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Tomato, the fruit providing the most comprehensive complex of prostate-health-preserving micronutrients, has been

shown to be superior to its single-nutrient counterparts in decreasing the incidence of age-related prostate diseases.
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1. Introduction

The presence of chronic inflammation in an aging prostate may lead to two main diseases, benign prostatic hyperplasia

(BPH) and cancer (PCa) . BPH may severely impair the quality of life in one third of subjects older than 50 years and is

reported in about 90% of individuals reaching 80 years of age . PCa is the most frequently diagnosed cancer in men,

with an annual incidence of nearly 1.5 million new cases . Although significant differences in PCa incidence and

mortality across ethnic groups have been reported , this malignancy represents an alarming public health issue

worldwide because of the increasing incidence in young patients and the growing frequency of advanced disease cases

. In view of the global augmented life expectancy, both BPH and PCa embody a growing economic burden for wealthy

societies and for patients’ direct and indirect costs .

Because of their late age occurrence, BPH and PCa are suitable for preventive interventions since even a modest delay in

their development can lead to a substantial reduction in the incidence of clinically identifiable lesions. Primary prevention

of BPH and PCa relies on healthy choices, such as regular exercise, low fat intake, and high vegetable and fruit

consumption . The latter recommendations, often inclusively described as adherence to the Mediterranean diet ,

advocate the regular uptake of various antioxidants and anti-inflammatory complexes present in fresh vegetables and

fruits .

2. Tomato and Olive Oil in Prostate Health

2.1. BPH’s Natural History and Current Medical Treatment

The molecular mechanisms underlying the pathogenesis of BPH leading to a symptomatic disease are still ill-defined .

Age-related endocrine  and vascular changes  as well as uncontrolled oxidative stress derived from acute and

chronic inflammation have been proposed to induce the overgrowth of the stromal and cellular compartments in the

transition zone of the gland . However, because a low degree of proliferation of both epithelial and stromal cells

has been detected, BPH has been interpreted as the result of impaired programmed cell death mechanisms . Of

interest, the recent molecular profiling of BPH has identified distinct subtypes, such as those with altered mTOR signaling

linked to unfavorable prognosis , which are candidates for more targeted therapies.

The diagnosis of BPH is usually driven by lower urinary tract obstructive symptoms (LUTSs), i.e., urinary hesitancy,

urgency, frequency, and post-void dribble .

Patients with BPH show a higher incidence of “in situ” PCa , thus suggesting that a reduction in risk factors or BPH

treatment can, in at least a fraction of patients, delay the onset of PCa.

Chronic inflammation has also been shown to contribute to an increased risk of rapid disease progression because of a

lower response to medical treatment . Therefore, inflammation represents a key target of BPH treatment . However,

innovation in drug development for BPH is currently stalled, being confined to alpha-blockers, 5-alpha reductase

inhibitors, and phosphodiesterase type 5 inhibitors  that, because of the underlying heterogeneity of BPH lesions 

, are often used in combination or successively .
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Despite these strategies, LUTSs are not controlled in about one third of patients , and a number of responders’ side

effects, such as decreased libido, erectile dysfunction, dizziness, and hypotension, may occur . The failure of medical

treatment invariably leads to surgical intervention to reduce LUTSs’ severity .

2.2. Phytotherapies for BPH: The Role of Tomato and Olive Micronutrients

Guidelines on therapeutic options for BPH include phytotherapy as well. Indeed, phytocompounds, either as plant

portions, derived extracts, or purified molecules, are increasingly used in the treatment of patients with moderate–severe

BPH . A large body of epidemiological, experimental, and clinical studies on BPH prevention or improvement of the

associated symptoms  has focused on tomato lycopene, the red-colored, open-chain beta carotenoid devoid of

retinoid activity, present in a variable concentration in different tomato-cultivar-derived foods. Lycopene, which is

contained in all tomato dietary sources, mainly in the low bioavailable trans isomeric form , is endowed with a large

range of biological activities, which are also retained by its metabolites . Its bioavailability, on the other hand, can be

affected by a number of factors  and, differently from the trans isomeric form , the biologically active cis

lycopene, which is produced mainly by heating the fruit , concentrates on definite anatomical sites, which include the

prostate .

However, comparative studies have clearly demonstrated that the healthy properties of tomatoes could not be not

exclusively ascribed to their lycopene content . Indeed, a number of compounds endowed with wide-ranging

biological activity are present in the fruit or are newly formed during its heat processing ; thus, the overall complex

contributes to the in vivo anti-proliferative, anti-inflammatory, and pro-apoptotic activities , as well as to the anti-

androgenic properties of the fruit . As a result, the consumption of whole tomatoes has been shown to provide healthier

effects than lycopene alone in experimental  and clinical studies .

Olive oil is well proven to represent a source of chemo-preventive nutrients . Its polyphenol content prevents PCa

development and invasiveness , as these molecules can modulate the molecular signaling involved in the growth and

proliferation of transformed cells in inflammation (e.g., MAPK, PI3K, and NF-κB)  and angiogenesis . In particular,

hydroxytyrosol has been reported to inhibit in vitro human PCa cell proliferation and induce apoptosis .

2.3. Tomato and Olive Eco-Sustainability

Various phytochemicals endowed with prostate-healthy properties are widely present in nature . Researchers have

concentrated their investigation on complexes of tomato and olive micronutrients, with their choice herein detailed.

Tomato, which represents the second most popular crop worldwide , has a high global consumption rate . The fruit,

characterized by extensive biodiversity  and chemodiversity , with a high average nutritional yield , requires timely

controlled irrigation and moderate soil tillage . Tomatoes accumulate low levels of environmental contaminants  in

the fruit and are thus considered to be an “excluder plant” since they concentrate soil contaminants in the roots, stems,

and shoots . Residues of pesticides, if present on the skin, are removed by washing and cooking . In addition,

tomato lycopene has been shown to decrease the risk associated with exposure to natural chemical toxins, including

pesticides and herbicides .

The waste caused by tomatoes’ industrial processing, as well as their packaging, is highly recyclable . Because of their

unique culinary versatility in multiethnic cuisine, they have wide acceptance in various dietary regimens.

Olive cultivation is another important agro-industrial sector  that also plays a role in maintaining biodiversity. Olive

growth is possible under extreme environmental conditions, such as drought and high temperatures .

Epidemiological and experimental data have underscored the healthy properties of moderate dietary consumption of olive

oil due to its antioxidant and inflammatory components .

2.4. Development of a New Whole-Tomato-Based Food Supplement (WTFS)

Among the different preparations derived from roots, seeds, pollen, bark, or fruits , the tomato is particularly

attractive for prostate health maintenance. The fruit’s anti-inflammatory and antioxidant molecules , by acting both

systemically as well as in the gland, are potentially useful in also shielding prostate cells  from aging-related

degenerative changes .

There is no scientific evidence of any interaction between tomato and drugs, a relevant aspect in older patients who are

often undergoing multiple pharmacologic treatments.
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Because the bioavailability of lycopene, the tomato’s major antioxidant, is highly increased by cooking the fruit  and by

the presence of fats, especially olive virgin oil , early attempts to improve tomato antioxidant activity used a

concentrated whole ripe fruit puree heated at 95 °C for 5 min, with 10% extra-virgin olive oil added. This “food for special

medical purposes” (FSMP), when administered to patients affected by chronic viral C hepatitis, significantly increased

plasma lycopene concentrations compared to other tomato products and was thus effective in preventing carotenoid

serum depletion and in improving the oxidative status during antiviral therapy .

When tested in a transgenic mouse model of human prostate carcinogenesis (TRAMP) , the supplementation of the

animal’s diet with 10% of FSMP significantly decreased the appearance of poorly differentiated cancer and mortality .

In addition, an in-depth serological analysis of the animals during treatment demonstrated that the FSMP was able to

reduce the levels of circulating inflammatory/angiogenic cytokines, such as vascular endothelial growth factor (VEGF),

tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6 . These effects were dose-dependent since tomato-based

supplemented diets with lower lycopene concentrations failed to modify the clinical course of the TRAMP mice’s cancer

.

Along this line of investigation, and with the aim of producing an improved and standardized “whole tomato food

supplement” (WTFS) of potential use in clinical studies, an innovative whole tomato, solvent-free processing protocol 

described in Figure 1A has been developed.

Figure 1. (A) Protocol for “whole tomato food supplement” (WTFS) preparation. (B) Composition for 100 g of WTFS.

When FSMP and WTFS compositions were compared, the new production method resulted not only in higher

concentrations of tomato antioxidant and anti-inflammatory micronutrients, such as carotenoids (lycopene, beta-carotene,

and lutein), but also in the formation of d-fructose- l-histidine (Fru-His) and ketosamine, which increased the biological

activity of the carotenoid  (Figure 1B). Of relevance, a large fraction of lycopene is now present in the more

bioavailable and biologically active cis configuration .

With the dual aim of protecting the carotenoid content from oxidative degradation and increasing the WTSF of prostate-

health-relevant molecules with minor caloric uptake , 2% of olive wastewater (OWW) was added. Thus, both tomato

(i.e., naringenin and quercetin) and OWW (i.e., oleuropein, tyrosol, hydroxytyrosol, pinoresinol, and verbascoside)

polyphenols contribute to WTFS composition. As a result, the WTFS displayed antioxidant activity comparable to that of

N-acetylcysteine (as shown in the unpublished data reported in Figure 2), one of the most frequently used antioxidant

drugs, and was more active than the FSMP in reducing the serum levels of interleukin (IL)-6 and VEGF in the TRAMP

mouse model .
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Figure 2. Reactive oxygen species (ROS) detection. To compare the antioxidant activity of WTFS and N-acetylcysteine

(NAC), LNCaP (androgen-sensitive human prostate epithelial cell line) cells were pretreated for 4 h with 1 mg/mL of

WTFS or 500 µM of NAC and then were stressed with 75 μM of tert-butyl hydroperoxide (t-BOOH) for 30 min. ROS were

quantified using the CellROX Green Flow Cytometry Assay Kit (Thermo Fisher Scientific, Monza, Italy, cat. C10492)

following the manufacturer’s instructions. Samples were analyzed using a BD Accuri C6 flow cytometer (BD Biosciences,

Milano, Italy). The experiment was repeated three times with similar results, and the obtained values are presented as the

mean and standard deviation. Statistical analysis was performed using GraphPad Prisma 8.2.1(279) software and ANOVA

followed by Tukey’s post hoc test. Statistically significant differences (** p < 0.01; *** p < 0.001; **** p < 0.0001) are

marked with asterisks and refer to the untreated LNCaP cells used as the control (CTRL).

To researchers' knowledge, WTFS is the only available food supplement with lycopene concentrations exceeding those

present in tomato-based consumer products  and with known concentrations of cis lycopene and other micronutrients

of the fruit.

2.5. WTFS in BPH

The availability of the standardized WTFS product allowed for its assessment in a clinical pilot study which demonstrated

that following the daily assumption of 6 gr of the WTFS containing 22 mg of total carotenoids for two months, 80% of

symptomatic BPH patients showed a decrease in LUTSs . The patients’ compliance was high, and no side effects were

reported. Therefore, a phase II prospective, randomized, double-blinded, placebo-controlled study was performed on

patients with biopsy-proven BPH characterized by various degrees of inflammation . The results of this trial indicated

that following the same treatment schedule as the pilot study, WTFS significantly relieved LUTSs (p < 0.0002) and

improved the quality of life (p < 0.0001). In this context, the WTFS uptake did not change free-prostate-specific antigen

(PSA) and free/total PSA ratio values, but a trend in the decrease in free PSA in patients with baseline levels above 10

ng/mL was documented . This is in line with data from early studies demonstrating that tomato supplementation

reduces PSA levels, but just in PCa patients .

Only one patient left the study, and no side effects, often associated with the culinary use of tomato , were recorded.

In view of the fact that metabolic syndrome and chronic inflammation, both considered to be risk factors for BHP, are

frequently observed in HIV-infected patients  (in whom PCa incidence is expected to increase in the near future ), a

validation study was performed on HIV+ patients with BPH using the treatment schedule. Additionally, in this trial, the daily

WTFS consumption resulted in a significant amelioration in LUTSs, quality of life, free/total PSA ratio, and diastolic blood

pressure, with a trend in the decrease in the IL-6 serum level .

2.6. Links between BPH and Pca

BPH and PCa share genetic traits . Epidemiologic and pathologic links between BPH and later PCa development have

been reported, especially for Asian patients , that parallel those described by a European long-term, large cohort

study . As in BPH, PCa may be associated with metabolic syndrome and insulin resistance, suggesting a relationship

with a dietary factor for this group of diseases . This is also supported by the association between high body mass

index, an element of metabolic syndrome, and PCa progression and specific mortality .

Although the understanding of the molecular basis of the two diseases is far from being fully outlined, common deranged

molecular pathways include hormonal dependence , chronic inflammation, and downstream signaling pathways
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involving cytokines such as IL-12, TNF-α, IL-1, IL-1β, and IL-6 ; downstream signaling pathways mediated by NF-

κB, which contributes to tumor progression ; IGF1R-modulating angiogenesis ; and IL-6/JAK/STAT signaling,

which stimulates cell growth and impairs apoptosis . An overview and detailed representation of the common

pathways between BPH and PCa are represented in Figure 3.

Figure 3. Main signaling pathways involved in BHP and PCa development: receptor tyrosine kinase (RKT), androgen

receptor (AR), NF-κB, and JAK/STAT signaling. WTFS targets (also see Table 1) are highlighted by red lines.

Collectively, the above information supports the hypothesis that the two diseases offer a number of molecular targets

druggable in adjuvant settings by complexes of phytonutrients , such as those present in tomatoes and olives.

2.7. Tomato Consumption and PCa

Due to the above relationships, phytotherapies are also gaining increasing attention in PCa management in preventive,

therapeutic, and palliative settings . A link between tomato and lycopene uptake and PCa risk was initially indicated by

epidemiologic studies . A prospective study of tomato products confirmed the inverse association between

tomato sauce consumption and PCa risk. Notably, subjects consuming more than two servings/week of tomato compared

to less than one serving/month exhibited a 66% decreased risk of PCa metastatic cancer . More recently, a

consistently high intake of tomato after PCa diagnosis was found to be associated with a significantly lower risk of specific

mortality among patients diagnosed with high-risk tumors . In addition, low lycopene concentrations in the prostate

favor PCa onset in patients with high-risk prostatic intraepithelial tumors . Conclusively, a meta-analysis confirmed that

the beneficial effect of processed (cooked tomatoes and sauces) and raw tomato consumption on PCa risk are dose-

dependent, and adherence to the PCa-specific dietary recommendations via constant tomato consumption is associated

with a decreased risk of PCa .

2.8. WTBS and Inhibition of PCa-Activated Molecular Pathways

Early evidence that WTBS can interfere with prostate carcinogenesis is derived from the TRAMP murine carcinoma model

of progressive PCa that mirrors the stages of human disease, including the androgen-independent stage . In these

mice, the FSMP diet significantly increased overall survival (p < 0.01), delayed progression from prostatic intraepithelial

neoplasia to adenocarcinoma, and decreased the incidence of poorly differentiated cancer. Biochemical studies disclosed

a decrease in antioxidant activity in animal sera and a reduction in the circulating biomarkers of relevance to prostate

carcinogenesis, such as IL-6 and TNF-α, which significantly correlated with PCa grade  and VEGF, known to be

associated with prostate tumor grade, metastasis, and prognosis . Indeed, the IL-6/STAT axis represents a link

between inflammation and prostate carcinogenesis , which is the signal transducer and activator of transcription 3

(STAT3), a key modulator in the expression of a wide range of oncogenic genes  and a player in prostate cancer

energy .

Furthermore, recent data created using the androgen-sensitive human prostate epithelial cell line LNCaP exposed to an

environmental carcinogen have demonstrated that WTFS protects DNA from oxidative stress damage, blocks the

pathways involved in PCa development—such as STAT3 activation androgen receptor signaling—and displays pro-
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apoptotic and anti-proliferative properties . Table 1 summarizes the biological activities of the complex of

micronutrients present in the WTFS.

Table 1. Activity of WTBS’s single components.

Compound Activity References

Lycopene  

 
Antioxidant

 

 
Anti-proliferative activity

 

 
Apoptosis induction

 

  Protection against DNA damage  

 
Androgen receptor transcriptional inhibition

 

 
Decreased PSA levels

 

 
STAT3 inhibition

 

Tyrosol/hydroxytirosol  

 
Antioxidant

 

  Protection against DNA damage  

 
Reduced androgen receptor expression

 

 
Decreased PSA levels

 

 
STAT3 inhibition

 

Tocopherol  

 
Apoptosis induction

 

  AR transcriptional inhibition  

 
Decreased PSA levels

 

  STAT3 inhibition  

Quercetin  

 
Antioxidant

 

 
Anti-proliferative activity
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Compound Activity References

  Apoptosis induction  

 
Protection against DNA damage

 

  STAT3 inhibition  

Secoiridoid aglycones (oleuropein, ligstroside)  

 
Anti-proliferative activity

 

 
Apoptosis induction

 

Verbascoside  

 
Apoptosis induction

 

 
Protection against DNA damage

 

  STAT3 inhibition  

Pinoresinol  

 
Antioxidant

 

 
Anti-proliferative activity

 

 
Protection against DNA damage
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