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Chemical looping technology in general, is the rising star in chemical technologies, which is capable of low CO2

emissions with applications in the production of heat, fuels, chemicals, and electricity. This entry discusses the technology

in general, gives an overview of some pilot scale plants and the different chemical looping processes with focus on

the production of heat and chemicals, highlights the importance of the development of oxygen carrier materials with

suitable properties,
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1. Introduction

Carbon dioxide emissions resulting from combustion and other chemical processes gravely impact the environment.

Therefore, alternative processes have been developed in which these CO  emissions can be avoided. Among current and

emerging technologies for CO  capture, chemical looping combustion (CLC) was frequently mentioned as a particularly

promising approach to combining CO  capture and energy production . This technology can also be included in the

oxyfuel combustion branch of CCS, as in this process also, all diluting components of the air are separated before the

combustion of the fuel. The main difference with conventional oxy-fuel capture is the avoidance of a separate costly air

separation unit. Pure oxygen is separated from the air inside the chemical looping process itself, by the utilization of metal

oxides, which selectively transfer oxygen from the air to the fuel. These oxygen transfer materials are hence commonly

called ‘oxygen carriers’ (OC). CLC has gained significant maturity during the last decades, resulting in kW  and MW -

scale operation at various locations throughout the world (see Table 1). Chemical looping technology in general, is the

rising star in chemical technologies, which is capable of low CO2 emissions with applications in the production of heat,

fuels, chemicals, and electricity. Several aspects are being considered in the current transition and scale-up of the

technology to a

level appropriate for industrial implementation. One key critical aspect is the presence of a suitable, sustainable, and cost-

e ective oxygen carrier material with the right properties for the specific chemical looping application.

The origin of chemical looping technology is said to start way back in the year 1950 when Lewis and Gilliland filed their

patent entitled ”production of pure carbon dioxide” . In this patent, an oxidizable carbonaceous material was oxidized by

copper oxide particles to produce carbon dioxide free of inert gases, such as nitrogen. The term ‘oxygen carrier’, which is

still used to denote the solid materials that transfer the oxygen from oxidizing agent to fuel, was already introduced then .

The term ‘chemical looping’ was derived by Ishida et al. in the second half of the 1980s from the different oxidation and

reduction reactions through the oxygen carrier loops, yielding net combustion of the fuel . Since then, the technology has

matured significantly. The process has been scaled up to MW -scale, more than 600 oxygen carrier materials have been

developed, and these research activities have resulted in a few thousand publications and several review papers across

all domains ranging from reactor design, oxygen carrier design for both combustion and chemicals production to scale up,

and operational experience in the units across the world . Five

international conferences dedicated specifically to chemical looping have been organized during the past 10 years all over

the world.

Figure 1 gives an overview of all relevant aspects of chemical looping. Different types of carbonaceous fuels are used,

depending on the focus of the process. While solid fuels are mainly used for energy production, gaseous fuels are

interesting for the production of chemicals. In chemical looping processes air is used for replenishing the oxygen in the

oxygen carriers. In addition to air, carbon dioxide and steam can also be used. In this way pure CO and H  can be

generated. As the reactions between the oxygen carrier and CO or H O are endothermic, changing the oxidizing agent in

the chemical looping process has a large impact on the energy balances of the process. Different reactor systems can be

2

2

2
[1][2][3]

th th

[4]

[4]

[5]

th

[6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27]

2

2 2



used in chemical looping processes, ranging from packed-bed reactors to interconnected fluidized-bed systems. Each

reactor concept has advantages and disadvantages, and their suitability depends also on the reactivity, composition and

the properties of the oxygen carrier materials .

Table 2. Select fluidized bed chemical looping process development and pilot plants across the world, adapted from .

Institution Location Year Capacity (kWth) Ref

Vienna University of Technology Vienna, Austria 2009 120

Hamburg University of Technology Hamburg, Germany 2012 25

Chalmers University of Technology Gothenburg, Sweden 2012 100

Darmstadt University of Technology Darmstadt, Germany 2012 1000

Southeast University Nanjing, China 2012 50

University of Utah Salt Lake City, USA 2012 200

National Energy Technology Laboratory Morgantown, USA 2013 50

Instituto de Carboquímica (ICB-CSIC) Zaragoza, Spain 2014 50

Huazhong University of Sci. and Tech. Wuhan, China 2016 50

VTT Technical Research Center Espoo, Finland 2016 50

Japan Coal Energy Center Tokyo, Japan 2017 100

Korean Institute of Energy Research Daejeon, Korea 2018 500

 

Figure 1. A general overview of the parts of the chemical looping process.

2. Oxygen Carrier Materials

A key issue in the further development of this rising star in chemical technologies and its introduction to the industry is the

selection and further development of an appropriate oxygen carrier (OC) material . This solid oxygen carrier material

supplies the stoichiometric oxygen needed for the various chemical processes. Its reactivity, cost, toxicity, thermal stability,

attrition resistance, and chemical stability are critical selection criteria for developing suitable oxygen carrier materials .

To develop oxygen carriers with optimal properties and long-term stability, one must consider the employed reactor

configuration and the aim of the chemical looping process, as well as the thermodynamic properties of the active phases,

their interaction with the used support material , long-term stability, internal ionic migration , and the advantages

and limits of the employed synthesis methods .

3. Different Focus of Chemical Looping Processes

Commonly, chemical looping is used to denote cyclic processes that use a solid material, which circulates the oxygen

required for the conversion of a fuel. This solid material is hence called ‘oxygen carrier’ and consists traditionally of metal

oxide particles. To close the chemical loop, the oxygen-depleted solid oxygen carrier must be re-oxidized before starting a

new cycle conventionally with the use of air. When the goal of the process is energy production, the fuel is converted to
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total oxidation products (CO  and H O), and the oxygen-depleted solid must be regenerated by the O  in air. The process

is then known as chemical looping combustion (CLC) (See Figure 2 for a generalized process scheme). The large

advantage of CLC is the inherent separation of the N  from the oxidizing air and the produced CO  in the process. The

H O that is still present in the flue gas can easily be condensed, and a pure CO  stream is obtained without additional

separation costs, such as needed in post-combustion CCS . There is also no need for an expensive air separation unit,

such as used in conventional oxy-fuel combustion .

 

Figure 2. General flowsheet of the chemical looping process.

When chemical looping technology started to gain more attention from researchers, it was predominantly being developed

for efficient combustion of fuels, such as coal or natural gas. This technology is commonly called chemical looping

combustion, and it is currently, after several decades of research, gaining maturity during the pilot and semi-industrial

scale .

More recently, however, the focus of chemical looping is shifting more towards the production of hydrogen and other

chemicals instead of energy . In this way, products with more economic added value can be

generated, which increase the economic viability of the technology in the current context, even at smaller scales. This is

expected to facilitate the introduction of the technology into industry. When the focus of the process shifts more towards

the production of chemicals, oxygen carrier materials are regenerated by other oxidizing agents instead of air, such as

CO   or even H O , with respective productions of CO and H . Some of the different chemical

looping technologies, which can be found in the literature, are included in Table 2, as well as the used primary fuels, the

abbreviation of the CL-branch technology, and the reactor types used. Fuels that are used in chemical looping include

coal, liquid fuels, biomass, and natural gas . For characterization purposes, sometimes, syngas or hydrogen is used, but

these are not used at an industrial scale . While the initial focus of CLC was the combustion of gaseous fuels, now,

gaseous fuels are predominantly converted to chemicals, while combustion for energy production is more frequently

executed with solid-fuels (see Table 2). There is, however, some overlap.

Table 2. An overview of some of the different chemical looping technologies found in the literature.

Focus
Primary

Fuel
Process

Reactor
Type

Combustion Gas CLC Chemical Looping Combustion f , m , p

- Solid Syngas-CLC Syngas-Chemical Looping Combustion f, m, p

- Solid iG-CLC In situ Gasification Chemical Looping Combustion f, m

- Solid CLOU Chemical Looping with Oxygen Uncoupling f

- Gas GSC Gas Switching Combustion f
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Chemicals Gas SR-CLR Steam Reforming-Chemical Looping Reforming f

-
Gas,

liquid
a-CLR Autothermal-Chemical Looping Reforming f

- Gas GSR Gas Switching Reforming f

- Gas CSR Chemical Switching Reforming f

-
Gas,

liquid
SE-CLSR

Sorption Enhanced-Chemical Looping Steam

Reforming
f, m, p

- Gas CLHG/TRCH/OSD

Chemical Looping for Hydrogen Generation/Three

Reactor Chemical Looping/One Step

Decarbonization

f, m, p

- Solid SCL Syngas Chemical Looping m

- Solid CDCL Coal Direct Chemical Looping f, m

Oxygen
Production

/ CLAS Chemical Looping Air Separation f, m, p

f: fluidized bed, m: moving bed and p: packed bed.

4. Outlook

Despite the extensive research in recent years, still, several topics related to chemical looping and oxygen carrier

development call for further investigation:

Further improving the long-term stability and maintaining the high activity of oxygen carriers.

Developing novel oxygen carriers where optimal materials are combined and where the composition of the active

phase is selected and modified in such a way that inherently a high selectivity can be obtained.

 Developing oxygen carriers synthesized with minimal cost, e.g., by starting from impure raw materials or by further

developing routes from naturally occurring ores, and checking the effect of the actual use of relevant impure materials

on the oxygen carrier performance.

 Developing novel oxygen carrier shapes that can be suitable for use inside pressurized reactor systems, where

chemical looping has interesting opportunities, utilized integrated into a system.

Optimizing oxygen carrier chemistry for use at higher pressures.

Developing oxygen carriers suitable for catalyst-assisted chemical looping (e.g., see ).

The authors expect that the interaction between catalysis and chemical looping will make significant changes to the

chemical looping landscape in the following years and, because of its potential benefits,

deserves extensive attention from the research community.
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