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Nicotinamide adenine dinucleotide (NAD+) is an essential molecule involved in various metabolic reactions, acting

as an electron donor in the electron transport chain and as a co-factor for NAD+-dependent enzymes. Despite

systematic claims of overall decline in NAD+ levels with aging in multiple species, including humans, the evidence

to support such claims is very limited and often restricted to a single tissue or cell type. The literature on the topic

has been reviewed and it is found that there is a need for much larger, preferably longitudinal, studies to assess

how NAD+ levels develop with aging.

NAD+  aging  yeast  C. elegans  rat  monkey  human

1. Introduction

Nicotinamide adenine dinucleotide (NAD ) can be generated from tryptophan or micronutrient precursors from the

Vitamin B   family, which consist of nicotinamide (NAM), nicotinic acid (NA), and nicotinamide riboside (NR).

NAD   precursors are micronutrients naturally found in the diet and can be obtained from different vegetal and

animal food sources, found in high levels in, for example, cucumber, cabbage, soybeans, broccoli, avocado,

tomato, whole wheat, yeast, eggs, milk, meat, and liver.

NAD  is an important cofactor for adenosine triphosphate (ATP) production in glycolysis and oxidative

phosphorylation as well as in cellular redox reactions by oxidoreductase enzymes . NAD  also functions as an

essential co-substrate in pathways that regulate a wide variety of cellular processes such as DNA repair , cellular

senescence , and mitochondrial respiratory function .  NAD  is synthesized through distinct pathways in

mammalian cells, including the following pathways: the kynurenine pathway, the Preiss–Handler pathway, and the

salvage pathway (Figure 1).

Although the pathways controlling cellular NAD  content are tightly regulated, decreased levels of intracellular

NAD , as well as the NAD /NADH ratio, have been observed during aging and aging-related pathophysiological

conditions, but while there is certainly evidence of a decline in NAD  levels in age-related diseases in both humans

and animal models , reductions in NAD  as part of physiological aging are also commonly being touted

as a universal truth for all tissues in all organisms. However, the actual literature on the topic is limited and

somewhat discrepant.
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Figure 1.  NAD   biosynthesis pathways in mammalian cells. ACMS: 2-amino-3-carboxymuconate, NA: nicotinic

acid, NAD : nicotinamide adenine dinucleotide, NAM: nicotinamide, NAMN: nicotinic acid mononucleotide, NAR:

nicotinic acid riboside, NMN: nicotinamide mononucleotide, NAAD: nicotinic acid adenine dinucleotide, NR:

nicotinamide riboside, QA: quinolinic acid, TRP: tryptophan, IDO: indoleamine-2,3-dioxygenase, NADSYN1: NAD

synthetase, NAMPT: nicotinamide phosphoribosyltransferase, NAPRT: nicotinic acid phosphoribosyltransferase,

NMNAT: nicotinamide mononucleotide adenylyl transferase, NRK: NR Kinase, QPRT: quinolinic acid

phosphoribosyltransferase, TDO: tryptophan-2,3-dioxygenase, ARTs: ADP-ribosyltransferases, CD38: ADP-ribosyl

cyclase/cyclic ADP-ribose hydrolase 1, SARM1: NAD   hydroxylase SARM1, ATP: adenosine triphosphate, PPi:

inorganic pyrophosphate, PRPP: 5-phosphoribosyl-1-pyrophosphate.

2. Relationship between NAD  Levels and Aging across
Species
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Figure 2. Overview of the organisms included in this entry.

2.1. Non-Mammalian Species

2.1.1. Yeast

Budding yeast presents two different ways to study aging. Replicative aging, the amount of times that a yeast cell

divides and chronological aging defined as the time that a single non-proliferating yeast cell survives after the

diauxic shift . The diauxic shift is reached when yeast cells switch from glucose fermentation to ethanol

respiration and, in that process, most cells stop budding but are still viable. The current literature on replicative

aging shows no difference in NAD  with aging between age either replicative age 0-1 to 7-8  or replicative age 0

to 16 . It has been demonstrated that NAD  levels decline as part of the diauxic shift , but there are no reports

on chronological aging per se. It is unclear whether the reduction during the diauxic shift is simply a part of shifting

to a less active metabolic state.

Taken together, there is seemingly no direct evidence of a connection between aging and NAD  level decline in

yeast cells. Future studies should consider both replicative and chronological models of aging in yeast and assess

the whole spectrum of yeast lifespan to fully determine the role of NAD+ in yeast aging.

2.1.2. Caenorhabditis Elegans

Only two studies have reported on NAD  levels in aging C. Elegans. NAD   levels were found to be reduced in

aged  C. elegans  (day 17  and day 8 , respectively) compared to young controls (day 1). These studies
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indicated an association between NAD  and lifespan, and many subsequent studies in C. elegans have focused on

the role of NAD  consuming enzymes or supplementation with NAD  precursors to affect longevity . 

2.1.3. Drosophila Melanogaster

It is impossible to identify any papers that address whether levels of NAD  decline with age in this model, despite

the ease with which such experiments could be performed.

2.2. Rodents

2.2.1. Rats

Rats have not been studied extensively with regard to NAD   levels during aging. In one study, researchers

compared female Wistar rats of different ages. They found that NAD  was reduced in liver, heart, kidney and lung

of 24-month-old rats, compared to younger controls (3 and 12 months old, respectively) . A follow-up study with

a similar design revealed the same pattern of NAD  decline in four different brain regions: hippocampus, cortex,

cerebellum and brainstem . Similarly, isolated mesenchymal stem cells from young (1–2 months of age) and old

(15–18 months of age) male Sprague Dawley rats also exhibited a reduction in NAD  levels with age . It is

noteworthy, however, that the mesenchymal stem cells were kept in culture prior to the assessment, which could, in

principle, affect the outcomes. The same group later demonstrated that induced cellular senescence of rat

mesenchymal stem cells also resulted in a reduction in NAD  . Collectively, our understanding of changes in

NAD  levels in aging in rats is limited to only a few tissues or cell types, and the information appears to have

derived from only two laboratories.

2.2.2. Mice

The most comprehensive study to date on the development of NAD  levels with aging in mice, studied several

tissues . It showed that aged mice had a decrease in NAD  in only 10 out of 21 tested tissues. In brown and two

different white adipose tissues (retroperitoneal and inguinal), as well as in the jejunum, they observed a ~40–50%

NAD  reduction with age, whereas in gastrocnemius, soleus, quadriceps, liver, kidney, and descending colon NAD

levels were reduced by ~10–20%. The NAD  levels in the remaining 11 tissues including heart, brain, spleen, lung,

pancreas, gonadal white adipose tissue, and multiple parts of the gastrointestinal tract were found to be unchanged

by aging. It is clear from this study alone that the apparent consensus that NAD  levels universally decline with

aging is inaccurate.

Overall, mice have been studied more extensively in this regard and there is quite reliable evidence of NAD

decline in aging skeletal muscle , some adipose tissues  and hippocampal areas of the

brain . However, there are conflicting reports on liver  and effects of age on NAD  levels in

heart, lung, spleen, pancreas, and intestine remain relatively uninvestigated.

2.3. Primates
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2.3.1. Monkeys

Rhesus monkeys (Macaca mulatta) are commonly used in aging research due to their social and physiological

similarities to humans . No studies appear to have reported on levels of NAD  with aging in monkeys. However,

one study in rhesus monkeys showed 2.5- and 2-fold increases in NADH levels in vastus lateralis muscle of

middle-aged (15–16 years of age) and older (28–32 years of age) animals, respectively, compared to young

controls (6–9 years of age). Moreover, the NAD /NADH ratio was ~60% lower in middle-aged animals compared to

young controls . Although NAD  levels were not reported in this entry, they can easily be calculated from the

availalable data, revealing an approximate doubling of NAD  in old monkeys compared to young. This contrasts

the available data from mouse skeletal muscle sharply.

2.3.2. Humans

The literature on the association between human NAD  and ageing presents us with very little data on peripheral

tissues. There is a single study showing marked reduction in skin NAD  levels with age , as well as one showing

an age-associated 30% reduction in NAD  in liver from patients with hepatocellular carcinoma . No study has

investigated the effect of age on adipose NAD  levels at all, and the data on skeletal muscle is limited to a single

report on BioRxiv  and was removed before peer-reviewed publication . 

When it comes to plasma NAD  and aging in humans, the literature presents us with two discrepant extremes. One

study showed no change , and the other showed an 80-90% reduction with age . The third and final study on

the topic agreed that there is a change in plasma NAD  with age but no change in red blood cells and the

magnitude of the change in plasma NAD  was not disclosed . They did present a figure from whole blood that

can be used to estimate a 15-20% reduction of NAD  with age. This level of reduction fits well with the observed

reductions observed in brain and cerebrospinal fluid  except in the case of the previously mentioned non-

peer-reviewed report .

Importantly, all of the abovementioned human experiments are cross-sectional studies and had relatively few

participants. To some extent, an understanding can be derived from such studies, but to truly investigate NAD+

metabolism in healthy human aging, a much larger group of individuals need to investigated over the span of many

years in a longitudinal study.

3. Conclusions and perspective

There are remarkably few studies that assess NAD  levels with aging. This is true for most of the commonly used

model organisms as well as for humans. Moreover, even within specific tissues, there are discrepancies in the

literature, and many tissues in multiple organisms have only been investigated by a single research group or not at

all. Thus, there is considerable disagreement between what the field assumes to know on the topic of NAD  in

aging and what is scientifically supported. This poor-founded perpetuation of the idea that NAD  levels universally

decrease with age is misleading, and it may lead to the loss of important nuances in our collective understanding of

NAD metabolism. There is a need for longitudinal studies investigating the way NAD  levels behave in various
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tissues during aging in various model organisms, and much larger cross-sectional studies in humans are required

to address this specific question.
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