

dysfunction, it can lead to vascular dysfunction, resulting in intraneural hypoxia, which can lead to impaired motor

and sensory nerve function . Studies showed that diosgenin could reduce the content of malondialdehyde

(MDA) in serum, DRG, and sciatic nerve of diabetic rats and restored the activities of superoxide dismutase (SOD)

and catalase, thereby inhibiting oxidative stress and enhancing the function of the antioxidant defense system .

Furthermore, NF-κB, an important nuclear transcription factor, is responsible for the control of genes encoding

inflammation and nociception-related mediators . Upregulation of NF-κB in the DRG neurons of diabetic rats has

been proven, and its inhibition significantly reduces nociceptive responses . It reported that diosgenin

downregulated the NF-κB p65/p50 signaling pathway in the LPS-induced lung injury model . However, based on

the available reports, there is no specific experimental research regarding whether diosgenin exerts its analgesic

effect in diabetes-induced neuropathic pain by regulating NF-κB, and related research needs to be further

developed. Nerve growth factor (NGF), as a neurotrophic factor, is a protein factor that plays a vital role in the

maintenance of the growth, development, and function of sympathetic and sensory neurons. It stimulates the axon

growth, maintains the axon size, prevents the postinjury death of mature neurons, and regulates various functions

of the nervous system, including synaptic plasticity and neurotransmission . In diabetic neuropathy, the

function of NGF is impaired and the expression of NGF-related genes is modified, which are important factors in

the progress of diabetic neuropathic pain. A study conducted by Tong Ho KANG et al. revealed that diosgenin

upregulated the level of NGF in the sciatic nerve of diabetic rats. The comparable effects also reported that

diosgenin increased the neurite outgrowth of PC12 cells, enhanced the sciatic nerve conduction velocity of diabetic

mice by inducing NGF, reduced myelin disturbance, increased the area of myelinated axons, and improved the

signal transmission of damaged axons, thereby alleviating diabetic neuropathic pain .

In addition to the diabetic neuropathy model, the role of diosgenin in the treatment of neuropathic pain has also

been reported in the CCI rat model. In 2017, Wei-Xin Zhao et al. performed an in vivo study, and the results

demonstrated that diosgenin could upregulate CCI-reduced mechanical withdrawal threshold and thermal

withdrawal latency. This was due to the fact that diosgenin not only inhibited CCI-induced elevation of

proinflammatory cytokines TNF-α, IL-1β and IL-2, but also suppressed oxidative stress in the spinal cord.

Moreover, diosgenin remarkably restrained the expression of p-p38 MAPK and NF-κB in the spinal cord and eased

neuropathic pain in CCI rats by inhibiting the activation of p38 MAPK and NF-κB signaling pathways . In other

research , sciatic-crushed-nerve injury in rats decreased the sciatic function index, which was widely used to

evaluate functional gait , increased the c-Fos expression in the ventrolateral periaqueductal gray and
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paraventricular nucleus, restrained recovery of locomotor function caused by the overexpression of BDNF, and

aggrandized expressions of COX-2 and iNOS that responded to inflammation. Fortunately, diosgenin was able to

significantly improve the above pathological states, and exploited potential abilities in pain control and functional

recovery after peripheral nerve injury.

5. Saponin-Rich Extracts of O. sanctum

In addition to the analgesic effects of the above four plant saponins that have been identified with clear structures,

saponin-rich extracts of O. sanctum have also been found with similar effects. O. sanctum is the aerial part of

Ocimum basilicum, a plant of the Labiatae family. Modern pharmacological studies have illustrated that the

chemical composition of O. sanctum is complex and the types are diverse, including volatile oils, flavonoids and

their glycosides, coumarins, phenylpropanoids, and fatty acids, mainly volatile oils and flavonoids and their

glycosides . In addition, a variety of saponins have been isolated from the alcoholic extract of O. sanctum ,

the most important of which are pentacyclic triterpenoid saponins that are dominated by ursolic and oleanolic acids

, and have a wide range of pharmacological effects.

Oxidative stress  and alterations in calcium homeostasis  are thought to be closely associated with

neuropathic pain. During neurological disorders, dysfunction of the intracellular calcium regulatory system

produces oxidative stress , and increases in free radicals lead to neuronal degeneration and apoptosis. On the

other hand, metabolic abnormalities , formation of protein aggregates , and changes in membrane

permeability  caused by oxidative stress all increase calcium levels, and they act together to promote the

deterioration of neuropathic pain. O. sanctum has a good antioxidant effect , protects against free radical

damage , and is able to reduce calcium levels . O. sanctum is used as a neurotonic in parts of India for the

relief of headache, joint pain, and muscle pain. In the experiments conducted by Muthuraman et al., the

administration of O. sanctum attenuated sciatic nerve transection-induced peripheral neuropathy and motor in-co-

ordination, attenuated the amputation-induced reduction in thiobarbituric acid reactive species, total calcium, and

glutathione levels in a dose-dependent manner . It suggested that the analgesic effect of O. sanctum might be

related to its antioxidation and reduction of calcium levels. Additionally, in other studies, treatment with O.

sanctum and its saponin-rich fraction reduced neuropathic pain caused by chronic constrictive injury and

chemotherapeutic agent vincristine, associated with its effects on the oxidative stress and calcium levels .

Based on the above findings, it can be observed that the downregulation of calcium levels by O.

sanctum administration may be due to a direct effect on or secondary to a decrease in oxidative stress. Then, it

produces an antinociceptive or antiapoptotic effect on neurons. It has been reported that Saponins have

antioxidant  and calcium lowering effects . Thus, the antinociceptive effect of O. sanctum saponins may be

constructed through direct or indirect reduction of calcium levels.

There is also evidence that O. sanctum leaves and seeds reduce uric acid levels in rabbits , and elevated uric

acid levels are associated with gouty arthritis and other joint inflammation . The ethanolic extract of O.

sanctum can be antinociceptive, and involves the interaction of neurotransmitter systems such as opioid receptors
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and norepinephrine . These studies support the traditional use of O. sanctum for the treatment of inflammation

and pain, without excluding the effects of other active ingredients such as flavonoids and phenols.
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