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Three-dimensional (3D) object detection is a topic that has gained interest within the scientific community dedicated to

vehicle automation. Based on LiDAR and stereo cameras, and considering only deep learning-based approaches, 3D

object detection methods are classified according to the type of input data: camera-based, LiDAR-based, and fusion-

based 3D object detection.
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1. Introduction

Object detection is one of the main components of computer vision aimed at detecting and classifying objects in digital

images. Although there is great interest in the subject of 2D object detection, the scope of detection tools has increased

with the introduction of 3D object detection, which has become an extremely popular topic, especially for autonomous

driving. In this case, 3D object detection is more relevant than 2D object detection since it provides more spatial

information: location, direction, and size.

For each object of interest in an image, a 3D object detector produces a 3D bounding box with its corresponding class

label. A 3D bounding box can be encoded as a set of seven parameters : (𝑥,𝑦,𝑧,ℎ,𝑤,𝑙,𝜃), including the coordinates of the

object center (𝑥,𝑦,𝑧), the size of the object (height, width, and length), and its heading angle (𝜃). At the hardware level, the

technology involved in the object detection process mainly includes the use of mono and stereo cameras, with visible light

or infrared cameras, RADAR (radio detection and ranging), and LiDAR (light detection and ranging), and gated cameras.

In fact, the current top-performing methods in 3D object detection are based on the use of LiDAR (Figure 1) .

Figure 1. Example of a road scene where detection results using LiDAR technology is used. Detected objects are

surrounded by bounding boxes. The green boxes represent detection while the red ones represent ground truth.

However, highly accurate LiDAR sensors are extremely costly (the price of a 64-beam model is around USD 75,000 ),

which incurs a hefty premium for autonomous driving hardware. Alternatively, systems based only on camera sensors

have also received much attention because of their low costs and wide range of use. For example, in , the authors claim

that instead of using expensive LiDAR sensors for accurate depth information, the alternative is to use pseudo-LiDAR,

which has been introduced as a promising alternative at a much lower cost based solely on stereo images. The paper

presents the advances to the pseudo-LiDAR framework through improvements in stereo depth estimation. Similarly, in ,

instead of using a LiDAR sensor, the authors provide a simple and effective one-stage stereo-based 3D detection pipeline

that jointly estimates depth and detects 3D objects in an end-to-end learning manner. These authors claim that this

method outperforms previous stereo-based 3D detectors and even achieves comparable performance to a few LiDAR-

based methods on the KITTI 3D object detection leaderboard. Another example is presented in . To tackle the problem

of high variance in depth estimation accuracy with a video sensor, the authors propose CG-Stereo, a confidence-guided

stereo 3D object detection pipeline that uses separate decoders for foreground and background pixels during depth

estimation, and leverages the confidence estimation from the depth estimation network as a soft attention mechanism in
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the 3D object detector. The authors say that their approach outperforms all state-of-the-art stereo-based 3D detectors on

the KITTI benchmark.

Another interesting solution presented in the literature is the combination of LiDAR and a stereo camera. These methods

exploit the fact that LiDAR will complete the vision and information provided by the camera, by adding notions of size and

distance to the different objects that make up the environment. For example, the proposed method in  takes advantage

of the fact that it is possible to reconstruct a 3D environment using images from stereo cameras, making it possible to

extract a depth map from stereo camera information and enrich it with the data provided by the LiDAR sensor (height,

width, length, and heading angle).

2. Camera-LiDAR-Based 3D Object Detection Methods

2.1. Camera-Based Methods

Some of the first algorithms were keypoint/shape-based methods. In 2017, Chabot et al.  presented Deep MANTA, one

of the first works on camera-based 3D object detection. This architecture recognizes 2D keypoints and uses 2D-to-3D

matching. This algorithm has two steps: (1) a RCNN architecture to detect and refine 2D bounding boxes and keypoints,

and (2) a predicted template similarity to pick the best matching 3D model inside a 3D dataset. However, the main

disadvantage of this method is the excessive time required for 2D/3D matching.

On the other hand, the pseudo-point cloud-based methods arose from the idea of simulating LiDAR from a stereo camera.

These methods typically convert data from 2D to 3D by using extrinsic calibration information between the camera and

LiDAR. For example, in Xu and Chen , a depth map from RGB images was predicted and then concatenated as RGB-

D (where D is the datum provided by the depth map) to form a tensor of six channels (RGB image, Z-depth, height,

distance) used to regress the 3D bounding boxes. For example, the Pseudo-LiDAR method presented by Wang et al. 

was inspired by that article, based on the idea of data representation transformation to estimate the depth map from an

RGB image using a depth estimation neural network. Next, the predicted depth map is converted into a pseudo-3D point

cloud by projecting all pixels with depth information into LiDAR coordinates. Then, the pseudo-point cloud was ready to be

used as input in any LiDAR-based object detection method. The ability to reconstruct a 3D point cloud from less

expensive monocular or stereo cameras is a valuable feature of this approach. Based on Pseudo-LiDAR , the same

authors proposed Pseudo-LiDAR++  through a stereo depth estimation neural network (SDN). They proposed a depth

cost volume to directly predict the depth map instead of predicting the disparity map, as proposed by Chang and Chen

. This boosts the predicted depth map accuracy. In addition, to improve the accuracy of the predicted depth map, they

proposed a depth correction phase using a simulated four-beam LiDAR to regularise the predicted depth map.

2.2. LiDAR-Based Methods

Due to the irregular, unstructured, and unordered nature of point clouds , they are often handled in one of three ways:

projecting point clouds to generate a regular pseudo-image, sub-sampling point cloud cells called voxels, or encoding raw

point clouds with a sequence of multi-layer perceptron (MLP), as proposed in . For 3D object detection, LiDAR-based

methods are usually classified into four categories: view-based, voxel-based, point-based, and hybrid point-voxel-based

detection.

View-based detection methods, such as the one presented by Beltran et al. , project a point cloud onto a 2D image

space to obtain a regular structure as an initial stage. Generally, a CNN (convolutional neural network) is then used to

take advantage of this information . The most common types of projection are bird’s eye view (BEV), front view (FV)

, range view (RV) , and spherical view (SV) .

The voxel-based method maps a point cloud into 3D grids (voxels) as an initial stage. In 2017, Engelcke et al. 

presented their LiDAR-based detector Vote3Deep. In this method, LiDAR point clouds are discretized into a sparse 3D

grid. Then, items are detected using a sliding-window search with a fixed-size window with N different orientations. In

each window, a CNN performs binary classification.

Point-based methods usually deal with the raw point cloud directly instead of converting the point cloud to a regular

structure. Qi et al.  introduced PointNet, a pioneering study on deep learning-based architectures for processing point

cloud raw data for classification and semantic segmentation. They argue that as the point cloud is unordered, the

architecture should be permutation-invariant for all points.
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2.3. Fusion-Based Methods

Image-based object detection is an advanced research area. In addition, cameras are cheap and provide a lot of texture

information about objects based on color and edges. However, images lack depth information, which is extremely

important for 3D tasks. Even with a stereo camera, the resulting depth map lacks accuracy. On the other hand, although

LiDAR does not give texture information, LiDAR-based methods show a very high performance compared to camera-

based methods. However, there are still limitations (such as obscure information) regarding object categories. For

example, in some cases, it is difficult to distinguish whether it is a car or a bush based on point cloud data alone, while this

can be handled more easily by looking at the image data. This is why methods based on data fusion have been

developed exploiting the advantages of both sensors. In the literature, there are three main fusion methods: early fusion,

where the raw data are fused at the data level or feature level to form a tensor data of numerous channels; late fusion,

where the fusion takes place at the decision level; and deep fusion, where fusion is carefully constructed to combine the

advantages of both early and late fusion systems.

For example, Qi et al.  presented the Frustum-PointNet architecture, which is composed of three phases: 3D frustum

proposal, 3D instance segmentation, and 3D bounding box estimation. The first phase of this procedure is to produce 2D

region proposals. By extruding the matching 2D region proposal under a 3D projection, a 3D frustum proposal is

generated. The instance segmentation stage feeds the frustum proposal point cloud to the PointNet segmentation network

, which classifies each point and determines if it is linked with the discovered item. In the last stage, all positively

classified points are loaded into a new PointNet that estimates 3D bounding box parameters.

Chen et al.  introduced MV3D, where the LiDAR point cloud is projected onto both a 2D top view and a 2D front view,

from which feature maps are extracted using two separate CNN. The LiDAR top-view feature map is passed to an RPN

(Region Proposal Network) to output proposal 3D bounding boxes. Each 3D proposal is projected onto the feature maps

of all three views and a fixed-size feature vector is extracted for each view using pooling. The three feature vectors are

then fused in a region-based fusion network, which finally outputs class scores and regresses 3D bounding box residuals.

A similar approach, also utilizing the PointNet architecture, was independently presented in Xu et al. . Just as in

Frustum-PointNet, a 2D object detector is used to extract 2D region proposals (ResNet), which are extruded to the

corresponding frustum point cloud. Each frustum is fed to a PointNet, extracting both point-wise feature vectors and a

global LiDAR feature vector. Each 2D image region is also fed to a CNN that extracts an image feature vector. For each

point in the frustum, its point-wise feature vector is concatenated with both the global LiDAR feature vector and the image

feature vector. This concatenated vector is finally fed to a shared MLP, outputting 8 × 3 values for each point. The output

corresponds to predicted (𝑥,𝑦,𝑧

) offsets relative to the point for each of the eight 3D bounding box corners. The points in the frustum are thus used as

dense spatial anchors. The MLP also outputs a confidence score for each point, and in inference, the bounding box

corresponding to the highest-scoring point is chosen as the final prediction.

Ku et al.  introduced another fusion architecture named AVOD. Here, the LiDAR point cloud is projected onto a 2D top-

view, from which a feature map is extracted by a CNN. A second CNN is used to extract a feature map also from the input

image. The two feature maps are shared by two subnetworks: an RPN and a second-stage detection network. The

reported 3D detection performance is a slight improvement compared to ; it is comparable to that of  for cars but

somewhat lower for pedestrians and cyclists. The authors also found that using both image and LiDAR features in the

RPN, as compared to only using LiDAR features, has virtually no effect on the performance of cars but a significant

positive effect for pedestrians and cyclists.

Similar to some of the methods mentioned above, the SLS–Fusion method presented in Mai et al.  resulted from this

idea. Roughly, the SLS–Fusion method estimates the depth maps from a stereo camera and the projected LiDAR depth

maps. However, as Zhu et al.  point out, this produces a mismatch between the resolution of point clouds and RGB

images. Specifically, taking the sparse points as the multi-modal data aggregation locations causes severe information

loss for high-resolution images, which in turn undermines the effectiveness of multi-sensor fusion.

More research is needed on the limits of a 3D object detection model composed of a LiDAR and a stereo camera.

Knowing the role of each sensor will allow for the optimization and configuration of the proposed methods.
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