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An endoscope is an imaging device made up of a long and thin tube that can be inserted into the hollow openings

of the body to image the inner sections in real time and in a less invasive manner.

endoscope medical imaging optical scanners

| 1. Introduction

Advances in fiber optic systems led to the development of flexible endoscopes, enabling high-resolution images of
narrow sections of the body and reducing the number of biopsies required for a specific diagnosis, with applications
such as cancer detection, microvascular oxygen tension measurement, chronic mesenteric ischemia, subcellular
molecular interactions, etc. Earlier developed standard white light endoscopes (WLEs) had limited ability to
differentiate metaplasia from dysplasia. Such limitations were surpassed by enhancing the image contrast through
the use of dyes in chromoendoscopy or applying digital filters in narrow band imaging (NBI) 2, The increased
use of endoscopic devices highly improved the diagnostic rate of cancers by permitting the visualization of early
dysplasias which may lead to cancer development . Cancer is the second leading cause of death in the world.
Approximately one out of every six deaths are due to cancer, killing 9.6 million individuals worldwide in 2018 B, |t
has been observed that early detection has significantly improved life expectancy and reduced the mortality rate by
30-40% over the last two decades [4l.

One of the recently advanced imaging devices was based on confocal laser endoscopy (CLE). Two variations of
CLE that are used commercially in medical applications are the so-called e-CLE, which is an integrated confocal
endoscope developed by Pentax Medical (Tokyo, Japan), and the probe-based confocal microscope (p-CLE)
developed by Mauna Kea Technologies (Paris, France) . Optical coherence tomography (OCT) is another
frequently used technique to image tissue, where a change in the refractive index of the scattering coefficient alters
the intensity of the backscattered light and is used to provide contrast in the image [8l. Photoacoustic (PA) imaging
is another imaging technology that images a tissue surface using short pulsed light waves and detects the
ultrasonic waves generated from the optical absorption. It integrates the benefits of high contrast in optical imaging
and deep penetration of the ultrasonic imaging . On the basis of imaging depth, PA imaging can be classified into
PA microscopy (penetration depth < 10 mm), PA computed tomography (penetration depth between 10 and 100
mm), and minimally invasive PA imaging (penetration depth = 100 mm) [, In addition to these techniques, there is
visible light spectroscopy (VLS), where the tissue surface is exposed to visible light and the absorbance spectrum

provides structural and functional information about the tissue. This technique is largely used to monitor the
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microvascular hemoglobin oxygen saturation, which can be further used to evaluate local ischemia situations by

measuring the difference between oxygenated and deoxygenated hemoglobin 2119,

The advancement in optics along with the development of micro-electro-mechanical systems (MEMS) and
microfabrication techniques led to the fabrication of sub-millimeter-sized flexible endoscopes that can image the
narrow cavities in the body, providing information about early-stage pre-cancerous tissues. The optimized final
design of an endoscope is often the result of an optical design optimized using special software-based computer
simulations 2. The rapid evolvement of the software and fabrication technologies enabled endoscopes to capture
the tissue images in three-dimensional space, providing in depth information about the target surface as well 12,
Most of the preliminary video endoscopes used coherent optical fiber bundles (CFBs) to transport light from a light
source, such as a xenon lamp or a laser light, to the imaged surface and used charge-coupled devices (CCDs) to
image the tissue surface 131, Those CCD devices contained approximately 200,000 pixels, which provided limited
resolution of the image @. The image resolution and optical magnification in newly developed endoscopes was
enhanced using complementary metal oxide semiconductor (CMOS) chips, which provided images with over 1.3
MPixels of diffraction-limited resolution 4. However, a minimum center-to-center distance between the optical
fibers in a CFB and the honeycomb effect produced by the non-imaging area between fibers still limited the

resolution in devices having a diameter smaller than 3 mm, independently of the imaging chip used 22!,

It is possible to obtain high-spatial-resolution images with flexible endoscopes having sub-millimeter diameters by
scanning the laser light at the proximal end and capturing the image on a temporal basis, i.e., acquiring one pixel at
a time. Seibel et al. from the University of Washington developed such a cantilever-based scanning fiber
endoscope (SFE), where a single-mode fiber was excited at resonance to scan the light beam on the target area,
and an outer ring of optical fibers captured the backscattered light 18, Since that development, a large number of
cantilever-based imaging devices have been fabricated, which will be discussed later in the paper. In such devices,
the tip displacement of an optical fiber acting as a cantilever beam dictates the field of view (FOV) and the
resolution of the obtained image. Scanning and actuation techniques used to excite a cantilever beam play a
critical role in the performance of such a scanning device. In addition, the small size and the distortion-free imaging
requirements need to be considered during the design of an endoscopic device for medical purposes as the size of
an imaging probe sets the targeted imageable area, and the motion of organs can lead to the generation of

artifacts in the image.

A large number of state-of-the-art reviews on endoscopic imaging devices are available in the literature which are
mainly focused on different imaging modalities. The review work in 22 provided a general description of confocal
microscopy, OCT, and two-photon imaging modalities. Similarly, the review work in 18 investigated various imaging
modalities with some information on their actuation mechanisms. The previous work 8 and the review article by
Hwang et al. in 2 provided a general description of various endoscopic imaging technologies, modalities,
packaging/scanning configurations, and actuation mechanisms. However, a detailed review of the different
actuation mechanisms used in fiber optic endoscopic scanners has not been provided previously. For this reason,
the scanning and actuation techniques used in the recently developed cantilever-based fiber optic scanners for

medical purposes are described in this paper in detail. In the current review, the mathematical models and
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applications of MEMS actuators in fiber optic cantilever-based scanners are reported to provide information about
the underlying working physics of these devices and can provide a foundation for the development of miniaturized

and more efficient MEMS scanners.

| 2. Single Fiber Endoscopy

A single-mode fiber (SMF), characterized by having a step-shaped index of refraction change from the core of the
fiber to the cladding surface, permits the propagation of only one mode of light through the fiber. A single spatial
mode enables a diffraction-limited spot to be projected on the sample plane, resulting in a high-resolution image
with the use of an SMF. Due to this property and high flexibility, such fibers find use in miniaturized optical

scanners.

An SMF may find a use in a scanning fiber optic microscope, acting as a spatial filter 29 or as a pinhole detector
(211, The same fiber is used for laser light illumination and the collection of the reflected light 22, An SMF serves as
a pinhole in a confocal system and is used in spectrally encoded confocal microscopes 22238, By moving the fiber
in a plane perpendicular to its axis using mechanical systems or a galvanometer, it is possible to obtain a 2D

image.

The SFE described earlier uses an SMF vibrated in resonance to scan the light beam across the target tissue
surface, and a peripheric ring of fibers detects the time-multiplexed backscattered light. In this case, the sample
resolution depends on the scanning motion and sampling rate, which are not fixed a priori during fabrication. In an
SFE, the smallest resolvable feature is determined by its point spread function. A wider tip displacement will

provide a higher FOV and higher image resolution in terms of the number of pixels in the scanned area.

In contrast to an SMF, a multimode fiber can transmit a large number of spatial modes at the same time. These
fibers have core sizes much larger than the single-mode fibers, usually in the range of 50 um—-2000 pm. Multimode
fibers can be classified into step-index multimode fibers and graded-index (GRIN) multimode fibers on the basis of

the change in refractive index from the core to the cladding, which can be sharp or gradual, respectively [24],

A multimode fiber can be considered as an alternative to a fiber bundle and supports the miniaturization of optical
devices. As each fiber in the fiber bundle represents a pixel for the acquired image, each pixel can be represented
by a propagating mode in the fiber. Thus, it is possible to increase the pixel density of a device by up to 1-2 orders
of magnitude by replacing the fiber bundle with a multimode fiber [22l. A side-viewing endoscopic probe for PA and
ultrasound (US) imaging is developed using an MMF to deliver laser pulses to the target tissue, and a coaxial US
transducer detects the PA and US echo signals. The light and acoustic signal is deflected 45° by a scanning mirror
placed at the distal end of the probe, which is rotated by magnets or a micromotor to provide a rotational scanning
[26][27]

The main limitation of using a multimode fiber in an imaging device is modal dispersion, which causes multipath

artifacts. Several methods have been explored to provide an image without image artifacts. For example,
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Papadopoulos et al. used a digital phase conjugation technique to generate a sharp focus point. In this technique,
the phase of the distorted wavefront was calculated and an unmodulated beam of this phase was propagated in a
backward direction to cancel out the distortions and to generate the original signal 28, Some other groups
proposed wave-front shaping methods to focus the light passing through a multimode fiber. Even though these
methods successfully focused the light, they required continuous recalculation of the optimal wave due to the fiber
motion (22128 These methods do not work in the case of reflection mode detection of objects. In reflection mode
imaging, the transmission matrix describing the response between the modes at the input and output planes can

be used to overcome the distortion 23],

The modal dispersion effect is avoided using GRIN fibers, where the refractive index change along the section of
the fiber equalizes the travel time of different modes. Thus, different spatial modes propagate at similar velocities.
Sato et al. used a GRIN fiber for the fabrication of a single-fiber endoscope used for reflectance imaging. However,
this device had some problems related to nonuniform image quality, background distortion, etc. 22, High-quality
photoacoustic images using a GRIN fiber are reported in BY, where the light focusing property of the GRIN fibers
permitted the propagation of spatially distributed Gaussian beams through the fiber, which enhanced the focusing

of the spot at the output. This, in turn, permitted high-resolution imaging 29

Double-clad fibers consisting of a central core and two outer cladding layers are another type of frequently used
fibers in endoscopes. These fibers possess the unique feature of allowing the propagation of both single-mode and
multimode light through the fiber. The single-mode light travels through the central core, while the multimode light is
transmitted through the inner cladding material. Such a fiber is principally used in fluorescence imaging devices
having single-mode illumination and multimode signal collection. Thus, the advantages of single-mode illumination

and multimode collection are combined in these fibers [3132]33]

It is possible to combine OCT and fluorescence imaging in a single endoscope using a DCF. In this case, OCT
illumination and fluorescence excitation light is projected on the sample through the core of the DCF. The
backscattered OCT signal is collected through the core, and the fluorescence emission from the sample is
collected through the inner cladding of the fiber. The OCT source light and fluorescence excitation light are
combined using a wavelength division multiplexer (WDM) before sending it through the core of DCF. The
recollected light is separated using a DCF coupler, where the recollected OCT signal from the core of the DCF is

submitted to an SMF, while the fluorescence signal from the inner cladding is forwarded to an MMF [24123],

Buenconsejo et al. developed a device that combined narrowband reflectance, OCT, and autofluorescence imaging
in a single-fiber endoscope using a DCF. This device worked analogously to other OCT devices, except for the
difference that the red/green/blue (RGB) light was emitted from the central core, while the collection of the reflected
light was performed through the inner cladding. The separation of the various light signals from three modalities

was done using an additional WDM 58],

In a single-fiber-based micro-endoscope, the light beam can be steered at either the proximal or distal tip of the

fiber. The possibility of using a light beam for a proximal scan allows the separation of large-sized beam scanning
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devices from the distal end of the endoscopic device used to monitor the target sample. Thus, it is possible to
develop small-sized endoscopic devices that can image the deep tissue systems within the body. Proximal
scanning is usually performed using side-viewing imaging probes, where a drive mechanism rotates the fiber to
scan the light beam along the circumference of the target sample BZ. On the other hand, distal scanning is
preferentially used in cantilever-based single-fiber endoscopes where the fiber tip is displaced mechanically using
a variety of actuators. Usually, the fibers are excited at resonance to obtain high tip displacements using
piezoelectric, electrostatic, electromagnetic, electrothermal, micromotor mirror, or shape memory alloy actuators (61,
The working principle of these actuators will be discussed in detail later in the paper. Pan et al. developed a fiber
optic scanner where the beam was steered at the distal end using a pair of micromirrors [28. The only commercially
available single-fiber endoscope was developed by Pentax to image the upper and lower gastrointestinal (Gl) tract.
The optical scheme of this device is shown in Figure 1a [ In this case, the confocal images showing the
subcellular and cellular structures of the upper and lower Gl tract are imaged after the administration of the
contrast agent. An in-vivo confocal image of rectal mucosa in human colon collected using the Pentax endoscope
is shown in Figure 1b, where crypt lumens can be clearly identified B2,
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Figure 1. Fluorescence confocal imaging developed by Pentax: (a) schematic design of the micro-endoscope; (b)

an en face image of rectal mucosa showing the crypt lumens (taken with the permission of 32),
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