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Introducing machine vision-based automation to the agricultural sector is essential to meet the food demand of a

rapidly growing population. Furthermore, extensive labor and time are required in agriculture; hence, agriculture

automation is a major concern and an emerging subject. Machine vision-based automation can improve

productivity and quality by reducing errors and adding flexibility to the work process. Primarily, machine vision

technology has been used to develop crop production systems by detecting stresses and diseases more efficiently.

stress  disease  machine vision  machine learning  image processing

1. Detection of Stresses

Crop stresses are significant constraints caused by biotic or abiotic factors that inauspiciously affect plant growth.

When plants are stressed, different physiological symptoms may emerge; for example, water stress changes leaf

color and limits water availability, thereby leading to stomata’s closing and impediment of photosynthesis and

transpiration . Figure 1 shows the representative stress types that can be occurred in plants. In Figure 1A, water

stress is caused by a decrease in leaf water potential and stomatal heat, which leads to the down regulation in the

availability of CO , and is one of the main factors of excess light stress. Plant stomata change due to water stress,

and metabolic changes occur. Plant roots absorb mineral elements from the soil; hence, Figure 1B demonstrates

how mineral ions are absorbed and transported in the root system. Figure 1C shows direct and indirect

interactions between insect vectors, pathogen-stressed plants, and hosts. The dotted line represents the indirect

effect, and the solid line represents the direct effect.

Figure 1. Common stress mechanism in plants. (A) water stress, (B) nutrient deficiency, and (C) pest stress.

Reprinted with permission from .
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Machine vision applications have been widely utilized for detecting plant stress, such as water stress ,

nutrient deficiency , and pest stress . The mechanism of machine vision is to use a camera (sensors) to

capture visual information, and then a combination of hardware and software processes the image the extracts the

necessary data. Therefore, it is widely used in applications such as presence inspection, positioning, identification,

defect detection, and measurement. Foucher et al.  measured plant stress using a perceptron with one hidden

layer and imaging technique. The authors classified the pixels into a binary image (i.e., the plant in black and the

background in white) to measure the shape parameters and defined the plant stress by characterizing the moment

invariant, fractal dimension, and the average length of terminal branches. Chung et al.  evaluated a commercial

smartphone to monitor vegetation health and stress rather than a near-infrared spectroscopy (NIR)

spectrophotometer or a NIR camera, which was too costly. Ghosal et al.  demonstrated that a deep machine

vision framework efficiently identified and classified the diverse stresses in soybean. With large datasets, the

highest accuracy was 94.13% based on the confusion matrix, and the study’s outcomes could be used to detect

plant stress in real-time on mobile applications. Elvanidi et al.  performed an ML technique with a hyperspectral

sensor to provide remote visual data related to plant water and nitrogen deficit stress and achieved a classification

accuracy of 91.4% when evaluated against an independent test dataset. Machine vision applications to detect

stress on various targets, such as fruits, vegetables, pests, and plants summarized based on the alphabetical order

of the target name (Table 1). The list includes information ranging from image processing technologies to recently

emerging DL technologies. Water stress, nutrient deficiency, and pest stress are explored in order later in this

Table.

Table 1. Application of machine vision for stress detection in crops.
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Target Techniques Results References

Apple
Hyperspectral imaging with

spectral signature
measurement of leaf surfaces

Red edge normalized difference
vegetation index (NDVI) at 705–750

nm and NDVI at 680–800 nm showed
the highest correlation with water

stress

Kim et al., 2011 

Corn and
soybeans

Drought stress using a
pretrained DenseNet-12 model

Predicted drought/water responses
with an accuracy of 88%

Ramos-Giraldo et
al., 2020 

Forsythia
Shape analysis with moment
invariant, fractal dimension,

and skeleton measures

Measured water stress and other
stresses, such as thermal,

mechanical, and mineral deficiency
stress

Foucher et al.,
2004 

Lettuce

grey-level co-occurrence matrix
(GLCM) texture, hue-

saturation-luminance color, and
top-projected canopy area

(TPCA) morphological features
analysis

TPCA and three textural parameters
showed a good relationship with
calcium deficiency (R  = 0.97)

Story et al., 2010
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Target Techniques Results References

Lettuce
Color, texture, and

morphological features analysis

Combined computer vision (CV) and
spectroscopy techniques showed a

higher accuracy of 88.64% for
nitrogen

Mao et al., 2015

Maize

Features extraction using red,
green, and blue (RGB), hue-

saturation-intensity (HSI), and
chromaticity coordinate

transformations

HSI detected color variations in both
water and nitrogen levels ahead of
RGB and chromaticity coordinates

Ahmad & Reid,
1996 

Maize
Image segmentation using E_G

= 2G-R-BR+G+B

The algorithm had a 94.72% accuracy
for the presence of fall armyworm on

plant

Sena Jr. et al.,
2003 

Maize
Deep convolutional neural

network for classifying drought
stress

Accuracies of the identification and
classification of drought stress were
98.14% and 95.95%, respectively

An et al., 2019 

Maize, okra,
and

soybean

AlexNet, GoogLeNet, and
Inception V3 were used to

identify water stress

GoogLeNet was at 98.3%, 97.5%,
and 94.1% accuracy for maize, okra,

and soybean, respectively

Chandel et al.,
2020 

New Guinea
impatiens

Image segmentation and
feature extraction using TPCA

with grey images

Plant water stress detection was
feasible with a 100% success rate

using plant movement

Kacira et al., 2002

Pest
VGG 16, VGG 19, ResNet, and

Inception-V3 were used to
detect Tuba absoluta

The Inception-V3 reported the highest
accuracy of 87.2% in estimating the

severity of the pest in tomato

Rubanga et al.,
2020 

Plants
leaves

Near-infrared spectroscopy
reflectance and the red

reflectance using an
inexpensive high pass filter at

800 nm to a smartphone
camera

A strong linear correlation with R  =
0.948, corroborating the smartphone’s
ability in evaluating NDVI associated

with water stress

Chung et al., 2018

Plant leaves
ResNet-50, logistic regression,
support vector machine, and

multilayer perceptron

Multilayer perceptron showed the best
performance with accuracy of 88.33%

for nutrient deficiency

Han &
Watchareeruetai,

2020 

Plant stress
top-K high-resolution feature
maps that isolate the visual

symptoms

The deep convolutional neural
network model built performed well
with visual symptoms of chemical

injury and nutrient deficiency

Ghosal et al., 2018

Plant stress
C-Drop neural networks were
used to predict water stress.

C-Drop neural networks increased the
accuracy of water stress prediction by

21%

Wakamori et al.,
2020 
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1.1. Water Stress

Several studies have detected water stress using the movement of the plants and texture analysis. For example,

Seginer et al.  used a machine vision system to track the vertical movement of leaf tips of four plants

simultaneously for tomato plants. The results showed that the growing leaves had complex orientations, which

were less useful for monitoring water stress levels, but fully expanded leaves were found to have linear vertical

motions in response to the water stress level. Kacira et al.  used a machine vision technique for early and non-

invasive detection of plant water stress using features derived from the top-projected canopy area (TPCA) of

plants. The TPCA provides information about plant movement and canopy expansion. Although the use of

projected canopy area-based features for detecting plant water stress was shown to be effective in the study,

further research is needed to develop an earlier water stress detection system, which could be applied to a greater

array of plants and their varieties. Ondimu and Murase  used color co-occurrence matrix (CCM), and grey-level

co-occurrence matrix (GLCM) approaches to detect water stress in Sunagoka moss under natural growth

environments. Six texture features were extracted, and multilayer perceptron neural network models were used to

predict water stress in the study. The authors found that CCM texture features performed better than GLCM texture

features and the features extracted from hue-saturation-intensity (HSI) color space was more effective and reliable

in detecting water stress.

Few studies have detected water stress using optimization methods. For example, Hendrawan and Murase 

determined water content by using bio-inspired algorithms to predict the water content of Sunagoke moss. Here,

Target Techniques Results References

Rice
Color, shape, and texture

features analysis
Accuracy of 100% was achieved for
six pest extraction and classification

Shariff et al., 2006

Strawberry

RGB and infrared image
information was fused and

used for auto-detection of the
crop area temperature

R  between area Crop Water Stress
Index and three strawberry groups
were 0.8834, 0.8730 and 0.8851,

respectively

Li et al., 2019 

Sugar beet

Canopy cover, height,
hyperspectral reflectance, and
vegetation indices were used

as the benchmark

Mean cross-validation accuracies
were 93%, 76%, and 83% for drought,

nitrogen, and weed stress severity
classification, respectively.

Khanna et al.,
2019 

Sunagoke
moss

CCM and GLCM texture
analysis for 90 textural features
with 3 morphological features

The n-ACO algorithm performed
better with the lowest mean squared

error of 0.00175 for water content
determination.

Hendrawan &
Murase, 2011 

Tomato
CV-based image analysis

tracks the vertical movement of
leaf tips of plants

Tomato plants have linear vertical
motions in response to both water
stress levels and carbon dioxide

Seginer et al.,
1992 

Tomato
Color and shape analysis of

images with a charged coupled
device camera.

83.1% of the white flies were correctly
classified.

Bauch & Rath,
2004 

Tomato

The classification Tree model
was used to group complex
hyperspectral datasets to

provide remote visual results

The combination of modified soil
adjusted vegetation index, mrNDVI,
and photochemical reflectance index
determine water and nitrogen deficit

stress with 91.4% classification
accuracy values for the testing

samples

Elvanidi et al.,
2018 

Tomato

Convolutional neural networks
were used to detect nutrient

deficiencies based on nitrogen,
phosphorus, and potassium

Developed automated nutrition
monitoring system for tomato crops

achieved an accuracy of 86.57%

Cevallos et al.,
2020 
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neural-discrete particle swarm optimization, neural-genetic algorithms, neural-ant colony optimization, and neural-

simulated annealing algorithms were compared in their ability to identify the most important image features. The

experimental outcome was obtained from the image features analysis, which consisted of eight colors, ninety

textures, and three morphological features—the results showed that the neural-ant colony optimization algorithm

was the most effective. The framework developed by Hendrawan and Murase  was useful as the symptoms of

water stress vary from plant to plant, and it is challenging to identify the optimal feature set.

Multiple studies have detected water stress using DL; for example, An et al.  discovered that water stress

influenced crop yield. They implemented convolutional neural networks (CNNs) to classify and identify water stress

on maize to address the problem and demonstrated the DL-based approach was very promising. The ability of their

approach towards identifying and classifying water stress had an accuracy of 98.14% and 95.95%, respectively.

Ramos-Giraldo et al.  developed a machine vision system that measures water stress in corn and soybeans.

Here, a transfer learning technique and a model based on DenseNet-12 were used to predict the drought

responses with an image classification accuracy of 88%. Chandel et al.  used AlexNet, GoogLeNet, and

Inception V3 to identify water stress on maize, okra, and soybean. The DL models were tested by collecting 1200

images of each crop, whereby the performance of GoogLeNet was found to be the best, with accuracy rates of

98.3%, 97.5%, and 94.1% for maize, okra, and soybean, respectively.

Multiple studies have used water stress detection for water management. Wakamori et al.  increased the

precision of the estimation of the water stress and irrigation performance for high-quality fruit production. They

used a multimodal neural network with a clustering-based drop to estimate the plant water stress. The proposed

method improved the accuracy of water stress estimation by 21% and facilitated continuous fruit production by new

farmers. Li et al.  stated that information on water stress is crucial to planning the irrigation schedule. They

suggested an automated monitoring system of the water stress status for strawberries by combining red, green,

and blue (RGB) and an infrared image. The single-point crop water stress index (CWSI) and area of CWSI were

calculated, and their suitability as an indicator for the automatic diagnosis of plant stress was evaluated. The

results showed that the area of CWSI was stable to use as a standard because the determination coefficient

between the area CWSI and matching stomatal conductance were 0.8834, 0.8730, and 0.8851, which were greater

than the results from using only the CWSI. Nhamo et al.  suggested that unmanned aerial vehicles improve

agricultural water management and increase crop productivity. This research elucidates the role of unmanned

aerial vehicles-derived normalized difference vegetation index in evaluating crop health as influenced by water

stress and evapotranspiration.

Khanna et al.  focused on detecting the factors of stress and their combinations in crop production and curing

them. They reconstructed a three-dimensional image of the plants to use as a benchmark and estimated the water,

nitrogen, and weed stresses by using plant trait indicators. Mean cross-validation accuracies are 93%, 76%, and

83% for water, nitrogen, and weed stress severity, respectively.

1.2. Nutrient Deficiency
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The nutrient can be classified as follows: water, proteins, vitamins, minerals, and bioactive substances such as

antioxidants. In agriculture, minerals can be applied to the soil as fertilizers. The nutrient deficiency symptoms are

mainly exhibited by the leaves via changes in color and texture . Additionally, the symptoms of nutrient deficiency

include the death of plant tissue, stunted growth, or yellowing of leaves due to reduced production of chlorophyll,

which is required for photosynthesis.

Soils must have appropriate nitrogen, phosphorus, potassium, and other minerals. With the introduction of ML

technologies, neural networks can figure out the soil composition and help farmers predict the quality of crop

outcomes. Koley  used supervised ML and backpropagation neural networks to analyze organic matters,

essential plant nutrients, and micronutrients that affect crop growth and significant components of soil and

uncovered the relationship between these characteristics. Hetzroni et al.  revealed that plant nutrient deficiency

of iron, zinc, and nitrogen, is characterized by plant size, color, and spectral features of individual lettuce plants.

After collecting the images through image segmentation, the neural networks and statistical classifiers were used

to determine the plant condition. Ahmad and Reid  detected color variations in stressed maize crops by

measuring the variability of water and nitrogen levels. The authors evaluated the sensitivity of a machine vision

system by comparing RGB, HSI, and chromaticity RGB coordinates color representations. The experimental

results showed that the HSI color space could detect color variations more effectively than the RGB and

chromaticity RGB coordinates. Mao et al.  recognized the deficiency of nitrogen and potassium in tomatoes by

extracting their characteristics and features. The extracted features were combined and optimized to design the

identifying system. Story et al.  developed a machine vision system to detect calcium deficiency in lettuce and

were able to autonomously extract morphological, textual, and temporal characteristics of the plant.

Multiple studies have detected nutrient stress using combined image features and several different ML techniques.

Xu et al.  analyzed the color and texture of tomato leaves to diagnose nutrient deficiency. A genetic algorithm was

used to select features and obtain the most useful information from leaves for diagnosing deficiencies. Mao et al.

 accurately predicted the nitrogen content of lettuce with 73 spectral data extracted using multiple sensors and

by integrating spectroscopy and computer vision using an extreme learning machine model to measure the

nitrogen content. Rangel et al.  used a machine vision system to diagnose and classify grapevine leaves with

potassium deficiencies. Their results suggested that the k-nearest neighbors algorithm was more effective than a

histogram-based method, especially with less controlled environment conditions (e.g., shadow).

Recently, multiple studies have detected nutrient stress using DL. Li et al.  reviewed the advantages and

disadvantages of machine vision technology with non-destructive optical to monitor the nitrogen status of crops.

Cevallos et al.  used CNN to detect nutrient deficiencies in tomato crops. They mainly focused on detecting

nutrients, such as nitrogen, phosphorus, and potassium, and developed an automated nutrition monitoring system

for tomatoes, achieving an accuracy of 86.57%. However, to increase robustness and accuracy, they collected

more training data and made additional efforts to optimize lighting conditions. Han and Watchareeruetai 

extracted features using ResNet-50 for six types of undernourished leaves, including old and young leaves, and

calibrated logistic regression, support vector machines, and multilayer perceptron models. Among them, multilayer

perceptron outperformed the other two methods with an accuracy of 88.33%.
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1.3. Pest Stress

In addition to water and nutrient stress, pest stress is a significant concern for crop cultivation. Recently, machine

vision applications have become more efficient in recognizing pest stress in agriculture. For example, Bauch and

Rath  analyzed digital images of the plant to measure the density of an entomological pest and whiteflies using

machine vision. Their study showed that the developed machine vision system could classify the captured objects

into white flies. Similarly, Sena Jr. et al.  developed a machine vision algorithm for identifying the damage in

maize plants from fall armyworm (Spodoptera frugiperda) pest damage using digital images. The original RGB

images were transformed into index monochromatic images using the normalized excessive green index for

experimentation and using the E_G = 2G-R-BR+G+B equation. The outcomes showed that the algorithm could

perform with a classification accuracy of 94.72% using damaged and non-damaged maize plant images. Shariff et

al.  used a digital image analysis algorithm based on fuzzy logic with digital values of color, shape, and texture

features to identify pests in a paddy field where six types of pests were successfully categorized and detected.

Boissard et al.  applied a cognitive machine vision technology to detect and count the whitefly at a mature stage

of greenhouse crops. The image-processing algorithm was used with fine-tuned parameters and descriptor ranges

for all relevant numerical descriptors for these applications. However, the outcomes of the study did not provide a

satisfactory result because of the high false classification rate, which leads to erroneous pest density quantification.

Muppala and Guruviah  detected the pest traps in the field using RGB images and summarized the machine

vision technologies not only for pests but also for diseases and weeds detection. Rubanga et al.  used four pre-

trained architectures (i.e., VGG 16, VGG 19, ResNet, and Inception-V3) to prevent and control Tuba absoluta,

which causes 80 to 100 % cultivation loss problems in growing tomatoes. Among these, Inception-V3 had the

highest accuracy of pest stress severity estimation.

2. Detection of Diseases

Machine vision processes and analyzes images captured from the environment and can detect disease through

trained algorithms. Through this, many processes occurring in agriculture can be automated and controlled, and it

is used to test the quality of the final product. There are five essential components in machine vision mechanisms.

Firstly, appropriate illumination techniques (e.g., diffuse illumination, partial bright field illumination, dark field

illumination, etc.) should be used to obtain important data from the sensor. Then, the image is captured through a

lens and transmitted to an image sensor inside a camera. The image sensor inside a machine vision camera

converts the light captured by the lens into a digital image. At this time, resolution, the number of pixels generated

by the sensor, and sensitivity, the minimum quantity required to detect output change, are critical specifications for

the image sensor. The machine vision system’s vision processing unit then uses algorithms to analyze the digital

image produced by the sensor. It is processed with algorithms pre-programmed with ML and DL. The last is the

communication system, where the decisions made by the vision processing unit are communicated to specific

mechanical elements. 

2.1. Disease Detection on Leaves
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Plant leaf diseases have become a major challenge as they can substantially reduce the quality and quantity of

horticultural crops . Thus, many studies have explored the development of automated detection and

classification techniques for plant leaf diseases using machine vision . Al Bashish et al.  used k-

means clustering and ANN image processing to cluster and classify disease-affected plant leaves, respectively.

Their algorithm tested on five plant diseases (i.e., ashen mold, cottony mold, early scorch, late scorch, and tiny

whiteness) and achieved a higher accuracy with ANN. The proposed technique was slower in computation and

would not be appropriate for real-time application. An improvement of the methods from Al Bashish et al.  were

made by Al-Hiary et al.  and achieved a 20% increase in computational efficiency. Using ANN, they developed a

fast machine vision-based automatic detection system for plant leaf diseases based on images of infected plants.

Although the authors successfully increased the accuracy in detection, the computation time for automatic

detection was still high and remained unsuitable for real-time detection on a field scale. To further evaluate ANN

approaches, Omrani et al.  proposed a radial basis function-based support vector regression approach, which

proved to be more effective than a polynomial-based support vector regression and ANN for apple disease (i.e.,

black spot, apple leaf miner pest and Alternaria) detection. Arivazhagan et al.  identified early and late scorch

and fungal diseases in beans by using texture features to detect the symptoms of the disease as quickly as they

appear on plant leaves. The proposed system was developed with a software solution that extracted texture

features from RGB images. Camargo and Smith  developed an image-processing-based algorithm for

identifying disease symptoms from an analysis of color images in cotton crops. The results suggested that the I3

channel achieved an optimal pixel matching of 69.9% with the lowest level of misclassification of 8.7% than others.

Chaudhary et al.  compared the effects of HSI, CIELAB, and YCbCr color space for disease spot segmentation

in plant leaves using image processing techniques. A median filter was applied for image smoothing, and Otsu’s

methods were used to calculate the threshold to find the disease spot.

Choudhary and Gulati  reviewed several studies that detected the scorch and spot diseases on several plant

leaves, such as potatoes, using color, texture, and edge features with a combination of CCM and ANN. A k-means

clustering was used for masking green pixels, which could remove the masked cells inside the boundaries of

infected clusters. Kanjalkar and Lokhande  extracted color, size, proximity, and centroid features from leaves to

detect four diseases in cotton and soybeans. The extracted features were classified using an ANN classifier and

showed lower accuracy in all cases of leaf diseases. Naikwadi and Amoda  identified plant leaf diseases using

the histogram matching technique. Histogram matching is based on edge detection technique and color texture

due to the appearance of disease symptoms on leaves. Their study showed that the developed algorithm could

successfully detect and classify diseases with precision between 83% and 94% . Muthukannan et al. 

proposed an ANN-based image processing technique with feed-forward neural network, learning vector

quantization and radial basis function networks to assess diseased plants by processing the set of shape and

texture features. Texture features were extracted from contrast, homogeneity, energy, correlation, and shape

features from an area of the leaf surface. The experimental outcome revealed that the feed-forward neural network

performed better with an overall detection accuracy of 90.7% in diseases that affect bean and bitter gourd leaves;

however, learning vector quantization resulted in higher accuracy of 95.1% for bean leaves.
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Wu et al.  used shape features with a probabilistic neural network to identify 32 species of Chinese plants from

images of single leaves and compared the results against several other classifiers. The probabilistic neural network

extracted 12 leaf features and reduced them to five principal variables, and finally, this algorithm can classify 32

plants with an accuracy of >90%. Singh and Misra  applied a genetic algorithm to detect plant diseases using

the image segmentation process with soft computing techniques. Images were collected from banana, beans,

jackfruit, lemon, mango, potato, tomato, and sapota plant species. The results showed that the support vector

machine (SVM) classifier provided an accuracy of > 90% for rose, banana, lemon, and beans leaf disease

classification. Kutty et al.  classified watermelon anthracnose and downy mildew leaf diseases using neural

networks. The color features were extracted from the RGB color model, where the identified regions of interest

were used to extract the RGB pixel color indices. Zhang et al.  carried out disease detection from images of

cucumber leaves using sparse representation (SR) classification with the k-means clustering algorithm. The

technique comprised a series of procedures, which included segmenting diseased leaf images by k-means

clustering; extracting shape and color features from lesion information; and classifying diseased leaf images using

SR. The technique was effective in identifying seven major cucumber diseases.

Recently, multiple studies have detected leaf diseases using DL. Sethy et al.  suggested that ResNet-50 and

SVM were superior to the other 11 CNN models in classifying four kinds of rice leaf diseases. Karthik et al. 

achieved an accuracy of 98% in detecting the three types of infection on the tomato leaves by using residual

learning and a deep network. Xie et al.  used Faster R-CNN to detect four common leaf diseases in grapes and

increased the image dataset from 4,449 to 62,286 using a data augmentation technique. Comprehensively,

Jogekar and Tiwari  reviewed the studies that used DL techniques to identify and diagnose the disease on the

plant leaves.

2.2. Diseases Detection on Fruits and Vegetables

Detecting defect affecting each fruit is critical for optimizing their market value and ensuring their quality to

consumers. López-García et al.  detected the skin defects of citrus fruits using an algorithm combining

multivariate image analysis and principal component analysis. The classification rate was acceptable, with an

accuracy of 91.5%; however, the algorithm’s complexity constrained the recognition speed. Kim et al.  classified

peel diseases in grapefruit using color co-occurrence matrix (CCM)-based color texture analysis with 39 features

from HSI color space. Images were acquired from grapefruits with five common diseases: canker, copper, burn,

melanosis, wind scar, and greasy spot peel conditions and normal. However, the model with 14 features achieved

higher accuracy.

Qin et al.  applied hyperspectral images with 450-930 nm wavelengths in Ruby red grapefruit to detect citrus

canker and other damages. The classification results yielded a 96% accuracy for differentiating the diseased,

damaged, and healthy fruits using a spectral information divergence. Blasco et al.  developed a machine vision

system using a region-growing segmentation algorithm. Images were taken with a Sony XC-003P camera and

fluorescent tube light from mandarin fruit. The defective regions were determined and classified fruit into defective

and non-defective classes. Blasco et al.  applied a multispectral inspection system to detect 11 types of defects
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in citrus. The results showed that severe defects were successfully detected in 94% of the cases, and most errors

occurred due to confusion between the defects caused by medfly and oleocellosis disorder, which is caused by the

presence of phytotoxic rind oils on the rind tissue.

Li et al.  used a hyperspectral imaging system to detect common skin defects in orange fruit. Principal

component analysis was used to select the most discriminant wavelengths in the 400-1000 nm range. The results

showed a better detection when using the third principal component images, which consisted of six wavelengths

(630, 691, 769, 786, 810, and 875 nm) and the second principal component images, which consisted of two

wavelengths (691 and 769 nm). The disadvantage of their approach was that it could not differentiate between

different types of defects. In a subsequent study, Li et al.  combined lighting transformation and image ratio

methods to detect common surface defects in oranges. Detection of defects, such as wind scarring, thrips scarring,

scale infestation, dehiscent fruit, anthracnose, copper burn, and canker spot had higher accuracies. Rong et al. 

experimented with a machine vision with segmentation algorithms to detect surface defects on oranges considering

an uneven light distribution. The segmentation method was successfully performed with different surface defects,

such as wind scarring, thrips scarring, insect injury, scale infestation, copper burn, canker spot, dehiscent fruit, and

phytotoxicity.

Similar to evaluating citrus fruits, many studies have developed machine vision systems to detect the defects in

apples via image processing techniques . For example, Dubey and Jalal  classified diseases on apples

using an image processing technique based on k-means clustering techniques for image segmentation. Color and

texture features were extracted using four different techniques, such as global color histogram, color coherence

vector, local binary pattern, and complete local binary pattern, to validate the accuracy and efficiency. Their study

showed that their proposed technique could significantly support the accurate detection and automated

classification of apple fruit diseases. Shahin et al.  applied neural networks to classify apples according to

surface bruises, and discriminant analysis was used for selecting the salient features. Their study used line-scan X-

ray imaging to examine new (1 day) and old (30 days) bruises in Golden and Red Delicious apples. They found

that new bruises were not adequately separated using their methodology. Kleynen et al.  detected Jonagold

apple defects using a correlation-based pattern-matching technique in a multispectral vision system. The results

showed that 17% of defects were misclassified, and recognition rates for stems and calyxes were 91 and 92%,

respectively. The authors suggested the pattern matching method has been widely applied for object recognition,

but the major disadvantage is that of high dependency on the pattern used.

Machine vision is also used in the detection of blemishes on potatoes , tomatoes , and olives . Barnes et

al.  used a machine vision based accurate AdaBoost algorithm for potato defect classification. The minimalist

classifiers with only ten selected features using the real AdaBoost algorithm showed detection accuracies of 89.6%

and 89.5% for white and red potatoes, respectively, with less calculation requirement in the case of blemishes

detection. Laykin et al.  used a color camera that captures images of the full view of an underlying tomato for

automatic inspection. Four features were extracted: color, color homogeneity, bruise, and shape. The authors

recorded different stages of tomato color development to measure the quality of the tomato. They also considered

the color change of homogeneity between the harvest date and after storage. Diaz et al.  detected bruises and
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defects in olives by using a machine vision technique with three algorithms. The ANN algorithm classified olives

with higher accuracy than partial least square regression and Mahalanobis algorithms. Ariana et al.  developed a

machine vision system using near-infrared hyperspectral reflectance imaging for cucumber bruise detection. Three

classification algorithms were tested, and the results showed that the band ratio and difference methods had

similar performance but were better than the principal component analysis during classification. Wang et al. 

used a liquid crystal tunable filter-based hyperspectral imaging system to detect sour skin, which is primarily a

disease of onions. The experimental results suggested that the best contrast was in the spectral region of 1200-

1300 nm and the sour skin infected region was darker than the healthy flesh region. In addition, the spectral range

of 1400-1500 nm showed better contrast between the Vidalia sweet onion surface dry layer and fresh inner layer.

Recently, multiple studies have detected crop and vegetable diseases using DL. Elsharif et al.  used a deep

CNN to identify four types of potatoes (red, red-washed, sweet, and white). The model’s validity was verified by

obtaining an accuracy of 99.5% for the test set. Kukreja and Dhiman  achieved a classification accuracy of 67%

in detecting normal and damaged citrus fruits using 150 original images. Subsequently, they showed a better

performance of 89.1% by including data augmentation and by increasing the number of images to 1200. El-

Mashharawi et al.  reported the potential of DL identifying the types of grapes with 4565 images and achieved

100% accuracy by using the image dataset from 30% of the validation set.
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