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The microgrids (MG) is a single controllable local power network with distributed energy sources (solar Photovoltaics

(PV), wind energy, diesel generator, fuel cell, wave energy, etc.), ESS, controllable distributed loads (households,

commercial, industrial, etc.), and advanced energy management systems (EMSs). It can be operated alone or in

connection with the utility grid. 
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1. Introduction

Many studies have been conducted based on the system’s topologies, architectures, and operating modes . For

instance, the stochastic character of installed RESs can be controlled and optimized by a dependable power supply to

customers while maintaining appropriate operating conditions for the storage system, electricity bill, and occupancies.

Suggested energy management systems (EMS) optimization mechanisms are shown in Figure 1. 

Figure 1. Control and optimization approach of EMS.

2. Objective Functions and Constraints

The deployment of EMS optimization techniques outlines the primary target functions, including power quality,

dependability, pollution, and costs . The fundamental goal of utilizing economic objective functions, for example, is

to reduce the price of power. For cost reduction in  microgrids (MGs), many formulations have been investigated. For

example, the cost minimization problem was framed as a dynamic economic load dispatch problem . Jafari et al. 

suggested an electrical market approach for improving the dependability of islanded multi-MG networks. A techno-

economic goal function was used to account for the MG owners’ profit while enhancing the system’s reliability. For the

probabilistic modeling of renewable energy resources (RER) and loads, distribution functions were employed, and an

electrical market strategy was developed to increase the profit of the MG owners.

However, power quality, particularly power loss, continues to be a significant concern for system dependability. Murty et al.

, who examined a multi-objective EM in a MG system, enhanced a helpful literature study for multi-objective EM.

Techno-economic analysis and energy dispatch were given for independent and grid-connected MG infrastructure with

hybrid renewable energy resources (RER) and storage devices. Following the definition of the system’s restrictions and

goal functions, appropriate optimization methods are needed to guarantee power flows between the installed RER/storage

and the MGs and between the MGs and the utility grid. The remainder of this section is devoted to a review of critical

approaches found in the literature. The energy management system is a computerized system comprised of a software
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platform that provides essential support for the effective generation and transmission of electrical energy . This platform

also ensures adequate security of the energy supply with minimal cost.

3. Classical Methods

The classical approaches mainly concentrate on optimizing the energy resources and transmission with the mother grid.

Still, a lot of work is needed to focus on the battery depth of discharge, greenhouse gas emissions, the privacy of

customers, and system reliability. Two well-known classical solution methods of the EMS optimization approaches are (a)

linear and nonlinear programming methods and (b) dynamic programming and rule-based methods. Several researchers

used these strategies to solve the EMS control approaches. For example, Sukumar et al.  presented an EMS

combining continuous run mode, power-sharing mode, and on/off mode. While the constant run and power-sharing modes

were solved using the linear programming optimization method, the on/off mode was solved using the mixed-integer linear

programming method (MILP). In most linear programming approaches, the constraints and objective functions are linear

functions with whole-valued and real-valued choice variables. This methodology is frequently used for system analysis

and optimization because it is a versatile and powerful tool for tackling big and complicated issues, such as distributed

generating and MG systems. Vergara et al.  used a non-linear programming method to minimize the cost of a

residential three-phase MG. The initial development of the non-linear model was then converted into the MILP. The results

showed that the converted method experienced less error and computational time than the nonlinear three-phase optimal

power flow formulation. Heymann et al.  presented a dynamic programming optimization method. The comparative

results showed that this method was more effective in operational cost and computation time than the classical non-linear

and MILP methods. Wang et al.  presented a Lagrange-programming neural networks (LPNN) approach for the efficient

control and administration of MG systems, with the primary goal of lowering the total cost of the MG. This study divided

the load into four categories: controlled load, thermal load, price-sensitive load, and critical load, with variable neurons

and Lagrange neurons coupled to provide optimal MG operation scheduling.

More complicated problems that can be discretized and sequenced are solved using dynamic programming approaches.

The investigated issues are generally divided into subproblems that are addressed optimally, and the acquired answers

are then overlaid to produce an optimum solution for the original problem . A rule-based solution approach is utilized for

grid-connected and islanded modes of the MG . As a result, rule-based approaches are commonly used to implement

the EM system, since they do not require any future data profiles to decide, making them more suited to real-time

applications. Bukar et al. , for instance, provided a rule-based EMS in which a rule-based algorithm was utilized to

implement RER use priority and control the power flow of the suggested MG components. A nature-inspired optimization

method was employed to optimize the MG system’s operations with respect to long-term capacity planning. The proposed

objective function’s primary purpose was to reduce the cost of energy in MG systems and the chance of power supply

failure. Rule-based techniques for controlling and optimizing energy flow in MG systems have been presented in other

papers. Merabet et al.  devised a control method to ensure power compatibility with the EMS for various resources in

the MG. The hybrid system in the MG was experimentally validated using a real-time control system. The findings

indicated that the suggested technique kept the MG subsystems running smoothly under various power-generating and

consumption situations. Luu et al.  investigated a method for constructing the optimal EM for a MG-connected system

that considered the cost of energy trading with the main grid, as well as the cost of battery aging. The authors employed a

dynamic programming technique to reduce the system’s cash flow while optimizing the power supply from the main grid.

Unlike traditional techniques, dynamic programming algorithms may be thought of as mathematical optimization methods

that can break down a complex issue into smaller sub-problems that can then be addressed recursively. They can make

the best judgments. However, they come at a high cost in processing, making them challenging to implement in

embedded devices. Table 1 demonstrates the review of classical techniques for the microgrid EMS in recently published

articles.

Table 1. Review of some recent literature on classical techniques for microgrid energy management.

Ref. Method Contributions Application Key Findings

Moazeni and
Khazaei MILP Minimizing the daily cost of energy

Water-energy
microgrid
system

Water sector energy demand
was decreased by maintaining a
cleaner supply to the energy
sector

Vitale et al. Dynamic
programming

Development of a fast reduced-order
sub-model

Islanded and
grid-tied
microgrids

Achieved reduced payback
period through the proper
capacity exploration
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Ref. Method Contributions Application Key Findings

Pedro et al. MINLP
Modeled an unbalanced three-phase
electrical distribution system with
droop control

Islanded
microgrids

Reduced average maintenance
load and cost curtailments

Balderrama
et al. 

Linear
programming

Identified an open-source modeling
framework to bridge the gap
between field practices and two-
stage stochastic modeling
approaches

Community
microgrid

Recommended robust and
optimal system configurations
with a minimal impact on the
final costs for the community

Iqbal et al. Non-linear
programming

Modelling of a peer-to-peer energy-
sharing strategy

Community
microgrid

Minimized overall device errors
(~25%) compared to traditional
sharing mechanisms

Liu et al. Stochastic
programming

Development of a multi-period
investment planning scheme

Islanded
microgrid

Achieved better economic and
synergetic performances
compared to the traditional
model.

Restrepo et
al. 

Optimization-
and rule-based
EMS

Development, implementation, and
commissioning of different EMS
strategies for testbed microgrid

Canadian
Renewable
Energy
Laboratory

Yielded better overall
performance over the rule-
based EMS using similar
communication links while
maintaining stability.

Bukar et al. Rule-based
Development of a rule-based energy
management scheme based on
queuing theory.

Long-term
capacity
planning for
MG

The optimization problem
minimizes energy costs and
maximizes system reliability.

Almada et al. Rule-based

Management and control of a
microgrid with distributed energy
resources under standalone
operation, grid connection, and
transition between the
aforementioned operating modes

AC microgrid
MG control and management
techniques work well under all
operating conditions

Rippia et al. Rule-based

Enhancing the energy management
of a grid-connected microgrid
comprised of renewable energy
sources, loads, and ESS

Grid-
connected
microgrids

The rule-based method
performed better than the MILP
while ensuring nearly no
performance loss by offering a
sizable decrease in computation
time

4. Heuristic and Metaheuristic Approaches

Heuristic and metaheuristic methods are frequently used in the literature to solve complex and non-differentiable

optimization problems from various engineering fields, including transportation, communication, power systems, product

distribution, and microgrid energy management . Among many approaches, the genetic algorithm and particle swarm

optimization methods are two popular meta-heuristic methods to solve the EMS of the MG, due to their parallel

computational ability. Chalise et al.  formulated a multi-objective EMS concentrating on a remote MG’s economic load

dispatch and battery degradation cost. This work considered day-ahead scheduling using a genetic algorithm and real-

time operation using a rule-based approach. A PSO-based optimal EMS for both islanded and grid-connected modes of

the MG has been proposed in . The objective functions for the islanded and grid-connected modes were to minimize

the operational and maintenance costs and maximize the energy trading profit with the primary grid. The results show that

this technique provided a better solution than the genetic algorithm in terms of the global optimum solution and the time of

computation. Apart from these two well-known solution approaches, the genetic algorithm and PSO methods of the EMS,

there are other approaches, such as differential evolution , gray wolf optimization (GWO) , ant colony optimization

(ACO) , etc.

Paperi et al.  presented a heuristic technique for determining the best functioning and EMS of the MG system. The

research topic was framed as a single-objective optimization problem, only focusing on cost reduction. Khan et al. 

presented a metaheuristic-based system by combining the Harmony search algorithm with improved differential evolution.

During peak periods, several knapsacks were utilized to ensure that power consumption was below a predetermined

threshold value—the suggested system beat existing metaheuristic approaches in terms of cost and peak-to-average

ratio. Ref.  suggested a genetic algorithm-based optimum EMS system for a grid-connected MG system that

considered electricity price, power usage, and RER generation uncertainty. The multi-period gravitational search method

solves a deterministic EM issue . Aghajani et al.  employed a multi-objective PSO method while addressing the EMS
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of the MG system. Wei et al.  created a standalone modular microgrid model to shorten the feasible economic dispatch

regions, formulate an optimization model, and define optimum microgrid system operating strategies. An improved genetic

algorithm was proposed to investigate this problem. The employed strategy was capable of solving the EMS problems

with many constraints and produced a high-quality solution. Prasant and Joseph  developed a methodology for

evaluating the techno-economic and environmental efficiency of supplying uninterrupted electricity to a microgrid

composed of seven components—wind turbines, solar PV, lead-acid batteries, fuel cells, biodiesel generators,

electrolyzes, and small-scale hydrogen tanks—in Tucson, Lubbock, and Dickinson, TX, USA. They measured the

configurations with the lowest levelized cost of energy (LCOE) using the genetic algorithm. Table 2 summarizes the meta-

heuristic methods for the microgrid EMS. It was evident from the presented analysis that the various meta-heuristic

approaches showed satisfactory performances in achieving optimal solutions (minimal costs or maximum profits) while

solving microgrid EMS problems with various constraints and uncertainties. Besides, in most of the cases the authors

reported better or competitive efficacy for their employed algorithms compared to others. However, it is challenging to

come up with solid conclusions about the superiority of any specific algorithm, as they all should provide similar results

ideally due to their stochastic nature. Besides, their efficacy also depends on the proper selection of the hyper-

parameters.

Table 2. Recent literature on meta-heuristic techniques for microgrid energy management.

Ref. Algorithm Contributions Application Key Findings

Quazi et al. NSWOA
Hybridization of WOA with a
non-dominated sorting
technique

Islanded
microgrid

Achieved optimal solutions with
lower computational expenses
compared to other reported
algorithms

Leonori et
al. GA

Investigation of strategies to
synthesize rule-based fuzzy
inference systems

Demand
response
services

Reduced the system complexity
and maximized profit generation by
10% compared to the referenced
solution

Hussein et
al. SFOA

Formulation of the multi-
objective problem for
controller parameter tuning

Inverter based
microgrid

Enhancement of system
performance and flexibility
compared to particle swarm
optimization

Almadhor et
al. BAPSO

Determination of optimal
locations and sizes for the
solar generation systems

PV-based
microgrid

Reduced transmission power loss
and achieved faster convergence
with less computational burden

Singh and
Gope GWO

Optimization problem
formulation for load frequency
control

Two-area multi-
microgrid

Achieved superior performance
with the GWO-tuned controller
over the cuckoo search algorithm-
tuned controller

Roslan et al. LSA Development of an optimal
power scheduling strategy

Scheduling
controller

Savings of 62.5% in overall costs
and 61.98% in carbon dioxide
emission reduction

Shafiullah et
al. GWO

Formulation of the multi-
objective problem considering
ESS degradation cost

Community
microgrid

Generation of quality solutions
with a competitive computational
effort

Suman et al. PSO-GWO Formulation of the optimal
planning problem Rural microgrid

Obtained a reduced average cost
of electricity by meeting a good
portion of the load demand

Soham and
Kamal CE-DE

Optimization problem
formulation for minimization of
running costs and reduction of
pollution.

Benchmarked
microgrids

Avoided pre-mature convergence
and generated competitive
solutions

Perol et al. Evolutionary
algorithms

Development of control
strategies for power and
energy management

Low voltage
microgrids

Reduced operation costs and
energy losses, thus improving
overall efficiency

Hossain et
al. Modified PSO

Proposed an optimal battery
control strategy for real-time
management

Grid-tied
microgrids

Achieved a 12% reduction in
operation costs for a time horizon
of 96 h

Kavitha et
al. MPO

Solved supply-demand
problems to minimize
production costs

Islanded and
grid-tied
microgrids

Generated around 8% higher profit
with better optimization ability and
faster convergence
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Ref. Algorithm Contributions Application Key Findings

Tomin et al. Monte-Carlo tree
search algorithm

Developed a unified approach
for optimal energy and
benefits management

Community
microgrids

Improved supplied energy quality
and reduced the levelized cost of
energy index from 20% to 40%

5. Artificial Intelligence Methods

Artificial neural networks are an example of a method that is created artificially. They are stochastic approaches that may

be utilized to address optimization issues for systems that contain random variables. The fluctuating nature of RER in MG

systems is caused by meteorological conditions, which impact electricity generation. Solanki et al.  presented a

mathematical approach for intelligent load control in a stand-alone MG system. Neural networks were utilized to simulate

the loads examined, and a predictive control was applied to manage the energy, based on expected load fluctuation. The

EMS based on artificial intelligence primarily concentrated on Fuzzy logic and neural networks , as well as multi-agent

systems. A fuzzy logic-based EMS with a battery and hydrogen energy storage system for a microgrid has been proposed

. The authors claimed that this solution could respond well to required load demands and meet the established

technical and economic criteria. Wang et al.  formulated a neural network-based EMS for the MG. The objective

function is to reduce the overall fuel, operation, maintenance, and emission cost of the generation units. Ghorbani et al.

 proposed a multi-agent-based EMS approach, where consumers, storage units, generation units, and the grid are

considered agents for a grid-connected MG. In this work, the objective function was to reduce power imbalance costs.

Results showed that the time required to take the decision was better for the decentralized approach than that of the

centralized approach. Among the other known artificial intelligence solution techniques, game theory, the Markov decision

process, and theadaptive intelligence technique are remarkable.

Neural networks are primarily used to regulate, optimize, and detect system characteristics in online and offline

applications. Given their capacity to address the system’s stability through self-learning and prediction skills, neural

networks, unlike prior techniques, can handle issues with nonlinear data in large-scale MG systems . Despite the

solutions’ efficacy, intelligent energy management in smart MG systems still needs real-time and predictive control

methodologies. Table 3 illustrates various artificial intelligence methods related to microgrid EMSs.

Table 3. Review of artificial intelligence methods related to microgrid energy management.

Ref. Technique Contributions Application Key Findings

Dong et al. Fuzzy logic

Developed day-ahead fuzzy rules
for real-time energy management
under various operational
uncertainty

Multi-energy
microgrid

Exhibited superior performance
compared to the online rule-
based and meta-heuristic
optimization-based offline
scheduling schemes

Zehra et el. Fuzzy logic
Proposed the control strategies
for renewable energy resources
and battery storage systems

DC microgrid
Achieved better controllability
compared to the sliding and
integral sliding mode controllers

Singh and
Lather HBSANN

Addressed demand-generation
disparity for effective power-
sharing between various ESS.

Low-voltage
DC microgrid

Exhibited lower voltage
overshoot and settling time
compared to conventional
strategy

Nakabi and
Toivanen 

Reinforcement
learning

Outlined various flexible
resources for coordination with
priority

Microgrid
Exhibited the highest model
performance and convergence to
near-optimal policies

Tan and Chen NN
Designed a multi-objective
optimization model for multiple
microgrid systems

Multiple
microgrids

Achieved a 36.86% lower
forecasting error; obtained better
pareto solutions and faster
convergence

Tayab et al. HHO-FNN Developed a hybrid approach for
short-term load forecasting

Queensland
electric market

Reduced the mean absolute
percentage error ranging from
33.30% to 60.76%

Priyadarshini
et al. EE-RRVFLN

Proposed a maximum power
point tracking model for multiple
PV-integrated MG under partial
shading conditions and load
uncertainty.

PV-BESS
integrated
microgrid

Established the superiority of the
employed approach over the
conventional and random vector
functional link neural networks
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6. Other Methods

Proactive control is one of the most intriguing EMS methods. This technique is based on a mixed-integer optimal control

issue, which can be expressed as a mixed-integer nonlinear programming problem . According to the literature, the

notion of proactive control for EM in MG systems is seldom applied. For control-based prediction judgments, the notion is

particularly appealing. Proactive control can be enhanced in future investigations for EM in MG systems, thanks to the

advancement of information and communication technologies, particularly microcontrollers. In addition, the approach can

improve the system’s performance in existing system disruptions. Amirioun et al.  provided a MG proactive control

method for dealing with the adverse effects of severe windstorms. When the anticipated windstorm alerts arrived, the

method discovered a conservative MG schedule with the fewest susceptible branches operating while the whole load was

serviced. The cautious timetable guaranteed that the MG functioned normally before the windstorm, while decreasing the

MG’s susceptibility when the event arrived. This technique benefited from generation rescheduling, network

reconfiguration, parameter tuning of the droop-controlled units, and conservation voltage regulation. Panteli et al. 

talked about unified resilience evaluation, the operational enhancement method, and a technique for evaluating the impact

of severe weather conditions. Another study by Amin et al.  combined BESS and PV systems under a hierarchical

transactive EM method to lower customer power costs. A cost-benefit analysis technique that integrated PV units with

battery storage systems was created for proactive residences. The control algorithm managed the battery’s

charge/discharge cycle based on a cost-benefit analysis of real-time energy rates and battery costs, providing users with

a precise estimate of their investment returns and annual savings. When a proactive system is handled utilizing predictive

techniques, the performance of this method may be improved. Reactive Feedback Control and Model Predictive Control

were compared with respect to energy used, energy error, and management effort for a specific data center by Rahmani

et al. . The research suggested a data center model-based feedback control method to improve service quality, energy

consumption, and managerial effort. Moreover, the combination of different approaches mentioned earlier was also used

in a few cases for energy management in microgrid systems .
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