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Recent developments in modeling and analysis of nanostructures are illustrated and discussed in this paper.

Starting with the early theories of nonlocal elastic continua, a thorough investigation of continuum nano-mechanics

is provided. Two-phase local/nonlocal models are shown as possible theories to recover consistency of the strain-

driven purely integral theory, provided that the mixture parameter is not vanishing. Ground-breaking nonlocal

methodologies based on the well-posed stress-driven formulation are shown and commented upon as effective

strategies to capture scale-dependent mechanical behaviors. Static and dynamic problems of nanostructures are

investigated, ranging from higher-order and curved nanobeams to nanoplates. Geometrically nonlinear problems of

small-scale inflected structures undergoing large configuration changes are addressed in the framework of integral

elasticity. Nonlocal methodologies for modeling and analysis of structural assemblages as well as of nanobeams

laying on nanofoundations are illustrated along with benchmark applicative examples.

nonlocal continuum mechanics  nanostructures  integral elasticity

According to traditional ideas in continuum mechanics, constitutive equations are those intrinsic relations providing

response variables at a material point of a continuum as functions of variables assessed at the same point. Thus,

classical constitutive laws support the axiom of local action, stating that response variables at a material point are

not affected by the state of the continuum at distant material points. However, in determining the application field of

local continuum mechanics, notion of length scale plays a crucial role. Indeed, if a continuum’s external

characteristic length (i.e., its structural dimension or wavelength) is significantly greater than its internal

characteristic length (its interatomic distance or the size of its heterogeneities), then classical constitutive laws can

accurately predict the outcome. In contrast, local theories are unable to capture the effective mechanical behavior if

the external and internal characteristic lengths are comparable, and nonlocality thus becomes necessary to

account for long-range interaction forces. According to nonlocal continuum field theories, constitutive response at a

material point of a continuum depends on the state of all points and is thus characterized by response functionals

.

Nowadays, modeling and optimization of smaller and smaller smart devices represent one of the most promising

fields of application of nonlocal continuum mechanics due to the growing interest in nanoscience and

nanotechnology. The development of mathematical tools able to capture size effects in small-scale structures has

been pushed by the increasing attention to miniaturized electromechanical devices, with several potential

applications in engineering science. In this regard, the main purpose consists of conceiving effective and

computationally efficient methodologies to model size-dependent behavior and design small-scale structures

[1][2]



Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements | Encyclopedia.pub

https://encyclopedia.pub/entry/41842 2/5

exploiting unconventional tools provided by nonlocal continuum mechanics, rather than time-consuming atomistic

approaches .

From the mathematical point of view, nonlocal theories provide enriched constitutive laws that are not pointwise

and in which long distance interactions are described by internal characteristic lengths. In , Eringen developed

one of the first theories of nonlocal integral elasticity, according to which stress is the convolution integral between

the elastic strain field and a proper averaging kernel governed by an internal characteristic length. Such an integral

theory is thus referred to as a strain-driven nonlocal theory, as proposed in . Eringen’s constitutive law has been

efficiently adopted to solve screw dislocation and surface wave problems, but it turned out to be inconsistent when

applied to structural problems due to an incompatibility between the constitutive law and equilibrium condition.

Application of the strain-driven nonlocal model to structural mechanics led to alleged paradoxical results, as

detected in  and definitely clarified by .

In order to address the issues related to the strain-driven nonlocal theory, several formulations have been

conceived in recent years. Among these improved elasticity formulations, two-phase (local and nonlocal) mixture

models stand out as a useful tool to overcome the ill-posedness of Eringen’s theory and effectively capture scale-

dependent mechanical behaviors. A two-phase model based on a convex combination of local and strain-driven

integral responses was first proposed by Eringen in . The mixture theory of elasticity was then restored in 

 to formulate well-posed structural problems, assuming that the local fraction of the two-phase law was not

vanishing . An alternative mixture theory to bypass difficulties of the strain-driven purely nonlocal law was

proposed in , namely the strain difference-based nonlocal model of elasticity.

To account for scale effects in nanostructures, other possible theories assume that constitutive responses depend

on both elastic strain fields and higher-order gradient strain fields. Eringen’s differential law and the strain gradient

model of elasticity were interestingly combined by Aifantis in . Lim et al. coupled Eringen’s nonlocal law

with the strain gradient elasticity  to address wave propagation problems in unbounded domains, leading to a

higher-order differential constitutive equation. In the framework of structural mechanics, the necessity of

constitutive boundary conditions associated with the differential formulation of nonlocal gradient elasticity was

inferred by Barretta and Marotti de Sciarra in , where the relevant differential constitutive problem was

definitely established. The theory of elastic material surfaces conceived by Gurtin and Murdoch in  is another

important tool for the modeling of nano-mechanical behaviors. In this framework, a combination of nonlocal integral

elasticity and surface elasticity was recently provided in  to assess the size-dependent mechanics of

nanostructures. Nonlocal mathematical models have also been proposed to capture non-conventional phenomena,

such as electric polarization in ferroelectric materials , and to address diffusion problems in heterogeneous

structures .

A total remedy to the issues related to the strain-driven nonlocal elasticity was definitely overcome by the stress-

driven integral formulation conceived by Romano and Barretta in . According to this theory, size-dependent

mechanical behaviors can be modeled by a new nonlocal elastic law based on a stress-driven formulation that

provides a consistent approach inside the integral elasticity framework. The nonlocal elastic strain field at a point of
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a continuum is given as convolution integral between the local elastic strain and a scalar averaging kernel. The

relevant continuum problem is well posed, and size effects due to long range interactions can be effectively

captured . In , the stress-driven nonlocal elasticity was generalized to a two-phase (local/nonlocal)

model that is able to capture both softening and stiffening elastic responses. Moreover, the mixture methodology

based on the stress-driven approach is well posed for any local fraction. This theory has been successfully applied

in recent contributions, such as in .

Nowadays, growing attention is being paid to modeling and design of ultra-small structural systems exploiting

consistent methodologies of nonlocal continuum mechanics. A review on the topic was contributed in , in which

nano-mechanical behavior is investigated by means of strain-driven-based formulations of nonlocal elasticity. A

brief overview can be found in , where a collection of works concerning applications of nonlocal theories is

provided with a main reference to strain-driven formulations. In the present treatment, a comprehensive overview

of new developments and outcomes in the framework of nonlocal continuum mechanics applied to nanostructures

is provided. Starting from early formulations of nonlocal mechanics, recent theories of integral elasticity are

illustrated and exploited to solve challenging problems of current nanotechnological interest. Innovative nonlocal

methodologies to solve complex nanosystems are illustrated. A consistent approach to model nanobeams on

nonlocal foundations is finally examined.
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