Thermocatalytic Conversion of Plastics into Liquid Fuels

Subjects: Polymer Science Contributor: Olga Lebedeva, Evgeniy Seliverstov

The problem of recycling polymer waste remains the main one in the context of the growth in the use of plastics. Given the non-renewability of fossil fuels, the task of processing plastic waste into liquid fuels seems to be a promising one. Thermocatalytic conversion is one of the methods that allows obtaining liquid products of the required hydrocarbon range. Clays and clay minerals can be distinguished among possible environmental-friendly, cheap and common catalysts.

Keywords: secondary raw materials ; plastics ; fuel ; catalysts ; clays ; clay minerals ; thermocatalytic conversion

1. Introduction

The last few centuries have been marked by the rapid development of mankind. The obvious benefits that it brought were accompanied by new, serious anthropogenic challenges. One of them was the emergence in the 1950s of new synthetic materials—plastics. The main ingredient of plastic are polymers, such as polyolefins (with commercially dominant polyethylene and polypropylene) possessing the general formula $(CH_2CHR)_n$ where R is an alkyl group, polystyrene $((C_6H_5CH = CH_2)_n)$, polyvinyl chloride $((C_2H_3CI)_n)$, etc.

One of the promising solutions is the conversion of plastic waste into liquid fuels. With a catalyst sufficiently selective to produce a mixture of hydrocarbons with an expected carbon number range, it would be possible to obtain liquid products with a composition similar to that of fuels such as gasoline and diesel. Since the production of various catalysts is often accompanied by environmental pollution, a complex preparation process, and, as a result, a high price of the final product, the catalysts must also comply with the principles of green chemistry and have a low cost.

2. Nature of Catalytic Activity of Clays

Clays belong to solid acids. They have both Lewis and Brønsted acid sites (Figure 1) [1].

Lewis acidic site

Figure 1. Acidic sites of clays.

The acidic sites are comparatively strong (H_0 typically quoted in the range from -5.6 to -8.2), though not as strong as the zeolite ones ^[1]. All the clays being aluminosilicates, the nature of the active sites is essentially the same for all types of clays. It is porosity that defines the specific features of different clays. Microporosity depends on the crystallographic structure of the material.

Original clays in cationic forms usually contain an insufficient number of acidic sites since the sites involve protons (**Figure 1**). Only cationic deficient samples of clays demonstrate catalytic activity in the reactions of the acid-base type.

Generally, acidic activation is necessary for obtaining catalytically active clays. The conditions of acidic treatment are often crucial for the efficiency of the clay catalysts.

3. Kaolin Group Catalytic Activity

The kaolin group is represented by layered phyllosilicate minerals with the chemical composition $Al_2Si_2O_5(OH)_4$. The layers of these clay minerals consist of corner-sharing tetrahedra and edge-sharing octahedra. Tetrahedra are formed by silicon atoms, and octahedrons are constructed from aluminum atoms. The way the layers are stacked and the nature of the material between the layers distinguishes the individual minerals (kaolinite, dickite, halloysite, and nacrite, sometimes also serpentine subgroup) in the group ^[2]. Rocks rich in kaolinite are thus called kaolin.

Kaolin-based catalysts are the most commonly mentioned among the articles on clay catalysts for the conversion of plastics into liquid fuels due to the abundant availability of natural kaolin. All results from work on kaolin clay catalysts are presented in **Table 1**.

Highest Liquid Temperature, Catalyst Plastic Specific Results Reference °C Yield, wt% Catalyst produced more alkanes than Kaolinite-containing natural <u>[3]</u> HDPE 478 16 olefins in both clay gaseous and liquid oil products. The liquid fuel Kaolin and its modifications consisted of [<u>4]</u> 78.7 With CH₃COOH, HCl, HDPE 450 petroleum products range hydrocarbons H₃PO₄, HNO₃, and NaOH (C₁₀-C₂₅). The oil consists of paraffins and olefins [<u>5]</u> LDPE 450 79.5 with a predominance Kaolin of C10-C16 components. The first addition of kaolin gives aliphatic [<u>6]</u> Kaolin LDPE 600 about 75 compounds and C₆-C₂₀ aromatics (90-95%). High yield of paraffins (70.62%). 75% kaolinite with 25% 74.45 [7] LDPE 580 The percentage of bentonite aromatics was 5.27%.

Table 1. Publications on the conversion of different plastics over clay minerals from kaolin group catalysts.

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
China clay (kaolinite)	LDPE	300	84	Components with a boiling point of 125– 180°C were identified as alkanes, alkenes, and aromatics.	[8]
Kaolin	LDPE	450	99.82	The highest percentage component is heptane.	[9]
Al-substituted Keggin tungstoborate/kaolin composite	LDPE	295	84	During the catalytic cracking 70 mol.% of gasoline range hydrocarbons were produced.	[10]
tungstophosphoric acid/kaolin composite	LDPE	335	81	A high content of benzene-like hydrocarbons (C ₁₁ – C ₁₄).	[11]
Ahoko kaolin	PP	450	79.85	Liquid products with properties comparable to conventional fuels (gasoline and diesel).	[12]
Hydrochloric acid/kaolin composite	PP	470	71.9	The condensable hydrocarbons contain dominantly alkanes and alkenes in the range C ₆ –C ₁₂ .	<u>[13]</u>
Commercial-grade kaolin clay	PP	450	89.5	Contains olefins, aliphatic, and aromatic hydrocarbons in the oil comparable with liquid fossil fuels.	<u>[14]</u>
Commercial-grade kaolin clay and kaolin treated with sulfuric acid	PP	500	92 (acid- treated), 87.5 (neat kaolin)	The oil from the neat kaolin— C_{10} – C_{18} products, from the acid-treated kaolin— mainly C_9 – C_{13} .	[<u>15]</u>

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
Kaolin	PP	500	87.5	Fuel properties are identical to the different petroleum fuels.	[<u>16]</u>
Neat kaolin and kaolin treated with hydrochloric acid	PP	400–500	71.9	The highest yield of liquid hydrocarbons was achieved with kaolin clay treated with 3M HCI.	[<u>17]</u>
Kaolin	PP/vaseline (4.0 wt%)	520	52.5	The gasoline— 32.77%, diesel— 13.59%, residue— 6.14%	[18]
CuO/kaolin and neat kaolin	PS	450	96.37 (neat kaolin), 92.48 (CuO/kaolin)	The oil contained aromatic hydrocarbons, but from CuO/kaolin— 85% C ₁₀ H ₈ and ~13% C ₈ H ₈ .	[<u>19]</u>
Zeolite-Y + metakaolin + aluminum hydroxide + sodium silicate all synthesized from kaolin	HDPE + LDPE + PP + PS + PET	350	46.7	Catalyzed fuel samples consist of 93% gasoline and 7% diesel fraction.	[20]
Kaolin	Virgin HDPE, HDPE waste and mixed plastic waste	425	79	The catalyst was the most selective in producing diesel, which yielded 63%.	[<u>21]</u>
Halloysite treated with hydrochloric acid	PS	450	90.2	Aromatic compounds of more than 99%. The main product is styrene (58.82%).	[22]

4. Smectite Group Catalytic Activity

Members of the smectite group include the dioctahedral minerals (montmorillonite, beidellite, and nontronite) and the trioctahedral minerals (hectorite, saponite, and sauconite). The basic structural unit of these clay minerals is a layer consisting of two inward-pointing tetrahedral sheets with a central alumina octahedral sheet ^[23]. The clay consisting mostly of montmorillonite is called bentonite, but in commerce, this term can be used in a more general way to refer to any swelling clay composed mostly of minerals from the smectite group.

The bentonite- and pure montmorillonite-based catalysts are the most commonly occurred besides smectite catalysts for plastic transformation. There are a few articles devoted to the use of saponite and beidellite. All results from the work on smectite clay catalysts are presented in **Table 2**.

Table 2. Publications on the conversion of different plastics over clay minerals from smectite group catalysts.

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
Bentonite (50 wt%)/spent fluid catalytic cracking catalyst (FCC)	HDPE	500	100	High yields of gasoline C_5-C_{11} (50 wt%) The yield of $C_{12}-C_{20}$ hydrocarbons—8– 10 wt%.	[<u>24]</u>
Pillared bentonite (PILC) intercalated with Fe or Al	HDPE and heavy gas oil (HGO)	500	>80	The oil from the Fe-PILC-Fe-300 catalyst was more similar to the standard diesel.	[<u>25]</u>
Bentonite (Gachi clay)	LDPE	300	77	Olefin and paraffin hydrocarbons.	[<u>26]</u>
South Asian clay classified as bentonite andmontmorillonite impregnated with nickel NPs	LDPE and post- consumer polybags	350	79.23 (LDPE), 76.01 (poly-bags)	The final products are in the range of gasoline, kerosene, and diesel.	[<u>27]</u>
Bentonite thin layer loaded with MnO ₂ nanoparticles (NPs)	РР	750	Parameters were designed to get off the liquid	The complete decomposition of plastics with the formation of gases (methane and hydrogen) and coke.	[<u>28]</u>
Bentonite treated with 0.5M hydrochloric acid	PS	400	88.78	The obtained liquid contains styrene. Toluene and benzene were the major components.	[<u>29</u>]
Acid-washed bentonite clay (AWBC), Zn/AWBC, Ni/AWBC, Co/AWBC, Fe/AWBC, Mn/AWBC	PP, HDPE	300 for PP and 350 for HDPE	AWBC (PP 68.77, HDPE 70.19), Ni/AWBC (PP 92.76, HDPE 62.07), Co/AWBC (PP 82.8, HDPE 69.31), Fe/AWBC (PP 82.78, HDPE 71.34), Mn/AWBC (PP 80.4, HDPE 81.07), Zn/AWBC (PP 82.50, HDPE 91)	Co/AWBC/PP (mainly olefins and naphthenes) and Zn/AWBC/HDPE (mainly paraffins and olefins) were the most effective.	[<u>30]</u>

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
H ₂ SO ₄ -activated bentonite (synthesized)	PP + HDPE	328	79	The hydrocarbon oil.	[<u>31]</u>
A mixture of nature bentonite and zeolite (70:30)	PP, PET	400	78.42 (PP), 72.38 (PP + PET)	The number of C ₃ –C ₁₀ compounds increased.	[<u>32]</u>
Pelletized bentonite	PS, PP, LDPE, HDPE	500	88.5 (PS), 90.5 (PP), 87.6 (LDPE), 88.9 (HDPE)	PS—95% aromatic hydrocarbons; PP, LDPE, and HDPE —aliphatic hydrocarbons; LDPE, and HDPE —diesel fuel (96% similarity); PS— gasohol 91.	[<u>33]</u>
Calcium bentonite	PP, LDPE, HDPE, PP + LDPE + HDPE	500	88.5 (PP), 82 (LDPE), 82.5 (HDPE) 81 (PP + LDPE + HDPE)	The oil contained only a mixture of hydrocarbons and has matching fuel properties as that of fossil fuel. Mixed plastics— C_{10} - C_{28} .	[<u>34]</u>
Pillared bentonite (Al- PILC, Fe-PILC, Ti- PILC, Zr-PILC)	HDPE + PS + PP + PET	300–500	68.2 (AI-PILC), 79.3 (Fe-PILC), 62.8 (Ti- PILC), 62.1 (Zr- PILC)	80.5% diesel fraction was observed in presence of Fe- PILC.	[1]
Fe/Al pillared montmorillonite mixed with an acid Commercial bentonite as a binder	HDPE	600	About 40	The catalyst gave high yields of waxes, particularly rich in diesel hydrocarbon range (C ₁₁ –C ₂₁).	[<u>35</u>]

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
commercial acid- restructured montmorillonite and Al- and Fe/Al-pillared derivative	MDPE	300	About 70	The clay-based catalysts gave higher yields of liquid products in the C_{15} – C_{20} range. Clay catalysts produce liquid hydrocarbons in the gasoline and diesel range.	[<u>36]</u>
Al ₂ O ₃ -pillared montmorillonite (calcium rich)	LDPE	430	70.2	Hydrocarbons from C ₅ to C ₁₃ .	<u>[37]</u>
Montmorillonite (Zenith- N) and a pillared derivative	LDPE	427	68 (montmorillonite), 75 (pillared derivative)	Clays showed enhanced liquid formation due to their mild acidity.	[<u>38]</u>
Al-pillared montmorillonite (Al- PILC), and regenerated samples	LDPE	360	72 (Al-PILC), 68 (regenerated sample)	These products were in the boiling point range of motor engine fuels.	<u>[39]</u>
Montmorillonite (Zenith- N) and a pillared derivative	LDPE	360	75 (montmorillonite), 76 (pillared derivative)	These products were in the boiling point range of gasoline.	[40]
Ionically bonding macrocyclic Zr-Zr complex to montmorillonite	PP	300–400	-	A low molecular weight waxy product with paraffin wax characteristics was obtained.	[41]
Untreated and Al- pillared montmorillonite clay	PS	400	83.2 (untreated clay), 81.6 (Al-pillared clay)	Styrene was the major product, and ethylbenzene was the second most abundant one in the liquid product.	[<u>42]</u>
Four different types of montmorillonites: K5, K10, K20, K30	LDPE, PP, and the municipal waste plastics	begins at 250 for mK5 (LDPE), 210– 435 for mK20 (PP)	Data not presented	The catalytic degradation products contain a relatively narrow distribution of light hydrocarbons.	[<u>43]</u>

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
Organically modified montmorillonite/Co ₃ O ₄	PP + HDPE + PS	700	59.6	The catalyst promoted the degradation of mixed plastics into light hydrocarbons and aromatics.	[44]
cloisite 15 A as a natural montmorillonite modified with a quaternary ammonium salt	Industrial grade of HDPE, which was a copolymer with 1- hexene (1.5 wt%) as comonomer	473.7	Data not presented	It was found that the nano clay reduces the temperature at a maximum degradation rate.	[45]
Commercial acid- restructured saponite and AI- and Fe/AI- pillared derivatives	MDPE	300	About 70	The clay-based catalysts gave higher yields of liquid products in the C_{15} – C_{20} range. Clay catalysts produce liquid hydrocarbons in the gasoline and diesel range.	[<u>36]</u>
Saponite, with a small number of impurities, mainly sepiolite and a pillared derivative	LDPE	427	83 (saponite), 82 (coked pillared derivative)	Clays showed enhanced liquid formation due to their mild acidity.	[38]
Al-pillared saponite and regenerated samples	LDPE	360	72 (pillared saponite), 67 (regenerated sample)	These products were in the boiling point range of motor engine fuels.	[39]
Saponite and a pillared derivative	LDPE	360	68 (saponite), 72 (pillared derivative)	These products were in the boiling point range of gasoline.	[<u>40]</u>

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
Commercial acid- restructured beidellite and Al- and Fe/Al- pillared derivatives	MDPE	300	About 70	The clay-based catalysts gave higher yields of liquid products in the C_{15} - C_{20} range. The catalysts produce liquid hydrocarbons in the gasoline and diesel range.	[<u>36]</u>

5. Other Clay Minerals' Catalytic Activity

The variety of clay minerals is not limited to the above-mentioned two groups. Only a few examples of studying the catalytic activity of other clay minerals (sepiolite, vermiculite, talc, and pyrophyllite) in relation to plastics were found (**Table 3**).

Table 3. Publications on the conversion of different plastics over sepiolite, talc, pyrophyllite, and vermiculite catalysts.

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
Commercial sepiolite	PE, PP, PS, EVA	432.65 (PE), 401.65 (PP), 449.75 (PS), 459.85 (EVA)	Data not presented	Clay reduces the decomposition temperatures of PE and PP. However, steric effects associated with the PS and EVA substituents nullify this catalytic behavior.	[<u>46]</u>
Tetraethyl silicate modified vermiculite, Co, and Ni intercalated vermiculite	PP + PE	300-480	80.6 (organic vermiculite), 73.2 (Co/verm), 70.7 (Ni/verm), 73.9 (Co/Ni/verm)	The obtained liquid is mainly composed of C ₉ – C ₁₂ and C ₁₃ –C ₂₀ .	[<u>47</u>]
Talc (French chalk)	LDPE	300	91	Components with a boiling point of 125–180°C were identified as alkanes, alkenes, and aromatics.	8
Talc (plastic filler)	PP	620	About 23	The liquid product contained a higher aromatic content (57.9%) and a lower n-alkene content (5.8%).	[48]

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
Pyrophyllite treated with hydrochloric acid	PS	450	88.3	The catalysts showed selectivity to aromatics over 99%. Styrene (63.40%) is the major product, and ethylbenzene is the second- most abundant one (6.93%).	[22]

6. Catalytic Activity of Mixed Natural Clays

Some works were focused on uncharacterized mixed clays from different fields (Table 4).

 Table 4. Publications on the conversion of different plastics over clays from different fields.

Catalyst	Plastic	Temperature, ℃	Highest Liquid Yield, wt%	Specific Results	Reference
Acid-activated fire clay (Pradeep Enterprises, Ajmeri Gate, Delhi)	HDPE	450	41.4	The identified compounds were mainly paraffins and olefins with a carbon number range of C_6-C_{18} .	<u>[49]</u>
Indian Fuller's earth (Multan clay)	LDPE	300	58.33	The obtained liquid contained olefin, paraffin, and aromatic hydrocarbons. Light naphtha— 15%, heavy naphtha—35%, middle distillate—60%.	<u>(50)</u>
Fuller's earth	LDPE	300	91	Components with a boiling point of 125-180°C were identified as alkanes, alkenes, and aromatics.	[8]
Natural clay mineral (Indonesia) with LaFeO ₃ NPs	PP	460–480	88.8 (5th cycle)	The liquid fraction: alkanes (44.70%), alkenes (34.84%), cyclo-alkanes (9.87%), cyclo- alkenes (3.07), branched- chain alkanes (2.42%), branched-chain alkenes (0.88%).	[51]
natural clay with kaolinite, hematite, smectite, quartz	PS	410	86.68	Fuel properties of the liquid fraction obtained showed a good resemblance with gasoline and diesel oil.	[52]

Catalyst	Plastic	Temperature, °C	Highest Liquid Yield, wt%	Specific Results	Reference
Red clay (Auburn, Alabama, USA)	PS and LDPE (co- pyrolysis with a lignin)	500, 600, 700, 800	data not presented	The carbon yield of a lignin- derived compound, guaiacol, increased during co- pyrolysis of lignin with LDPE, and PS with red clay as a catalyst.	<u>[53]</u>
Shwedaung clay, Mabisan clay	HDPE + LDPE + PS + PP + PET	210-380	65.81 (Shwedaung clay), 67.06 (Mabisan clay)	Fuel can be used internal combustion engine after distillation. Char can be used as solid fuel.	[54]
Fe-restructured clay (Fe-RC)	PE + PP + PS + PVC + PET	450	83.73	High selectivity for the C ₉ – C ₁₂ and C ₁₃ –C ₁₉ oil fractions, which are the major constituents of kerosene and diesel fuel.	[55]
Romanian natural clays: Vadu Crişului clay and Lugoj clay	PS + PET + PVC	420	62.18 (Vadu Crişului clay), 54.98 (Lugoj clay)	The liquid products contained monoaromatic compounds such as styrene, toluene, ethylbenzene, or alpha- methylstyrene.	[56]

References

- 1. Li, K.; Lei, J.; Yuan, G.; Weerachanchai, P.; Wang, J.-Y.; Zhao, J.; Yang, Y. Fe-, Ti-, Zr- and Al-Pillared Clays for Efficien t Catalytic Pyrolysis of Mixed Plastics. Chem. Eng. J. 2017, 317, 800–809.
- 2. Giese, R.F. Kaolin Group Minerals. In Sedimentology; Springer: Dordrecht, The Netherlands, 1978; pp. 651–655.
- Liu, M.; Zhuo, J.K.; Xiong, S.J.; Yao, Q. Catalytic Degradation of High-Density Polyethylene over a Clay Catalyst Comp ared with Other Catalysts. Energy Fuels 2014, 28, 6038–6045.
- Kumar, S.; Singh, R.K. Optimization of Process Parameters by Response Surface Methodology (RSM) for Catalytic Pyr olysis of Waste High-Density Polyethylene to Liquid Fuel. J. Environ. Chem. Eng. 2014, 2, 115–122.
- 5. Panda, A.K.; Singh, R.K. Thermo-Catalytic Degradation of Low Density Polyethylene to Liquid Fuel over Kaolin Catalys t. Int. J. Environ. Waste Manag. 2014, 13, 104.
- Luo, W.; Fan, Z.; Wan, J.; Hu, Q.; Dong, H.; Zhang, X.; Zhou, Z. Study on the Reusability of Kaolin as Catalysts for Cat alytic Pyrolysis of Low-Density Polyethylene. Fuel 2021, 302, 121164.
- 7. Soliman, A.; Farag, H.A.; Nassef, E.; Amer, A.; ElTaweel, Y. Pyrolysis of Low-Density Polyethylene Waste Plastics Usin g Mixtures of Catalysts. J. Mater. Cycles Waste Manag. 2020, 22, 1399–1406.
- Khan, K.; Hussain, Z. Comparison of the Catalytic Activity of the Commercially Available Clays for the Conversion of W aste Polyethylene into Fuel Products. J. Chem. Soc. Pakistan 2011, 33, 956–959.
- 9. Erawati, E.; Hamid; Martenda, D. Kinetic Study on the Pyrolysis of Low-Density Polyethylene (LDPE) Waste Using Kaol in as Catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2020, 778, 012071.
- Attique, S.; Batool, M.; Yaqub, M.; Goerke, O.; Gregory, D.H.; Shah, A.T. Highly Efficient Catalytic Pyrolysis of Polyethyl ene Waste to Derive Fuel Products by Novel Polyoxometalate/Kaolin Composites. Waste Manag. Res. 2020, 38, 689–6 95.
- 11. Attique, S.; Batool, M.; Jalees, M.I.; Shehzad, K.; Farooq, U.; Khan, Z.; Ashraf, F.; Shah, A.T. Highly Efficient Catalytic Degradation of Low-Density Polyethylene Using a Novel Tungstophosphoric Acid/Kaolin Clay Composite Catalyst. Turki

sh J. Chem. 2018, 42, 684-693.

- 12. Hakeem, I.G.; Aberuagba, F.; Musa, U. Catalytic Pyrolysis of Waste Polypropylene Using Ahoko Kaolin from Nigeria. A ppl. Petrochem. Res. 2018, 8, 203–210.
- Uzair, M.A.; Waqas, A.; Khoja, A.H.; Ahmed, N. Experimental Study of Catalytic Degradation of Polypropylene by Acid-Activated Clay and Performance of Ni as a Promoter. Energy Sources Part A Recover. Util. Environ. Eff. 2016, 38, 3618 –3624.
- 14. Panda, A.K.; Singh, R. Catalytic Performances of Kaoline and Silica Alumina in the Thermal Degradation of Polypropyle ne. J. Fuel Chem. Technol. 2011, 39, 198–202.
- 15. Panda, A.K.; Singh, R. Conversion of Waste Polypropylene to Liquid Fuel Using Acid-Activated Kaolin. Waste Manag. Res. J. Sustain. Circ. Econ. 2014, 32, 997–1004.
- 16. Panda, A.K.; Singh, R. Experimental Optimization of Process for the Thermo-Catalytic Degradation of Waste Polypropyl ene to Liquid Fuel. Adv. Energy Eng. 2013, 1, 74–84.
- 17. Uzair, M.A.; Waqas, A.; Afzal, A.; Ansari, S.H.; Anees ur Rehman, M. Application of Acid Treated Kaolin Clay for Conver sion of Polymeric Waste Material into Pyrolysis Diesel Fuel. In Proceedings of the 2014 International Conference on En ergy Systems and Policies (ICESP), Islamabad, Pakistan, 24–26 November 2014; pp. 1–4.
- 18. Ribeiro, A.M.; Machado Júnior, H.F.; Costa, D.A. Kaolin and Commercial fcc Catalysts in the Cracking of Loads of Poly propylene under Refinary Conditions. Braz. J. Chem. Eng. 2013, 30, 825–834.
- Hadi, B.; Sokoto, A.M.; Garba, M.M.; Muhammad, A.B. Effect of Neat Kaolin and Cuo/Kaolin on the Yield and Composit ion of Products from Pyrolysis of Polystyrene Waste. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 148– 153.
- Eze, W.U.; Madufor, I.C.; Onyeagoro, G.N.; Obasi, H.C.; Ugbaja, M.I. Study on the Effect of Kankara Zeolite-Y-Based C atalyst on the Chemical Properties of Liquid Fuel from Mixed Waste Plastics (MWPs) Pyrolysis. Polym. Bull. 2021, 78, 377–398.
- 21. Auxilio, A.R.; Choo, W.-L.; Kohli, I.; Chakravartula Srivatsa, S.; Bhattacharya, S. An Experimental Study on Thermo-Cat alytic Pyrolysis of Plastic Waste Using a Continuous Pyrolyser. Waste Manag. 2017, 67, 143–154.
- 22. Cho, K.-H.; Jang, B.-S.; Kim, K.-H.; Park, D.-W. Performance of Pyrophyllite and Halloysite Clays in the Catalytic Degra dation of Polystyrene. React. Kinet. Catal. Lett. 2006, 88, 43–50.
- 23. Altaner, S.P. Smectite Group. In Sedimentology; Springer: Dordrecht, The Netherlands, 1978; pp. 1120–1124.
- 24. Elordi, G.; Olazar, M.; Castaño, P.; Artetxe, M.; Bilbao, J. Polyethylene Cracking on a Spent FCC Catalyst in a Conical Spouted Bed. Ind. Eng. Chem. Res. 2012, 51, 14008–14017.
- Faillace, J.G.; de Melo, C.F.; de Souza, S.P.L.; da Costa Marques, M.R. Production of Light Hydrocarbons from Pyrolys is of Heavy Gas Oil and High Density Polyethylene Using Pillared Clays as Catalysts. J. Anal. Appl. Pyrolysis 2017, 12 6, 70–76.
- 26. Hussain, Z.; Khan, K.; Jan, M.; Shah, J. Conversion of Low Density Polyethylene into Fuel Products Using Gachi Clay as Catalyst. J. Chem. Soc. Pakistan 2010, 32, 240–244.
- 27. Qureshi, M.; Nisar, S.; Shah, R.; Salman, H. Studies of Liquid Fuel Formation from Plastic Waste by Catalytic Cracking over Modified Natural Clay and Nickel Nanoparticles. Pak. J. Sci. Ind. Res. Ser. A Phys. Sci. 2020, 63, 79–88.
- 28. hamouda, A.; Abdelrahman, A.; Zaki, A.; Mohamed, H. Studying and Evaluating Catalytic Pyrolysis of Polypropylene. E gypt. J. Chem. 2021, 64, 2593–2605.
- 29. Dewangga, P.B.; Rochmadi; Purnomo, C.W. Pyrolysis of Polystyrene Plastic Waste Using Bentonite Catalyst. IOP Con f. Ser. Earth Environ. Sci. 2019, 399, 012110.
- 30. Ahmad, I.; Khan, M.I.; Khan, H.; Ishaq, M.; Tariq, R.; Gul, K.; Ahmad, W. Influence of Metal-Oxide-Supported Bentonite s on the Pyrolysis Behavior of Polypropylene and High-Density Polyethylene. J. Appl. Polym. Sci. 2015, 132, 41221.
- Narayanan, K.S.; Anand, R.B. Experimental Investigation on Optimisation of Parameters of Thermo-Catalytic Cracking Process for H.D.P.E. & P.P. Mixed Plastic Waste with Synthesized Alumina-Silica Catalysts. Appl. Mech. Mater. 2014, 5 92–594, 307–311.
- Sembiring, F.; Purnomo, C.W.; Purwono, S. Catalytic Pyrolysis of Waste Plastic Mixture. IOP Conf. Ser. Mater. Sci. En g. 2018, 316, 012020.
- Budsaereechai, S.; Hunt, A.J.; Ngernyen, Y. Catalytic Pyrolysis of Plastic Waste for the Production of Liquid Fuels for E ngines. RSC Adv. 2019, 9, 5844–5857.

- 34. Panda, A.K. Thermo-Catalytic Degradation of Different Plastics to Drop in Liquid Fuel Using Calcium Bentonite Catalys t. Int. J. Ind. Chem. 2018, 9, 167–176.
- 35. Borsella, E.; Aguado, R.; De Stefanis, A.; Olazar, M. Comparison of Catalytic Performance of an Iron-Alumina Pillared Montmorillonite and HZSM-5 Zeolite on a Spouted Bed Reactor. J. Anal. Appl. Pyrolysis 2018, 130, 320–331.
- 36. De Stefanis, A.; Cafarelli, P.; Gallese, F.; Borsella, E.; Nana, A.; Perez, G. Catalytic Pyrolysis of Polyethylene: A Compa rison between Pillared and Restructured Clays. J. Anal. Appl. Pyrolysis 2013, 104, 479–484.
- Olivera, M.; Musso, M.; De León, A.; Volonterio, E.; Amaya, A.; Tancredi, N.; Bussi, J. Catalytic Assessment of Solid Ma terials for the Pyrolytic Conversion of Low-Density Polyethylene into Fuels. Heliyon 2020, 6, e05080.
- Gobin, K.; Manos, G. Polymer Degradation to Fuels over Microporous Catalysts as a Novel Tertiary Plastic Recycling M ethod. Polym. Degrad. Stab. 2004, 83, 267–279.
- 39. Manos, G.; Yusof, I.Y.; Gangas, N.H.; Papayannakos, N. Tertiary Recycling of Polyethylene to Hydrocarbon Fuel by Cat alytic Cracking over Aluminum Pillared Clays. Energy Fuels 2002, 16, 485–489.
- 40. Manos, G.; Yusof, I.Y.; Papayannakos, N.; Gangas, N.H. Catalytic Cracking of Polyethylene over Clay Catalysts. Comp arison with an Ultrastable Y Zeolite. Ind. Eng. Chem. Res. 2001, 40, 2220–2225.
- Lal, S.; Anisia, K.S.; Jhansi, M.; Kishore, L.; Kumar, A. Development of Heterogeneous Catalyst by Ionically Bonding M acrocyclic Zr–Zr Complex to Montmorillonite Clay for Depolymerization of Polypropylene. J. Mol. Catal. A Chem. 2007, 265, 15–24.
- 42. Cho, K.-H.; Cho, D.-R.; Kim, K.-H.; Park, D.-W. Catalytic Degradation of Polystyrene Using Albite and Montmorillonite. Korean J. Chem. Eng. 2007, 24, 223–225.
- Tomaszewska, K.; Kałużna-Czaplińska, J.; Jóźwiak, W. Thermal and Thermo-Catalytic Degradation of Polyolefins as a Simple and Efficient Method of Landfill Clearing. PJCT 2010, 12, 50–57.
- 44. Gong, J.; Liu, J.; Jiang, Z.; Chen, X.; Wen, X.; Mijowska, E.; Tang, T. Converting Mixed Plastics into Mesoporous Hollo w Carbon Spheres with Controllable Diameter. Appl. Catal. B Environ. 2014, 152–153, 289–299.
- 45. Kebritchi, A.; Nekoomansh, M.; Mohammadi, F.; Khonakdar, H.A. Effect of Microstructure of High Density Polyethylene on Catalytic Degradation: A Comparison Between Nano Clay and FCC. J. Polym. Environ. 2018, 26, 1540–1549.
- 46. Marcilla, A.; Gómez, A.; Menargues, S.; Ruiz, R. Pyrolysis of Polymers in the Presence of a Commercial Clay. Polym. D egrad. Stab. 2005, 88, 456–460.
- 47. Chen, Z.; Wang, Y.; Sun, Z. Application of Co Ni Intercalated Vermiculite Catalyst in Pyrolysis of Plastics. J. Phys. Conf. Ser. 2021, 1885, 032030.
- 48. Zhou, N.; Dai, L.; Lv, Y.; Li, H.; Deng, W.; Guo, F.; Chen, P.; Lei, H.; Ruan, R. Catalytic Pyrolysis of Plastic Wastes in a Continuous Microwave Assisted Pyrolysis System for Fuel Production. Chem. Eng. J. 2021, 418, 129412.
- 49. Patil, L.; Varma, A.K.; Singh, G.; Mondal, P. Thermocatalytic Degradation of High Density Polyethylene into Liquid Prod uct. J. Polym. Environ. 2018, 26, 1920–1929.
- 50. Hussain, Z.; Khan, K.; Jan, M.; Shah, J. Conversion of Low Density Polyethylene into Fuel Products Using Indian Fulle r's Earth as Catalyst. J. Chem. Soc. Pak. 2010, 32, 790–793.
- Nguyen, L.T.T.; Poinern, G.E.J.; Le, H.T.; Nguyen, T.A.; Tran, C.M.; Jiang, Z. A LaFeO3 Supported Natural-Clay-Mineral Catalyst for Efficient Pyrolysis of Polypropylene Plastic Material. Asia-Pac. J. Chem. Eng. 2021, 16, e2695.
- 52. Ali, G.; Nisar, J.; Shah, A.; Farooqi, Z.H.; Iqbal, M.; Shah, M.R.; Ahmad, H.B. Production of Liquid Fuel from Polystyren e Waste: Process Optimization and Characterization of Pyrolyzates. Combust. Sci. Technol. 2021, 1–14.
- 53. Patil, V.; Adhikari, S.; Cross, P. Co-pyrolysis of Lignin and Plastics Using Red Clay as Catalyst in a Micro-Pyrolyzer. Bio resour. Technol. 2018, 270, 311–319.
- 54. Kyaw, K.; Hmwe, C. Effect of Various Catalysts on Fuel Oil Pyrolysis Process of Mixed Plastic Wastes. Int. J. Adv. Eng. Technol. 2015, 8, 794.
- 55. Lei, J.; Yuan, G.; Weerachanchai, P.; Lee, S.W.; Li, K.; Wang, J.-Y.; Yang, Y. Investigation on Thermal Dechlorination an d Catalytic Pyrolysis in a Continuous Process for Liquid Fuel Recovery from Mixed Plastic Wastes. J. Mater. Cycles Wa ste Manag. 2018, 20, 137–146.
- 56. Filip, M.; Pop, A.; Perhaiţa, I.; Trusca, R.; Rusu, T. The Effect of Natural Clays Catalysts on Thermal Degradation of a Pl astic Waste Mixture. Adv. Eng. Forum 2013, 8–9, 103–114.