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Fungal diseases are widespread among insects and play a crucial role in naturally regulating insect populations.

Mosquitoes, known as vectors for numerous infectious diseases, pose a significant threat to human health.

Entomopathogenic fungi (EPF) have emerged as highly promising alternative agents to chemical mosquitocides for

controlling mosquitoes at all stages of their life cycle due to their unique infection pathway through direct contact

with the insect’s cuticle.

mosquito  entomopathogenic fungi  biocontrol  pathogenicity

1. Introduction

Mosquitoes pose a significant global threat as they serve as vectors for transmitting various infectious diseases,

such as malaria, yellow fever, dengue, chikungunya, West Nile fever, and Zika fever . According to the data

provided by the World Health Organization, malaria presents a substantial risk to approximately half of the global

population, with an estimated annual infection rate of 200–300 million individuals and an alarming mortality rate of

almost one million per year .

So far, chemical insecticides have served as the primary method for controlling and eliminating mosquitoes .

Nevertheless, the excessive use of synthetic insecticides has resulted in mosquito resistance and poses significant

risks to the environment and non-target organisms, including humans . As a result, there has been an increasing

focus on exploring chemical-free biocontrol approaches to address these challenges. These approaches include

the use of bacteria, viruses, and fungi as more comprehensive vector control interventions .

Bacteria and viruses can play a role in the digestive tract when ingested by insects. However, their effectiveness in

controlling adult mosquitoes with piercing–sucking mouthparts is limited . Entomopathogenic fungi (EPF), on

the other hand, can infect mosquitoes through direct contact with the mosquito’s cuticle, without the need for

ingestion, making them highly attractive as control agents. These fungi are ecologically safe and have the capacity

to target mosquitoes at all stages of their life cycle, including adults, eggs, larvae, and pupae .

Additionally, EPF have long-lasting effects on the developmental parameters of mosquitoes, such as reduced

fecundity in subsequent generations .

2. Effectiveness of Entomopathogenic Fungi in Mosquito
Control
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2.1. Effectiveness of Entomopathogenic Fungi on Different Development Stage of
Mosquito

Metarhizium and Beauveria are two main generalist entomopathogenic fungi that have been widely used in pest

control in various insect species, including agricultural pests and mosquitoes . The recent advancements in the

application of EPF in mosquito control has been extensively reviewed by Cafarchia et al., focusing on the field

application of formulations of B. bassiana and M. anisopliae and providing detailed information on these two main

fungal strains in mosquito control . Additionally, Shen et al. also provide a summary of the application of EPF on

mosquito larvae and adults . In recent years, EPF have been found to affect mosquito development and can also

effectively control mosquito at the egg and pupal stages.

2.2. Factors That Influence Spore Quality

The efficacy of fungal strains in biocontrol can vary among different mosquito species, and spore quality plays

crucial for the biocontrol effectiveness. The choice of culture media also has an impact on the virulence of fungal

conidia against Ae. aegypti larvae. Conidia produced on rice grains have demonstrated higher virulence compared

to those cultivated on artificial media such as RYA and SDA . Furthermore, the Metarhizium brunneum

blastospores exhibit higher virulence toward Ae. aegypti larvae than conidia, due to multiple routes of entry (cuticle

and gut) in water . A recent report indicates that M. anisopliae blastospores exhibit higher virulence against Ae.

aegypti adults, larvae and pupae . Supplementation of Riboflavin and NaNO  in the culture medium has

been shown to enhance protease and conidial production, leading to improved larvicidal activity against Ae. aegypti

. Additionally, mineral oil has been shown to enhance the efficacy of fungal propagules in the aquatic

environment, demonstrating its potential as an adjuvant in entomopathogenic fungi . These studies highlight the

importance of selecting the appropriate form of inoculum and cultural condition for efficacious control of disease

vectors.

3. Combination of Entomopathogenic Fungi with Other
Strategies in Mosquito Control

A singular method or intervention is often insufficient to effectively control vector-borne diseases, and therefore a

holistic and integrated approach is necessary. Integrated vector management (IVM) is a comprehensive approach

for mosquito control that combines multiple vector control methods and approaches in a coordinated manner. This

includes source reduction, as well as larvicidal and adulticidal applications to control mosquitoes at different life

stages . IVM offers several advantages by integrating multiple control strategies, resulting in effective prevention

and measures. Consequently, it is well-suited for large-scale mosquito- and insect-control efforts. EPF have

increasingly been employed for effective field control of mosquitoes, targeting eggs, larvae, pupae, and adults 

. The utilization of EPF in conjunction with other mosquito control strategies has demonstrated a synergistic

effect and have the potential to further increase the efficacy of IVM program for mosquito control.

3.1. Combined with Chemical Insecticides
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Chemical insecticides often have specific targets, making mosquitoes prone to developing resistance .

Mosquito resistance is typically associated with the induction of detoxification enzymes,, including cytochrome

P450 monooxygenases, acetylcholinesterase (AChE), glutathione S-transferase (GST), esterase (EST), acid

phosphatases (ACP), and alkaline phosphatases (ALP) . Fungal insecticides, on the other hand, can

diminish the immune defenses and reduce the activity of detoxification enzymes in mosquitoes. Studies have

shown that M. anisopliae and B. bassiana can suppress the enzymatic activities of ACP in chlorpyrifos-resistant

Cx. quinquefasciatus . Metarhizium anisopliae is compatible with diflubenzuron at lower concentrations and

combined applications have shown to enhance Cx. pipiens management . Furthermore, the combination of M.

anisopliae with the insecticide Imidacloprid (IMI) increases virulence against Ae. aegypti when ultra-low

concentrations of IMI are used . Hence, fungal mosquitocides effectively combat mosquito populations that have

developed resistance to certain chemicals or drastically reduce the consumption of chemical pesticides.

3.2. Combined with Microbial Metabolites or Microbial Organisms

Many microbial metabolites, such as avermectins, a type of neurotoxic insecticide, and Asperaculane B, which can

inhibit the acetylcholinesterase enzyme, have been extensively employed as effective biocontrol insecticides 

. Combining insect pathogenic fungi with microbial metabolites represents a promising approach to mosquito

control. The co-application of M. robertsii and avermectins lead to a synergistic effect on Ae. aegypti larvae

mortality . Avermectins can reduce the relative abundance of antagonist in mosquito gut, favoring the fungus

. Metarhizium robertsii significantly reduces the activity of detoxification enzymes, such as esterases, proteases,

and phenoloxidase in mosquitoes, disrupting the immune and detoxifying systems and promoting fungal infection

. Bacillus thuringiensis (Bt) has been extensively studied and commercially applied in pest control due to the

high pesticidal activity of Bti endotoxins . The combined application of the mosquito larvae pathogen

Leptolegnia chapmanii with Bt produce a synergistic larvicidal effect on Ae. aegypti . Additionally, many EPF

have been found to produce metabolites toxic to mosquitoes. Twelve metabolites from Penicillium toxicarium

extracts exhibited high toxicity to mosquito larvae and adults . P-orlandin, a nontoxic metabolite from A. niger,

can target mosquito FREP1, which is a critical protein for parasite infection in Anopheles gambiae and could block

malaria transmission . Several fungal cell culture filtrates have displayed mortality against mosquito . Recent

research on fungal metabolites in mosquito control is summarized in Supplementary Table S1. Consequently, the

combination of fungal pathogens with microbial metabolites or other microbes producing toxic metabolites

demonstrates a synergistic effect and reduces the reliance on chemicals in mosquito management.

3.3. Combined with Mosquito Attractants

The utilization of volatile compounds and semiochemicals that attract mosquitoes has been incorporated into

complementary vector control strategies to enhance the effectiveness of fungal mosquitocides . Numerous

volatile organic compounds (VOCs) with mosquito attractant properties have been identified and analyzed,

including natural hosts, chemical compounds, synthetic blends of compounds, and plant odors . Studies

have demonstrated that the emission of volatiles by B. bassiana can attract Anopheles stephensi mosquitoes .

Furthermore, deploying black cloths impregnated with M. anisopliae or B. bassiana in mosquito traps has shown
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significant reductions in the survival rates of female Ae. aegypti, and the inclusion of attractive lures to these traps

can further enhance their effectiveness .

Hydrogel, a substrate for a granular formulation of fungal conidia, has been shown to attract gravid females under

field conditions . Methyl benzoate, derived from plants, acts as an insect semiochemical and exhibits larvicidal

activity against mosquitoes . The combination of M. anisopliae with Schinusole essential oil has demonstrated a

synergistic effect against Ae. aegypti larvae . Yeast volatiles are known to attract many insect species .

Inactivated yeast tablets lure have shown attractiveness to both Ae. aegypti and Ae. albopictus females and have

been utilized in yeast-bait ovitraps . Supplementation of sugar to B. bassiana conidia formulation can increase

the attraction of Ae. aegypti and enhance their viability, resulting in a three-fold reduction in population .

Combining the oviposition attractant and larvicidal agents B. thuringiensis israelensis and Bacillus sphaericus in a

single formulation can result in higher larval mosquito mortality . Additionally, some bacterial or fungal secretions

act as attractants and can affect mosquito behavior, such as oviposition strategy, egg hatching, development rate,

and larval or pupa survival . For example, Bt affects the oviposition strategy of Ae. aegypti and Ae. albopictus

. A sesquiterpene alcohol, cedrol, produced by Fusarium falciforme can affect the oviposition behavior of An.

gambiae . Therefore, combining oviposition attractants with fungal biopesticides can synergistically control

mosquito adults as well as their aquatic larval offspring. The growing understanding and application of these

mosquito attractants would contribute to optimizing lure-and-kill strategies and play a crucial role in integrated

mosquito management programs.

3.4. Combined with Predators

The use of predators that feed on aquatic organisms has been demonstrated to be effective in controlling mosquito

larvae . Insects that have predatorial capacity to mosquito prey have been identified in the Orders Odonata,

Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators) . Among them,

Toxorhynchites and copepods are the two most effective predatory organisms against mosquitoes . It has been

reported that many EPF have either no or very low impact on aquatic predators . However, combined predator-

parasite treatments have shown enhanced efficacy against mosquito compared to single-agent treatments. For

example, the combination of Metarhizium with Toxorhynchites treatments drastically reduce lethal times of Ae.

aegypti mosquitos compared to individual treatments . The survival of adult An. gambiae exposed to B.

bassiana after larval pre-exposure to a predator, namely nymphs of the dragonfly Pantala favescens, has been

shown to increase the susceptibility of mosquito to fungal parasitism at the adult stage . However, A. flavus

displays a mortality rate of over 80% at dosage of 2 × 10  (two-fold-higher dosage used in larval assays) when

tested against two aquatic predators, Alpheus bouvieri and Toxorhynchites splendens, indicating that it cannot be

directly applied directly to the aquatic region .

4. Engineering Manipulation of EPF to Improve Their
Mosquitocidal Efficacy
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With the advancement of genetic engineering techniques, genetic control methods have emerged as promising

alternative strategies for enhancing the biological control capabilities of entomopathogenic fungi against mosquito

vectors of disease . Three strategies have been reported for modifying EPF.

4.1. Introducing Insecticidal Molecules into Mosquito

The insertion of insecticide expression genes into EPF can significantly enhance their mortality activity. For

example, the genetic modification of B. bassiana expressing the Bt toxin Cyt2Ba, leads to a substantial

improvement in its efficacy in killing mosquitoes . Insecticidal activity can also be enhanced by expressing

mosquito-inhibitory molecules. The B. bassiana strain expressing an Ae. aegypti trypsin-modulating oostatic factor

(TMOF), which inhibits food digestion in the guts of adult and larval mosquitoes, exhibited increased virulence

against An. gambiae compared to the wild-type strain . By using specific fungal promoters to drive the

expression of mosquito-killing genes in insect tissue, EPF can target and eliminate mosquitoes more accurately

and efficiently . The expression of ion channel blockers under the control of a hemolymph-specific promoter

Mcl1 in Metarhizium resulted in increased fungal lethality to mosquitoes at very low spore dosages, even as low as

one conidium per mosquito . In a semi-field assay conducted in Burkina Faso, an engineered Metarhizium strain

expressing an insect-specific toxin (Hybrid) exhibited enhanced fungal lethality and a prolonged mortality effect

compared to the wild-type strain, demonstrating its potential to synergistically manage insecticide-resistant

mosquitoes in an endemic malaria area .

Another approach to increase mosquito-killing efficacy is by suppressing the host immunity. Expression of host

miRNAs in B. bassiana has been shown to significantly enhance fungal virulence against insecticide-resistant

mosquitoes. Engineered fungal entomopathogen B. bassiana, that produces host immunosuppressive miRNAs,

can effectively suppress the host Toll immune response and facilitate fungal infection . This pathogen-mediated

RNAi (pmRNAi)-based approach provides an innovative strategy not only to enhance the efficacy of fungal

insecticides but also to minimize the possibility of resistance development. Another alternative strategy for

mosquito control is the combination of EPF and bacteria that express immune suppressive dsRNA. This

combination has been shown to enhance the toxicity of EPF in leaf beetles by inhibiting host immunity . In this

strategy, microbiota in the mosquito gut can be modified and serve as a molecular adjuvant and immunomodulator

against parasites when in combined application with EPF .

4.2. Introducing Antipathogen Effector to Block Vector Disease Transmission

To target the pathogen in mosquitoes is another strategy in genetic manipulation of EPF . Genetically

modified EPF strains can express antimalarial effector molecules and antimicrobial peptides. Recombinant M.

anisopliae strains have been engineered to produce antimalarial effector molecules that inhibit the attachment of

sporozoites to salivary glands, agglutinate sporozoites, or exhibit antimicrobial toxic activity to inhibit Plasmodium

development. This approach resulted in a decrease of up to 98% in the malarial sporozoite count in mosquito

salivary glands . A similar strategy has also been achieved using midgut symbiont in mosquitoes. The
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paratransgenic control strategy, which involves expressing an antiplasmodial effector driven by blood meal induced

(BMI) promoters, has proven to be effective in inhibiting pathogen infection .

4.3. Increasing the Fungal Tolerance to Adverse Environmental Conditions

For application in water, UV-B has no detrimental effect for sedimented conidia even no overlay of water .

However, when exposure of fungus-treated mosquito adults to sunlight, UV-B radiation can affect activity of conidia

applied on the mosquito’s surface . To enhance the efficacy of EPF, increasing their UV tolerance through

genetic manipulation is another viable strategy. For instance, the expression of a photolyase from archaea in M.

robertsii and B. bassiana has been shown to enhance their resistance to sunlight while maintaining their virulence

against the malaria vector An. gambiae . Genetic manipulation of other stress-tolerance-related genes, such as

heat shock protein 25, can also improve thermal tolerance .
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