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Vitamin D has been recently pointed out, and abnormalities of the vitamin D axis have been described in both in vitro and

in vivo models of inflammatory bowel diseases (IBD) and arthritis.
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1. Introduction

Bone metabolism is a complex and dynamic process that tightly regulates the composition of the skeleton of human body.

Besides their structural function, the bones play a fundamental role for hosting, in the bone marrow, hematopoietic cells

(HSCs), myeloid and lymphoid progenitors, and mature cell of the immune system. Those cells share the same milieu of

the cells regulating the bone metabolism (e.g., osteoblasts, osteoclasts, and osteocytes) and are closely connected by

reciprocal interactions mediated by multiple molecular mediators, such as cytokines, chemokines, transcription factors,

and signaling molecules . The potential relation between osteogenesis and immune system has been highlighted since

the 1970s in studies regarding periodontitis . In 2000, the term “osteoimmunology” was coined to define the complex

interwoven link between these two systems, particularly evident in T-cells mediated regulation of osteoclastogenesis

observed in autoimmune arthritis . Multiple molecular mediators have shown a potential role in the osteoimmune

network . Osteoblasts progenitors produce stem cell factors and CXC-chemokine ligand 12 (CXCL12) that are crucial for

HSC maintenance and differentiation, and mature osteoblasts produce interleukin-7 (IL-7) that has an important role in the

regulation of the lymphoid lineage. Osteoclasts produce proteolytic enzymes, such as matrix-metallopeptidase 9 and

cathepsin K, that contribute to the HSC mobilization. Moreover, the bone reabsorption process is essential for the bone

marrow cavity formation as well as for the increase in calcium level and the release of some factors, e.g., transforming

growth factor (TGF)-β), that have a role in HSC regulation. Osteocytes regulate lymphoid and myeloid differentiation

through the production of sclerostin and granulocyte colony-stimulating factor (G-CSF). Conversely, the activated immune

system and the aberrant inflammation may affect osteosynthesis through the production of IL-17 by Th17 cells and the

induction of the receptor activator of nuclear factor-κB ligand (RANKL) further amplified by the pro-inflammatory cytokines

IL-1, IL-6, and tumor necrosis factor (TNF), which promote osteoclastogenesis. In line with this vision, the bone alterations

observed in several immune diseases are no longer considered related merely to malnutrition or steroids use, and the

common osteoimmune molecular pathway has been proposed as a novel potential target for therapeutic strategies.

2. Vitamin D and Intestinal Permeability

Vitamin D is a dietary nutrient with demonstrated anti-inflammatory and immunomodulating functions. Recent data

suggest that the intestinal mucosal barrier is a possible trait d’union between vitamin D, immune system, and gut

microbiota. The intestinal mucosa is both an absorption site that allows entry of food-derived metabolites and a physical

barrier that blocks pathogens translocation, thus protecting against infection with enteropathogenic microorganisms and

intestinal inflammation. The intestinal epithelium is composed by enterocytes and specialized epithelial cells, such as

Goblet and Paneth cells. Goblet cells produce mucus that forms a layer between the epithelium and the luminal contents,

whereas Paneth cells release antibacterial molecules (e.g., α- and β-defensins, cathelicidin) . Sub-mucosal cells of the

innate immunity, such as macrophages and dendritic cells (DCs), clear microorganisms and luminal particles that

penetrate the first line of defense of the epithelial/mucus layer, thus containing the immune inflammatory reaction. The

presence of different structures between adjacent epithelial cells, such as tight junctions (occludin, proteins of the zonula

occludens, and claudins), adherens junctions (E-cadherin, catenins, nectin), and desmosomes, is also essential in

maintaining the resistance of the intestinal mucosa .

In view of the above, it is not surprising that dysregulation in these components, such as defective expression of

defensins, upregulation of claudin-2, or increased apoptosis of epithelial cells, can contribute to the disruption of the

mucosal barrier, as reported in IBD and SpA patients . In particular, it has been hypothesized that, in SpA
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patients, the increased intestinal permeability, probably induced by genetic factors (HLA-B27), could induce a disruption of

the basal membrane, hyperplasia of goblet cells, and activation of Paneth cells producing high levels of anti-microbial

peptides (AMPs) and IL-23, leading to exaggerated antigenic stimulation and activation of effector T-cells of the intestinal

mucosa .

Vitamin D/VDR signaling can modulate the number and the functionality of tight junction proteins in both in vitro and in

vivo studies on transgenic mice. VDR knockout and vitamin D-deficient mice displayed epithelial barrier dysfunction with

hyperfunction of claudin-2, decreased transepithelial resistance, and increased susceptibility to invasive bacteria

colonization and colitis . Conversely, transgenic mice overexpressing VDR in the gut epithelium have

resistance to colitis with decreased mucosal inflammation and apoptosis of epithelial cells . In addition, vitamin D

supplementation has been shown to ameliorate the clinical symptoms and the histologic findings in Dextran sulphate

sodium (DSS) treated mice by preserving the expression of E-cadherin, claudin, and zonula occludens in Caco-2 cells .

3. Vitamin D and Gut Microbiota Homeostasis

The gut microbiota is a complex ecosystem of archaea, bacteria, fungi, and viruses that is essential for digestion of

complex carbohydrates as well as absorption and supply of vitamins, but it exerts also immunomodulatory, metabolic, and

anti-infective functions. Any imbalance in the gut microbiota resulting in a loss or overgrowth of a species and/or reduction

in microbial diversity is defined as dysbiosis. In the last two decades, dysbiosis of the gut microbiota has been described

in different pathologies such as depression, IBD, RA, and SpA .

The impact of diet and nutrients on the gut microbiota is suggested by the differences in its composition/variety between

geographically and life-style distant populations . It is known, indeed, that a western diet rich in animal proteins, simple

sugars, and saturated fats is characterized by a reduction in the variety of microbiomes and is associated with the

Bacteroides enterotype, whereas a diet habit rich in fruits and vegetables leads to a prevalence of Prevotella . Dietary

intervention can also impact the gut microbiota composition and richness. Foods rich in fibers, such as those present in

the Mediterranean diet (MD), indeed, are degraded by Firmicutes and Bacteroidetes into SCFA, such as butyrate ,

which can have a protective role on the gut barrier by reducing its permeability. We have recently found that RA patients

with high adherence to MD have a lower disease activity joined to a healthier gut microbiota composition with a significant

decrease in Lactobacillaceae and an almost complete absence of Prevotella copri in comparison with the low/moderate

adherence patients .

It has been also shown that vitamin D can also influence the composition of the gut microbiome in animal models .

VDR KO mice with defective autophagy have consequent gut dysbiosis with depletion of Lactobacillus and Bacteroides.
Moreover, administration of butyrate can increase intestinal VDR expression and suppress inflammation in an

experimental colitis model .

Results on human studies have been recently summarized in a systematic review by Waterhouse et al. . Most of the

fourteen analyzed studies evaluated both microbiota diversity and composition and reported significant association

between vitamin D and specific changes in gut microbiota. However, there was scarce consistency in the taxa affected

and the direction of effect. Indeed, results are hard to compare due to several variables, in particular the heterogeneity in

study designs (e.g., cross-sectional vs. prospective, randomized trials vs. observational study), the differences in the

assessment of vitamin D (e.g., self-reported dietary, nutritional supplement vitamin D i6ntake, serum 25(OH)D

administration), and in the population setting (e.g., healthy people, IBD, cystic fibrosis, multiple sclerosis, infants, pregnant

women). Moreover, most of the studies were conducted on very limited samples, and only some of them adjusted for

confounding factors such as body mass index, smoking, physical activity, comorbidity, and therapy. Three studies

evaluated the effect of vitamin D on the gut microbiota in UC and CD patients. Administration of vitamin D demonstrated a

positive effect in modulating the intestinal bacterial composition in both CD and UC patients, leading to a reduced

intestinal inflammation in patients with active UC, with a concomitant increase in Enterobacteriaceae without changes in

microbial diversity . An additional study published in 2020 was in contrast with these results. In fact, the authors

found that reduced levels of vitamin D observed in winter/spring were associated with more balanced microbiome

composition both in UC and CD. In particular, they identified lower level of Escherichia/Shigella in stool of UC patients and

increased level of Bacteroidetes in the stool of CD patients accompanied by lower proportion of Clostridium spp. and

higher proportion of Firmicutes in the mucosa . Another study that evaluated samples of the intestinal mucosa found a

decrease in gammaproteobacteria and increased Bacteroidetes in the microbiome of the upper gastrointestinal tract of

patients receiving vitamin D supplementation without significant effects on terminal ileum, ascending colon, sigmoid colon,

and stools . Of note, the only GWAS study demonstrated that the VDR gene variation correlated with beta diversity in

both humans and mice .
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Assuming that microbiota and vitamin D have a bidirectional and possible feedback interaction, few studies have

evaluated the role of bacteria in modulating vitamin D levels. In fact, it is known that both commensal and pathogenic

bacteria can regulate VDR expression and location in mice ; some bacteria have enzymes involved in the hydroxylation

of steroids and can process and activate vitamin D . Butyrate produced by some gut microorganisms such as

Firmicutes and Bacteroidetes can increase VDR expression in the epithelial cells of mice models . In addition, the

microbiota can influence vitamin D metabolism through the fibroblast growth factor (FGF)-23 (the protein that regulates

the 1,25(OH)2D3 hydroxylating enzyme, CYP27B1). Germ free mice, indeed, have low levels of vitamin D and high FGF-

23, and their colonization with bacteria leads to normalization of vitamin D levels and reduced FGF-23 .
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