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Natural language inference (NLI) is one of the most important natural language understanding (NLU) tasks. NLI expresses

the ability to infer information during spoken or written communication. The NLI task concerns the determination of the

entailment relation of a pair of sentences, called the premise and hypothesis. If the premise entails the hypothesis, the

pair is labeled as an “entailment”. If the hypothesis contradicts the premise, the pair is labeled a “contradiction”, and if

there is not enough information to infer a relationship, the pair is labeled as “neutral”.
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1. Introduction

During human communication, a lot of information is conveyed. Usually, the receiver gains a lot more information than

what is uttered by the speaker. This is due to the natural inference capabilities of humans or general world knowledge. For

example, the sentence “John grew up in Spain” gives a lot more information than simply the birthplace of John.

Researchers can assume that John speaks Spanish, and he went to school in Spain. Additionally, researchers can

assume that John adopts the Spanish culture and therefore likes or plays football; furthermore, he likes Spanish food. All

this information is taken for granted when researchers talk to each other, but to a computer, much more work needs to be

done to feed this extra information. This is what natural language inference (NLI) deals with, and this is why, from its

beginning, NLI was thought to be necessary for full natural language understanding .

Natural language inference is the task of determining the entailment relation between a premise and its hypothesis. This

relation is usually described with one of three labels: entailment, contradiction, or neutral. An NLI sentence pair is

classified as entailment if, given its premise, a human would be happy to infer the hypothesis. If the hypothesis directly

contradicts the premise, the pair is labeled as a contradiction. In the case where not enough information is present to label

a pair as entailment or contradiction, the ‘neutral’ label is annotated. In some datasets, the problem is set as a 2-label

classification task, with one of the labels being ‘entailment’ and the other ‘not entailment’. The definition of “a human being

happy to infer the hypothesis” may seem vague, but it has to be, given that the language itself is complicated, and many

times, the same sentence can have different meanings to different people. In this line, it is well stated that the sentence

pairs should be annotated by people that are awake, careful, moderately intelligent and informed .

In Table 1, three examples of sentence pairs for NLI and the resulting labels are presented. The premise is the first

sentence, which provides us with the context to be used. The hypothesis is the second sentence, in which researchers will

be asked whether it can be inferred from the premise. The label describes the entailment relationship of the two

sentences. Given the first example in Table 1, researchers see that the correct label is entailment because, by reading the

premise, researchers can safely infer that the hypothesis is also true. The next example, however, is not an entailment, as

the hypothesis adds information that is not present in the premise. Researchers cannot safely say that the costume the

girl is wearing is indeed a fairy costume, as it could be any type of costume. On the other hand, researchers do not have

information that says that the costume is not a fairy costume; therefore, the correct label for this pair is neutral. In the last

case, the first thought is that the pair should be labeled as a contradiction since researchers are talking about two different

oceans. However, one could say that a boat sinking in the Pacific Ocean does not negate a boat sinking in the Atlantic

Ocean, meaning that both sentences could be true. To avoid such conflictions, researchers always consider that

researchers are talking about one single event. Therefore, the correct label is contradiction.

Table 1. Examples of NLI sentence pairs and their label.

Premise Hypothesis Label

A soccer game with multiple males playing Some men are playing a sport Entailment

The girl went out wearing a costume The girl went out wearing a fairy costume Neutral
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Premise Hypothesis Label

A boat sank in the Pacific Ocean A boat sank in the Atlantic Ocean Contradiction

The NLI task needs special handling and has posed great challenges to the NLP research community since its formulation

in 2005 with the recognizing textual entailment (RTE) challenges . Since then, a lot of progress has been made both in

terms of available data, as well as in the development of models that try to face the NLI problem. In 2015, the first large-

scale NLI dataset was collected and provided neural models with 550,000 examples of crowdsource-labeled data .

These assisted in gaining more attention to the field of NLI, which brought many advances but also many criticisms. In

2017, the GLUE benchmark for natural language understanding  was published, which includes four NLI task datasets

(MNLI, QNLI, RTE, WNLI). The collection method of each dataset is different, and so each dataset evaluates a different

type of inference ability. This benchmark later evolved into SuperGLUE , which includes even harder and more

challenging tasks.

As already stated, the main type of inference models today are deep neural network models. Up to 2017, the dominant

type of inference model consisted of LSTMs (a deep learning model) encoding the premise and hypothesis, then applying

an attention mechanism before passing the final vector to a SoftMax function for classification. A model that fits in this

description is ESIM , which at that time demonstrated a state-of-the-art 88.0% accuracy on the SNLI dataset. Later

adaptations of such models included additional learning from a knowledge graph to incorporate external world knowledge

into the model . Recently, the invention of transformers  and, more specifically, BERT  has switched research to

using pre-trained models on large corpora of text that are then fine-tuned on specific data. Such models (ΒΕRT, XLNet,

RoBERTa, ALBERT) quickly became the state-of-the-art models for NLI, performing with over 90% accuracy on some of

the most challenging datasets.

However, many researchers questioned the ability of these models’ inference abilities as they argued that the models take

advantage of various annotation artifacts within the datasets to achieve their results. One of the first papers that

addressed this issue was Poliak et al.’s hypothesis-only approach . In their paper, they showed that only using the

hypothesis sentence for some NLI datasets performed well above random chance, suggesting that specific words in the

hypotheses are related to a specific label. Furthermore, some studies  found instances of social bias in the examples of

the SNLI dataset, while others  found wrong labels in the SICK dataset as well. To continue testing that idea, some

researchers developed NLI stress tests to break top-performing NLI models, such as the BreakingNLI dataset .

Furthermore, additional adversarial datasets were developed with a focus on collecting examples that top-performing

models predict wrong .

The protocol of collecting annotations for sentence pairs has been criticized by researchers in the field as not satisfactory

. The idea behind the criticisms is that one should not take the label most voted on by humans as the gold label and

should not ignore other opinions. Pavlick et al.  believe that NLI needs a revision because the vague task of “do as a

human would” is not in agreement with the fact that different humans can extract different conclusions from the same

sentence pair. Therefore, they suggested a new type of measurement that takes into account the entire spectrum of

opinions. One such dataset is ChaosNLI , which instead of gold labels, uses a distribution over a collective of human

opinions.

Another way of improving NLI is by creating new and more diverse datasets that cover a quite broad range of linguistic

phenomena. An example in this direction is the IMPLI dataset , which uses sentence pairs of figurative language and

tests models on idiomatic expressions and metaphors. Another dataset is ANLI, which uses adversarial data to trick NLI

models. However, some researchers argue that models could be implemented to purposely exploit such data for better

scores . One recent approach to creating datasets for NLI is WANLI , which takes advantage of the progress of

natural language generation models to include them in the process of data creation together with human annotators.

Additionally, human explanations of data have been used in the training process, with the aim of improving NLI, with good

results .

2. Methods for Solving the Natural Language Inference Problem

One of the first attempts at NLI was the decomposable attention model (DAM) . The authors of the DAM presented an

attention model for NLI that decomposes the problem into sub-problems that can be parallelized. The model works in

three steps: attend, compare, and aggregate. In the first step, the premise and the hypothesis are encoded to two vectors,

a and b, and then an attention mechanism is applied between them. The attention mechanism finds the sub-phrases in b

that are softly aligned with every word in a, as well as the sub-phrases in a that are aligned with every word in b. In the
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second step, the words of a and their aligned sub-phrases in b are compared with a feed-forward neural network and are

passed in a vector, the same as b. In the third step, the values in each vector are aggregated and passed to a final MLP

with SoftMax for classification. In addition to the three steps, an optional attention step was presented, called intra-

sentence attention. This step can take place before the attend step, and it calculates the self-attention of a sentence for

better representation. The DAM was trained on the SNLI dataset with GloVe embeddings. It provided state-of-the-art

results at that time: 86.3% on the test set for the basic steps and 86.8% with the inclusion of the intra-attention step.

Another popular model is enhanced sequential inference modeling (ESIM) . The authors of ESIM focus on enhancing

sequential models for inference. Their model is based on chaining LSTMs and applying attention mechanisms. In their

paper, they also present a tree-LSTM model that encodes syntactic knowledge and can be used together with ESIM to

form HIM (hybrid inference model). ESIM also works in three steps, similar to DAM: input encoding, local inference

modeling and inference composition. In the first step, the premise and hypothesis are encoded with bidirectional LSTMs.

The outputs of the biLSTMs are combined with an attention mechanism. The resulting vectors (the softly aligned

representations of a and b) and the original vectors a and b are then further combined and concatenated for better

representation. In the third step, the outputs of the second step are again fed into two biLSTMs. Then, instead of

aggregating the resulting vectors, they compute the average and max pooling of both vectors, and the four resulting

vectors are concatenated and fed in an MLP with a SoftMax for classification. The authors trained the model on SNLI with

300d GloVe embeddings with a batch size of 32, using the Adam optimizer with a learning rate of 0.0004 and a dropout

rate of 0.5. The model provided the best result at that time on the SNLI test set (88.00%).

The invention of transformers bred a new generation of models for NLI. The first popular adaptation was BERT

(bidirectional encoding representations from transformers) . BERT is a bidirectional language representation model that

uses the architecture of the transformer model, more specifically, the encoder part of the transformer model. BERT is pre-

trained on large corpora of unlabeled text that can then be fine-tuned on specific data. During pre-training, BERT performs

two tasks: masked language modeling (MLM) and next-sentence prediction (NSP). MLM is essentially how BERT

manages to learn in a bidirectional manner. The task of MLM includes masking a percentage of the input at random and

then trying to figure out the correct word given its context (the words to the left and right of the mask). In the NSP task,

BERT is given two sentences and must predict if one sentence (logically) follows the other. Due to its similarity, NSP is

supposed to help with performance on NLI tasks. BERT is trained on the BookCorpus and the English Wikipedia (800 M +

2.5 B words). The input of BERT is a sequence of a maximum of 512 tokens. The first token is always the special (CLS)

token, which encodes the classification, and sentences in the input are separated with the special (SEP) token. BERT

uses WordPiece embeddings with a vocabulary of 30,000 words. In addition to token embeddings, BERT uses segment

embedding, which matches a token with the sentence it appears in, and positional embedding, which tracks the position of

the embeddings. There are two BERT sizes available: BERT-Base (110 M params) and BERT-Large (345 M params).

BERT has demonstrated new state-of-the-art results on many NLP tasks, including NLI.

Another popular transformer model is RoBERTa (Robustly Optimized BERT Approach) . The authors of RoBERTa

believed that BERT was undertrained, so they presented a more optimized approach to training BERT called RoBERTa.

The main changes regard the hyperparameters of pre-training, the task of MLM, the removal of the NSP task and the

usage of more pre-training data. RoBERTa was trained on BookCorpus, Wikipedia, CC-NEWS, OPENWEBTEXT, and

STORIES, totaling 148 GB of uncompressed text. The change in the MLM tasks is the introduction of dynamic masking,

which creates a new masking pattern for each input sequence. In addition to dynamic masking, training data are

replicated 10 times so that many masking patterns are created. They removed the NSP loss after carrying out several

experiments that showed that NSP hurts performance. Finally, they used Byte-Pair Encoding, which encodes bytes

instead of Unicode characters, resulting in a larger vocabulary of 50,000 words. As with BERT, RoBERTa comes in two

sizes: Base and Large. RoBERTa-Base is comprised of L = 12 layers, a hidden size of H = 768, and A = 12 attention

heads (110 M params). RoBERTa-Large has 355 M parameters (L = 24, H = 1024, A = 16) and has demonstrated state-

of-the-art results on many NLP tasks, surpassing BERT.

A problem with BERT and ROBERTA is that they have hundreds of millions of parameters. This puts many restrictions on

the training process as it requires a lot of GPU memory and is very time-consuming. Researchers from Google Research

and Toyota Technological Institute in Chicago developed a different version of BERT called ALBERT (A Lite BERT) .

ALBERT is a light version of BERT that uses significantly fewer parameters. ALBERT uses the same architecture as

BERT but makes three important distinctions. First, the vocabulary embedding is decomposed into two smaller ones.

Second, parameters are shared across all layers, and third, NSP is replaced by a sentence-order prediction task. In BERT

and RoBERTa, the embedding size is tied with the hidden size, E = H. The authors believe this is suboptimal, as H

encodes context-depended information and E encodes context-independent information; thus, H should be bigger than E,

H >> E. Therefore, instead of projecting the one-hot vectors onto H, they first project them on a smaller matrix, E, and
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then E is projected onto H. This way, the parameters are reduced from O (V × H) to O (V × E + E × H), which is critical

when H >> E. Next, parameter sharing is used as it provides a smoother change from layer to layer. Lastly, NSP was

replaced by SOP, a task that focuses on inter-sentence coherence. SOP gives positive feedback when one sentence

follows the other but negative when the same two sentences are inserted with their order switched. There are four

versions of ALBERT: base, large, xlarge, and xxlarge. They have 11, 17, 60, and 235 million parameters, respectively.

ALBERT’s xxlarge version has demonstrated new state-of-the-art results, surpassing RoBERTa on several NLI tasks.

A more recent approach is ERNIE 3.0 , developed by researchers at Baidu. The authors saw a problem with the data

used for training in popular models. They believed that the text used was plain and did not incorporate linguistic and word

knowledge. Another problem they found was that the models were trained in an auto-regressive way, which, according to

J. Devlin et al., worsens performance on downstream tasks . Their proposal, ERNIE, is a unified framework to train

large-scale models on a big corpus of text data as well as a knowledge graph. ERNIE combines the auto-regressive

network and auto-encoding network so that both NLU and NLG are achieved. The model was tested on many Chinese

NLP tasks and achieved first place on the SuperGLUE benchmark. ERNIE uses a shared network as the backbone to

capture universal lexical and syntactic information, which is called the universal representation module, and it is built with

a multi-layer Transformer-XL. ERNIE also uses a task-specific representation module, which is also a multi-layer

transformer XL that is used to capture the top-level semantic representation for different task paradigms. While pre-

training ERNIE, the authors used several pre-training tasks. The two word-aware tasks were knowledge-masked

language modeling and document language modeling. The first masks phrases and named entities for the model to

predict. The second is a pre-training task in which a traditional language model is used for generative purposes. Two

structure-aware tasks were used: sentence reordering, in which the model tries to recreate a sentence given the

segments of the sentence in random order, and sentence distance, which is an extension of the NSP task. The final task

used was the universal knowledge-text prediction task. This task requires unstructured text and knowledge graphs. The

way it works is, given a triple from the graph and a sentence from an encyclopedia, the model tries to predict the relation

in the triple from the sentence. ERNIE 3.0 was tested on Chinese versions of NLI datasets and demonstrated new state-

of-the-art results on OCLI and XNLI. In more detail, ERNIE demonstrated 82.75% accuracy on the OCNLI development

set compared to the previous 78.80% accuracy exhibited by RoBERTa. On XNLI, the accuracy achieved on the test set

was 83.77%, which is a smaller increase from the former best accuracy of 83.09%.

The pathways language model (PaLM) is a recent contribution to NLU and NLG developed by engineers at Google . It

is a 540 billion parameter language model based on a transformer trained on 6144 TPU v4 chips. It brought impressive

results with few-shot learning as well as with fine-tuning specific NLP tasks. PaLM uses the transformer architecture,

using only the decoder and some additional architectural differences. The authors preferred swiGLU activation functions

over ReLU for the MLP. They also used a different formulation in each transformer block for faster training speeds at large

scales. They used RoPE embeddings, shared input-output embeddings and a SentencePiece vocabulary with 256 k

tokens. The model was pre-trained on 780 billion tokens. The data were taken from filtered webpages, books, Wikipedia,

news articles, source code and social media conversations, which comprise 50% of the total data. They created three

versions of the model: an 8 B parameter model with 32 layers, 16 attention heads, and a hidden layer size of 4096; a 62 B

parameter model with 64 layers, 32 attention heads, and a hidden layer size of 8192; and finally, a 540 B parameter

model with 118 layers, 48 attention heads and a hidden layer size of 18,432. The model was evaluated on 29

benchmarks, including SuperGlUE and ANLI. After being fine-tuned on SuperGLUE, the model performed close to SOTA

results, and it currently stands 3rd on the leaderboard. On ANLI, the largest model exhibits 56.9% accuracy with few-shot

learning.

ST-MoE (stable and transferable mixture-of-experts) is a recent approach to tackle NLU . Developed by researchers at

Google Brain, it is a 269-billion-parameter sparse model that manages to achieve state-of-the-art results in many NLP

tasks. One of its main advantages is that it avoids the usual training instabilities often encountered in sparse models.

Training instability was the main focus of work in the paper, and the authors tried to tackle it from many angles. They

proposed a new type of loss called router z-loss, which they found to improve stability without degrading the quality of the

model. They followed the traditional approach of pre-training on large data and fine-tuning downstream tasks. In the fine-

tuning phase, they noticed overfitting issues on two SuperGLUE tasks. To answer this problem, they updated only a

subset of model parameters during fine-tuning. The model was tested on many NLU tasks, including several NLI tasks.

On RTE, the model demonstrates 93.5% accuracy, and on the R3 test set of ANLI, it exhibits an impressive 74.7%

accuracy. The model currently holds first place on the leaderboard of the SuperGlue benchmark.
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