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Zinc transporters take up/release zinc ions (Zn ) across biological membranes and maintain intracellular and intra-

organellar Zn  homeostasis. Since this process requires a series of conformational changes in the transporters,

detailed information about the structures of different reaction intermediates is required for a comprehensive

understanding of their Zn  transport mechanisms. Various Zn  transport systems have been identified in bacteria,

yeasts, plants, and humans. 

zinc transporter  ZnT  cryo-EM

1. Introduction

Zinc ions (Zn ), an essential trace element in bacteria, fungi, plants, and animals, including humans , serve as a

key component in many signal transduction processes and act as an essential cofactor for many proteins and

enzymes . Zinc deficiency causes several human diseases ; indeed, zinc supplements

have beneficial effects on human health . However, excessive adsorption of Zn  leads to

disruption of the gastrointestinal flora balance, deficiency of other essential heavy metals, including iron, copper,

and manganese, and reduction in immune function . Zn  also plays an important role in the physiology

of organisms such as plants and bacteria . In plants, zinc deficiency is linked to growth defects and inhibition

of flowering . Additionally, Zn  is responsible for the virulence of some bacteria . Since Zn  is involved in

numerous biological events, humans, plants, yeasts, and bacteria have evolved elaborate Zn  transport systems

that respond to Zn  perturbation.

Failure of the Zn  transport systems plays a role in diseases such as cancer , Alzheimer’s , and

Parkinson’s , as well as temporary zinc deficiency in newborns , perinatal fatal cardiomyopathy , risk of

febrile seizures , Lowe’s syndrome , disorders of muscle tone with polycythemia , and chronic liver

disease . Therefore, human zinc transporters (ZnTs) are potential targets of drugs and preclinical diagnostic

tests. Owing to the important physiological roles, and pharmacological and preclinical diagnostic significance of

Zn  transport systems, a variety of biochemical, structural, physiological, and genetic experiments have been

carried out over the past several decades to better understand their functions and mechanisms. The most

comprehensively studied bacterial zinc transporter is YiiP, which works in Escherichia coli and Shewanella

oneidensis (EcYiiP and SoYiiP, respectively) . These transporters are a convenient model

to study the general mechanisms underlying Zn  transport. The most intensively studied mammalian ZnTs are

SLC30A7/ZnT7  and SLC30A8/ZnT8 . Researchers' interests in ZnT family members stem mainly from
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their roles in maintaining Zn  homeostasis in cellular organelles throughout the body and the fact that their

dysfunction causes serious diseases.

As is the case for other membrane transporters, ZnTs undergo conformational conversion to transport Zn  across

biological membranes. To fully understand the mechanism underlying Zn  transport, high-resolution structures of

the transporters have been captured in different states. The first X-ray crystal structure of a zinc transporter (Table

1) was reported for EcYiiP , followed by the EM structure of SoYiiP . More recently, cryo-EM

structures of vertebrate ZnTs have been reported (Table 1); these include Homo sapiens ZnT7 (HsZnT7) ,

Homo sapiens ZnT8 (HsZnT8) , and Xenopus tropicalis ZnT8 (XtZnT8) . These structures allow us to

propose an updated model of ZnTs-mediated Zn  transport. Of note, researchers' recent structural and

biochemical studies on HsZnT7 revealed the role of its cytosolic histidine-rich loop (His-loop) in efficient Zn

uptake . Thus, researchers have built on the structural and mechanistic foundations of ZnTs in the biological

kingdom, while making significant progress regarding research into other members with Zn  transport functions.

Table 1. X-ray and cryo-EM structure of zinc transporters (ZnTs).
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 This structure was observed in the presence of 0.5 mM EDTA.  This structure was observed in the absence of

Zn .  This structure was observed in the presence of 10 μM Zn .  This structure was observed with addition

of 200 and 300 μM Zn .  This structure was observed at low pH.

2. Zn  Transport Systems in Prokaryotes and Eukaryotes

Prokaryotes and eukaryotes have developed a variety of Zn  transport systems to promote the uptake or efflux of

Zn  across biological membranes. ZnTs can be divided into three major groups depending on the mode of

transport: Uniporters that transport Zn  alone; symporters that transport Zn  in the same direction as other ions,

such as protons; and antiporters that transport Zn  and another ion in opposite directions, such that the binding of

one is concomitant with the release of the other. In general, uniporters require no external energy input and

transport specific molecules along their concentration gradients; they are therefore passive transporters. However,

it can also act as an active transporter if the transport process is against the concentration gradient. By contrast,

symporters and antiporters use the energy stored in the concentration gradient of another ion, in many cases, a

proton, to transport specific molecules against their concentration gradients. In this regard, symporters and

antiporters can be regarded as active transporters. In addition, some P-ATPases and ABC transporters transport

Zn  using ATP as an external energy source to overcome the Zn  concentration gradient.

Zinc transporters (ZnTs) and ZRT- and IRT-related proteins (ZIPs) are the two major Zn  transport families found

universally in bacteria, yeasts, plants, and animals, including humans. ZnTs and ZIPs selectively transport Zn ,

but in opposite directions: ZnTs export Zn  from the cytoplasm, whereas ZIPs import Zn  into the cytoplasm.

Thus, ZnTs and ZIPs play important roles in maintaining homeostasis of intracellular and intra-organelle Zn

levels.

While ZntB from Escherichia coli (EcZntB) acts as a Zn /H  symporter , many ZnTs function as proton-driven

antiporters, exchanging H  in the extracellular space or organelle lumens for Zn  in the cytoplasm 

. By contrast, there is no clear evidence that ZIPs use proton energy flux to transport

Zn  across the membranes. However, recent biochemical studies suggest that, like ZnTs, Bordetella

bronchiseptica ZIP (BbZIP) may function as a Zn /H  antiporter .

3. ZnTs

ZnTs belong to the cation diffusion facilitator (CDF) family, which can be classified into three groups: Zn-CDFs,

Zn/Fe-CDFs, and Mn-CDFs . Zn-CDFs consist of Zn  and Co  transporters, including ZitB-like, ZnT1-like,

and Zrc1-like proteins. The ZitB-like clusters are from E. coli. The ZnT1-like clusters include only metazoans. The
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Zrc1-like cluster includes only fungal CDFs originating from Ascomycetes, Basidiomycetes, and Zygomycetes.

Zn/Fe-CDFs are cation-efflux pumps that transport Fe  or Zn , and also Co , Cd , and Ni . Mn-CDFs include

metal tolerance proteins (MTPs) from plants.

3.1. Mammalian ZnTs

Ten ZnTs (ZnTs 1–10) have been identified in mammals, including humans . All ZnTs are Zn-CDF members,

although ZnT10 is more likely a manganese transporter . Based on their amino acid sequence similarities,

ZnTs are divided into four subgroups: Group 1 includes ZnT5 and ZnT7; group 2 includes ZnT2-ZnT4 and ZnT8;

group 3 includes ZnT1 and ZnT10; and group 4 includes ZnT6 and ZnT9 . Most ZnTs form a homodimer

composed of the same protomers , whereas ZnT5 and ZnT6 form a heterodimer including two different

protomers , and all are located on the plasma or organelle membranes, where they control intracellular and

extracellular Zn  balance . Specifically, ZnT7 transports Zn  into the lumen of the pre-cis- and cis-Golgi,

whereas ZnT5/6 and ZnT4 transport Zn  into the lumen of the medial- and trans-Golgi . ZnT7 and ZnT5/6 are

responsible for the Golgi-to-ER retrograde transport of the ER chaperone ERp44 . This system is involved in the

maturation and activation of some secretory proteins during transport through the early secretory pathway .

3.2. Plant ZnTs

Metal tolerance proteins (MTPs) are bivalent cationic transporters in plants that play crucial roles in metal tolerance

and homeostasis in metal non-hyperaccumulators (e.g., Arabidopsis thaliana) and hyperaccumulators (e.g.,

Arabidopsis halleri and Noccaea caerulescens) . MTPs are classified into seven groups based on their amino

acid sequence similarities . Thus, plant MTPs are very diverse so as to satisfy the need to absorb or detoxify

specific metals. A. thalaina has 12 MTPs, while P. trichocarpa MTP has up to 22 MTP genes . In A. thaliana,

AtMTP1 and AtMTP3 ZnTs localized on the vacuole membrane maintain Zn  homeostasis . AtMTP1 and

AtMTP3 are involved in the sequestration of excess cytoplasmic Zn  into vacuoles . Whereas AtMTP1 is more

ubiquitously expressed, expression of AtMTP3 is restricted to the root epidermis and cortex . Like mammalian

ZnT5 and ZnT6, AtMTP5 and AtMTP12 form a heterodimer at the Golgi membrane and transport Zn  into the

Golgi lumen .

3.3. Yeast ZnTs

Researchers'understanding of ZnTs in yeast derives primarily from Saccharomyces cerevisiae. In S. cerevisiae,

vacuolar ZnTs ZRC1 and COT1 act as Zn /H  antiporters and regulate Zn  homeostasis by transporting and

storing Zn  in the vacuole . ScZRC1 senses Zn  availability in the cytosol, possibly through the histidine-

repeat motifs, and transports Zn  from the cytosol to the vacuole when cytosolic Zn  is abundant, thereby

conferring resistance to Zn  toxicity .

S. cerevisiae also possesses Msc2 and Zrg17, which transport Zn  from the nucleus and ER to the cytoplasm .

ScMsc2 and ScZrg17 interact physically to form a heterodimer and likely serve to maintain the Zn  levels in the

ER of Zn -adequate cells . Schizosaccharomyces pombe also has a zinc transporter, called ZHF1, which
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maintains Zn  homeostasis in the ER and nucleus and sequesters Cd  into the ER . The structures of yeast

ZnTs have not yet been reported. While ScZRC1, ScCOT1, and ScZrg17 are predicted to have six transmembrane

(TM) helices, ScMsc2 is presumed to contain up to 16 TM helices.

3.4. Bacterial ZnTs

Bacterial ZnTs YiiP, ZitB, and CzcD have been functionally characterized. Insight into the structural features and

Zn  transport mechanisms of bacterial ZnTs comes primarily from YiiP. YiiP was first identified in Escherichia coli

. In vitro, YiiP also binds Hg , Co , Ni , Mn , Ca , and Mg  but is unlikely to transport them efficiently .

Like mammalian ZnTs, YiiP functions as a Zn /H  antiporter .

Other ZnTs have been identified recently in bacteria. ZitB conducts Zn  efflux across the cytoplasmic membrane,

thereby reducing Zn  accumulation in the cytoplasm and rendering bacteria more resistant to Zn  . By

contrast, ZntA, a Zn -transporting P-ATPase, is required for growth at more toxic concentrations . CzcD is a

Cd , Co , and Zn /H -K  antiporter involved in maintaining intracellular divalent cation and potassium

homeostasis through active efflux of Zn , Cd , and Co  in exchange for K  and protons .
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