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The advances in remote sensing technologies, hence the fast-growing volume of timely data available at the global
scale, offer new opportunities for a variety of applications. Deep learning being significantly successful in dealing
with Big Data, is a great candidate for exploiting the potentials of such complex massive data. However, with
remote sensing, there are some challenges related to the ground-truth, resolution, and the nature of data that

require further efforts and adaptions of deep learning techniques.
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| 1. Introduction

The advances in remote sensing technologies and the resulting significant improvements in the spatial, spectral
and temporal resolution of remotely sensed data, together with the extraordinary developments in Information and
Communication Technologies (ICT) in terms of data storage, transmission, integration, and management
capacities, are dramatically changing the way we observe the Earth. Such developments have increased the
availability of data and led to a huge unprecedented source of information that allows us to have a more
comprehensive picture of the state of our planet. Such a unique and global big set of data offers entirely new

opportunities for a variety of applications that come with new challenges for scientists(Ll.

The primary application of remote sensing data is to observe the Earth and one of the major concerns in Earth
observation is the monitoring of the land cover changes. Detrimental changes in land use and land cover are the
leading contributors to terrestrial biodiversity losses [, harms to ecosystem B!, and dramatic climate changes 4.
The proximate sources of change in land covers are human activities that make use of, and hence change or
maintain, the attributes of land cover Bl. Monitoring the changes in land cover is highly valuable in designing and
managing better regulations to prevent or compensate the damages derived from such activities. Monitoring the
gradual—but alerting—changes in the land cover helps in predicting and avoiding natural disasters and hazardous
events [, but such monitoring is very expensive and labour-intensive, and it is mostly limited to the first-world
countries. The availability of high-resolution remote sensing data in a continuous temporal basis can be
significantly effective to automatically extract on-Earth objects and land covers, map them and monitor their

changes.
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Nonetheless, exploiting the great potentials of remote sensing data holds several critical challenges. The massive
volume of raw remote sensing data comes with the so-called four challenges of Big Data referred to as “four Vs”:
Volume, Variety, Velocity, and Veracity 1. To mine and extract meaningful information from such data in an efficient
way and to manage its volume, special tools and methods are required. In the last decade, Deep Learning
algorithms have shown promising performance in analysing big sets of data, by performing complex abstractions
over data through a hierarchical learning process. However, despite the massive success of deep learning in
analysing conventional data types (e.g., grey-scale and coloured image, audio, video, and text), remote sensing

data is yet a new challenge due to its unique characteristics.

According to &, the unique characteristics of remote sensing data come from the fact that such data are geodetic
measurements with quality controls that are completely dependent on the sensors adequacy, they are geo-located,
time variable and usually multi-modal, i.e., captured jointly by different sensors with different contents. These
characteristics in nature raise new challenges on how to deal with the data that comes with a variety of impacting
variables and may require prior knowledge about how it has been acquired. In addition, despite the fast-growing
data volume on a global scale that contains plenty of metadata, it is lacking adequate annotations for direct use of
supervised machine learning-based approaches. Therefore, to effectively employ machine learning—and indeed
deep learning—techniques on such data, additional efforts are needed. Moreover, in many cases remote sensing is
to retrieve geo-physical and geo-chemical quantities rather than land cover classification and object detection, for
which & indicate that expert-free use of deep learning techniques is still getting questioned. Further challenges
include limited resolution, high dimensionality, redundancy within data, atmospheric and acquisition noise,
calibration of spectral bands, and many other source-specific issues. Answering to how deep learning would be
advantageous and effective to tackle these challenges requires a deeper look into the current state-of-the-art to
understand how studies have customised and adapted these techniques to make them fit into the remote sensing
context. A comprehensive overview on the state-of-the-art of deep learning used for remote sensing data is
provided by [&l.

| 2. Remote Sensing Data

Remotely sensed images are usually captured by optical, thermal, or Synthetic Aperture Radar (SAR) imaging
systems. The optical sensor is sensitive to a spectrum range from visible to mid-infrared of the radiations emitted
from the Earth’s surface, and it produces Panchromatic, Multispectral or Hyperspectral images. Thermal imaging
sensors, capturing the thermal radiations from the Earth surface, are instead sensitive to the range of mid to long-
wave infrared wavelengths. Unlike thermal and optical sensors that operate passively, the SAR sensor is an active
microwave instrument that illuminates the ground scattering microwave radiations and captures the reflected
waves from the Earth’s surface.

The panchromatic sensor is a monospectral channel detector that captures the radiations within a wide range of
wavelength in one channel, while multispectral and hyperspectral sensors collect the data in multiple channels.
Therefore, unlike the panchromatic products that are mono-layer 2D images, hyperspectral and multispectral

images share a similar 3D structure with layers of images, each representing the radiations within a spectral band.

https://encyclopedia.pub/entry/1704 2/8



Remote Sensing and Deep Learning | Encyclopedia.pub

Despite the similarity in the 3D structure, the main difference between multispectral and hyperspectral images is in
the number of spectral bands. Commonly, images with more than 2 and up to 13 spectral bands are called
multispectral, while the images with more spectral bands are called hyperspectral. Nevertheless, the main
difference is that the hyperspectral acquisition of spectrum for each image pixel is contiguous, while for

multispectral it is discrete (Figure 1—Left).
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Figure 1. Left: The wavelength acquisition of spectral bands for multispectral (below) and hyperspectral sampling

(above) (taken from ). Right: a schema of multispectral and hyperspectral images in the spatial-spectral domain.

Having hundreds of narrow and contiguous spectral bands, hyperspectral images (HSI) come with specific
challenges intrinsic to their nature that do not exist with multispectral (MSI) and panchromatic images. These
challenges include: (1) High-dimensionality of HSI, (2) different types of noise for each band, (3) uncertainty of
observed source, and (4) non-linear relations between the captured spectral information 2%, The latter is explained
to result from the scatterings of surrounding objects during the acquisition process, the different atmospheric and

geometric distortions, and the intra-class variability of similar objects.

Despite the mentioned differences in the nature of MSI and HSI, both share a similar 3D cubic-shape structure
(Figure 3—Right) and are mostly used for similar purposes. Indeed, the idea behind LULC
classification/segmentation relies on the morphological characteristics and material differences of on-ground
regions and items, which are respectively retrievable from spatial and spectral information available in both MSI
and HSI. Therefore, unlike 1 that review methodologies designed for spectral-spatial information fusion for only
hyperspectral image classifications, in this review we consider both data types as used in the literature for land
cover classifications using deep learning techniques focusing on the spectral and/or spatial characteristics of land

cover correlated pixels.

3. Machine Learning for Land Use and Land Cover
Classification of Remote Sensing Data

Conventional supervised Land Use and Land Cover (LULC) classification machine learning pipelines usually
include four major steps: (1) pre-processing, (2) feature engineering, (3) classifier training and (4) post-processing

(Figure 2—top). Each of these stages may be composed of a set of sub-tasks. A good break down of the whole
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process into its sub-tasks, with an explicit statement of their assumptions, helps to define standalone sub-problems
that can be studied independently and have solutions or models that can be incorporated into a LULC pipeline to
accomplish the targeted classification/segmentation. Over the last years, with the growing popularity of deep
learning as a very powerful tool in solving different types of Al problems, we are witnessing a surge in demand of

research to employ deep learning techniques in tackling these sub-problems.
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Figure 2. The machine learning classification frameworks. The upper one shows the common steps of the
conventional approaches, and the lower one shows the modern end-to-end structure. In the end-to-end deep

learning structure, the feature engineering is replaced with feature learning as a part of the classifier training phase.

With the increased computational capacity in the new generation of processors, over the last decade, the end-to-
end deep learning approach received lots of attention from the scientists. The end-to-end learning pipeline—taking
the source data as the input-end and the classified map as the output-end—is a modern form of re-designing the
process workflow, that is taking advantage of deep learning techniques in solving complex problems. Within the
end-to-end deep learning structure, the feature engineering is replaced by feature learning as a part of the
classifier training phase (Figure 2-bottom). In this case, instead of defining the inner steps of the feature
engineering phase, the end-to-end architecture generalises the model generation involving feature learning as part
of it. Such improved capacity of deep learning has promoted its application on many research works where well-
known, off-the-shelf, end-to-end models are directly applied to new data, such as remote sensing. However, there
are some open-problems, complexities, and efficiency issues in the end-to-end use of deep learning in LULC
classification, that encourages us to adopt a new approach for investigation of the state-of-the-art in deep learning

for LULC classification.

3.1. Deep learning architecture

Deep learning is a group of machine learning techniques that has the capacity to learn a hierarchy of features or
representations (the observations or characteristics on which a model is built 12)). Deep learning models are
composed of multiple layers such that each layer computes a new data representation from the representation in
the previous layers of artificial neurons creating a hierarchy of data abstractions [£2l. Convolutional Neural Network

(CNNs) are a group of deep learning techniques that are composed of convolution and pooling layers that are
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usually concluded by a fully connected neural network layer and a proper activation function. CNNs are
feedforward neural networks (artificial neural networks wherein no cycle is formed by the connections between its
nodes/neurons) that are designed to process the data types composed of multiple arrays (e.g., images, which have
layers of 2D-array of pixels) 3. Each CNN, as shown in Figure 3, contains multiple stages of convolution and

pooling, creating a hierarchy of dependant feature maps.
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Figure 3. An example of convolutional neural network with two layers of convolution and two layers of pooling, for
(a) patch level classification, (b) pixel level classification and (¢) an image reconstructive model. The resulting

cubes after each layer of convolution and pooling are called feature maps.

At each layer of convolution, the feature maps are computed as the weighted sum of the previous layer of feature
patches, using a filter with a stack of fixed-size kernels, and then pass the result into non-linearity, using an
activation function (e.g., ReLU). In such a way, they detect local correlations (fitted in the kernel size), while
keeping invariance to the location within the input data array. The pooling layer is used to reduce the dimension of
the resulted feature map by calculating the maximum or the average of neighbouring units to create invariance to
scaling, small shifts, and distortions. Eventually, the stages of convolution and pooling layers are concluded by a
fully connected neural network and an activation function, which are in charge of the classification task within the

network.

The process of training a CNN model, using a set of training samples, finds optimised values for the model
learnable parameters, by reducing the cost calculated via a loss function (e.g., Minimum Square Error, Cross
Entropy, or Hinge loss). In CNNSs, learnable parameters are the weights associated with both convolution layer

filters and connections between the neurons in the fully connected neural network. Therefore, the aim of the
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optimiser (e.g., Stochastic Gradient Descent, RMSprop, or Adam) is not only to train the classifier, but it is also

responsible to learn data features by optimizing convolution layers parameters.
3.2. End-to-end deep learning challenges

The use of deep learning as an end-to-end approach comes with some complexities and inefficiencies in the
processing time. One insight is based on the Wolpert's “No Free Lunch” (NFL) theorem 14l that refutes the idea of
a generalised single machine learning algorithm for all types of problems and data, and underlines the need to
check all assumptions and if they are satisfied in our particular problem. Although end-to-end deep learning models
have shown a great capacity to generalise well in practice, it is theoretically unclear and is still getting questioned
(15J16]I17I18]  Another issue is that effective use of end-to-end approaches on remote sensing data requires a
massive amount of training samples that well cover the output-end’s class distributions. However, due to difficulties
in the collection of LULC ground-truth, it is subjected to the issue of the limited number of training samples.
Moreover, even if we could find an effective solution to increase the size of training datasets, for example, via
unsupervised or semi-supervised learning, the issue of processing efficiency remains. The complexities in the
nature of remote sensing data, such as multi-modality, resolution, high-dimensionality, redundancy and noise in
data make it even more complex and challenging to model an end-to-end workflow for the LULC classification of
remote sensing data. The more complex the model architecture becomes, the more difficult the learning problem
gets and it leads to more difficult optimisation problems and dramatically decreases the computational efficiency.
Therefore, despite the substantial attempts in applying end-to-end deep learning in LULC classification problems,
the challenges of such structure open up the floor for alternative approaches and make the former four-stage

machine learning pipeline structure a debatable candidate.

3.3. Four-stage machine learning

Defining the process according to a conventional workflow format makes it easier to shape, customise, and adapt
the system to meet the targeted needs and, at the same time, it reduces the model optimisation complexity and
computational time of the learning process. Breaking down the assumptions, needs, and targets into a set of sub-
tasks, the empirical process of choosing an effective algorithm for each sub-task becomes easier and more
diagnosable. Indeed, we can employ deep learning techniques more effectively and transparently to accomplish
single sub-tasks of a classical machine learning pipeline with smaller problems to solve. All the solutions and
trained models for each sub-task can be then employed in parallel streams or in sequential order at different steps

of the conventional workflow.

| 4. Conclusion

The potentials and challenges of employing deep learning on remote sensing data is shortly addressed and the
need for a deeper understating of machine learning as a complex problem is underlined. A complete study that
discusses and reviews the state-of-the-art in the field is provided in 22, This study presents also the promising

areas in which the implementation of deep learning can be of high potential in the future.
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