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Zinc transporters take up/release zinc ions (Zn ) across biological membranes and maintain intracellular and intra-

organellar Zn  homeostasis. Since this process requires a series of conformational changes in the transporters, detailed

information about the structures of different reaction intermediates is required for a comprehensive understanding of their

Zn  transport mechanisms. Various Zn  transport systems have been identified in bacteria, yeasts, plants, and humans. 
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1. Introduction

Zinc ions (Zn ), an essential trace element in bacteria, fungi, plants, and animals, including humans , serve as a key

component in many signal transduction processes and act as an essential cofactor for many proteins and enzymes .

Zinc deficiency causes several human diseases ; indeed, zinc supplements have beneficial effects

on human health . However, excessive adsorption of Zn  leads to disruption of the gastrointestinal

flora balance, deficiency of other essential heavy metals, including iron, copper, and manganese, and reduction in

immune function . Zn  also plays an important role in the physiology of organisms such as plants and bacteria

. In plants, zinc deficiency is linked to growth defects and inhibition of flowering . Additionally, Zn  is

responsible for the virulence of some bacteria . Since Zn  is involved in numerous biological events, humans, plants,

yeasts, and bacteria have evolved elaborate Zn  transport systems that respond to Zn  perturbation.

Failure of the Zn  transport systems plays a role in diseases such as cancer , Alzheimer’s , and Parkinson’s

, as well as temporary zinc deficiency in newborns , perinatal fatal cardiomyopathy , risk of febrile seizures ,

Lowe’s syndrome , disorders of muscle tone with polycythemia , and chronic liver disease . Therefore, human

zinc transporters (ZnTs) are potential targets of drugs and preclinical diagnostic tests. Owing to the important physiological

roles, and pharmacological and preclinical diagnostic significance of Zn  transport systems, a variety of biochemical,

structural, physiological, and genetic experiments have been carried out over the past several decades to better

understand their functions and mechanisms. The most comprehensively studied bacterial zinc transporter is YiiP, which

works in Escherichia coli and Shewanella oneidensis (EcYiiP and SoYiiP, respectively) . These

transporters are a convenient model to study the general mechanisms underlying Zn  transport. The most intensively

studied mammalian ZnTs are SLC30A7/ZnT7  and SLC30A8/ZnT8 . Researchers' interests in ZnT family

members stem mainly from their roles in maintaining Zn  homeostasis in cellular organelles throughout the body and the

fact that their dysfunction causes serious diseases.

As is the case for other membrane transporters, ZnTs undergo conformational conversion to transport Zn  across

biological membranes. To fully understand the mechanism underlying Zn  transport, high-resolution structures of the

transporters have been captured in different states. The first X-ray crystal structure of a zinc transporter (Table 1) was

reported for EcYiiP , followed by the EM structure of SoYiiP . More recently, cryo-EM structures of

vertebrate ZnTs have been reported (Table 1); these include Homo sapiens ZnT7 (HsZnT7) , Homo sapiens ZnT8

(HsZnT8) , and Xenopus tropicalis ZnT8 (XtZnT8) . These structures allow us to propose an updated model of ZnTs-

mediated Zn  transport. Of note, researchers' recent structural and biochemical studies on HsZnT7 revealed the role of

its cytosolic histidine-rich loop (His-loop) in efficient Zn  uptake . Thus, researchers have built on the structural and

mechanistic foundations of ZnTs in the biological kingdom, while making significant progress regarding research into other

members with Zn  transport functions.

Table 1. X-ray and cryo-EM structure of zinc transporters (ZnTs).
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Proteins Main Functions Organisms States Conformations (PDB
Code) Ligands Methods References

YiiP

Transport Zn
out of the

cytoplasm and
into the periplasm

Escherichia
coli Homodimer Outward-facing

(2QFI, 3H90) Zn X-ray
diffraction

Shewanella
oneidensis Homodimer

Inward-facing (3J1Z,
5VRF, 7KZZ ) Zn

Electron
microscopy

 Homodimer Inward-facing
occluded (7KZX) Zn

ZnT7

Transport Zn
out of the

cytoplasm and
into the Golgi

lumen

Homo
sapiens

Homodimer Outward-facing
(8J7T) Apo

Electron
microscopy

Homodimer Outward-facing
(8J7U) Zn

Heterodimer
Inward-facing and

outward-facing
(8J7V )

Apo

Heterodimer
Inward-facing with
Zn  and outward-

facing (8J80 )

Zn ,
Apo

Heterodimer

Inward-facing with
Zn  and outward-
facing with Zn

(8J7W) 

Zn

ZnT8

Transport Zn
out of the

cytoplasm and
into the insulin

secretory granule

H. sapiens

Homodimer Outward-facing
(6XPE) Zn

Electron
microscopy

Heterodimer
Outward-facing and

inward-facing
(6XPF)

Apo

Xenopus
tropicalis

Homodimer Outward-facing
(7Y5G) Zn

Homodimer
Outward-facing

(7Y5H ) Apo

 This structure was observed in the presence of 0.5 mM EDTA.  This structure was observed in the absence of Zn .

 This structure was observed in the presence of 10 μM Zn .  This structure was observed with addition of 200 and

300 μM Zn .  This structure was observed at low pH.

2. Zn  Transport Systems in Prokaryotes and Eukaryotes

Prokaryotes and eukaryotes have developed a variety of Zn  transport systems to promote the uptake or efflux of Zn

across biological membranes. ZnTs can be divided into three major groups depending on the mode of transport:

Uniporters that transport Zn  alone; symporters that transport Zn  in the same direction as other ions, such as protons;

and antiporters that transport Zn  and another ion in opposite directions, such that the binding of one is concomitant with

the release of the other. In general, uniporters require no external energy input and transport specific molecules along

their concentration gradients; they are therefore passive transporters. However, it can also act as an active transporter if

the transport process is against the concentration gradient. By contrast, symporters and antiporters use the energy stored

in the concentration gradient of another ion, in many cases, a proton, to transport specific molecules against their

concentration gradients. In this regard, symporters and antiporters can be regarded as active transporters. In addition,

some P-ATPases and ABC transporters transport Zn  using ATP as an external energy source to overcome the Zn

concentration gradient.

Zinc transporters (ZnTs) and ZRT- and IRT-related proteins (ZIPs) are the two major Zn  transport families found

universally in bacteria, yeasts, plants, and animals, including humans. ZnTs and ZIPs selectively transport Zn , but in

opposite directions: ZnTs export Zn  from the cytoplasm, whereas ZIPs import Zn  into the cytoplasm. Thus, ZnTs and

ZIPs play important roles in maintaining homeostasis of intracellular and intra-organelle Zn  levels.

While ZntB from Escherichia coli (EcZntB) acts as a Zn /H  symporter , many ZnTs function as proton-driven

antiporters, exchanging H  in the extracellular space or organelle lumens for Zn  in the cytoplasm 
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. By contrast, there is no clear evidence that ZIPs use proton energy flux to transport Zn  across the

membranes. However, recent biochemical studies suggest that, like ZnTs, Bordetella bronchiseptica ZIP (BbZIP) may

function as a Zn /H  antiporter .

3. ZnTs

ZnTs belong to the cation diffusion facilitator (CDF) family, which can be classified into three groups: Zn-CDFs, Zn/Fe-

CDFs, and Mn-CDFs . Zn-CDFs consist of Zn  and Co  transporters, including ZitB-like, ZnT1-like, and Zrc1-like

proteins. The ZitB-like clusters are from E. coli. The ZnT1-like clusters include only metazoans. The Zrc1-like cluster

includes only fungal CDFs originating from Ascomycetes, Basidiomycetes, and Zygomycetes. Zn/Fe-CDFs are cation-

efflux pumps that transport Fe  or Zn , and also Co , Cd , and Ni . Mn-CDFs include metal tolerance proteins

(MTPs) from plants.

3.1. Mammalian ZnTs

Ten ZnTs (ZnTs 1–10) have been identified in mammals, including humans . All ZnTs are Zn-CDF members,

although ZnT10 is more likely a manganese transporter . Based on their amino acid sequence similarities, ZnTs

are divided into four subgroups: Group 1 includes ZnT5 and ZnT7; group 2 includes ZnT2-ZnT4 and ZnT8; group 3

includes ZnT1 and ZnT10; and group 4 includes ZnT6 and ZnT9 . Most ZnTs form a homodimer composed of the same

protomers , whereas ZnT5 and ZnT6 form a heterodimer including two different protomers , and all are located

on the plasma or organelle membranes, where they control intracellular and extracellular Zn  balance . Specifically,

ZnT7 transports Zn  into the lumen of the pre-cis- and cis-Golgi, whereas ZnT5/6 and ZnT4 transport Zn  into the lumen

of the medial- and trans-Golgi . ZnT7 and ZnT5/6 are responsible for the Golgi-to-ER retrograde transport of the ER

chaperone ERp44 . This system is involved in the maturation and activation of some secretory proteins during transport

through the early secretory pathway .

3.2. Plant ZnTs

Metal tolerance proteins (MTPs) are bivalent cationic transporters in plants that play crucial roles in metal tolerance and

homeostasis in metal non-hyperaccumulators (e.g., Arabidopsis thaliana) and hyperaccumulators (e.g., Arabidopsis halleri
and Noccaea caerulescens) . MTPs are classified into seven groups based on their amino acid sequence similarities

. Thus, plant MTPs are very diverse so as to satisfy the need to absorb or detoxify specific metals. A. thalaina has 12

MTPs, while P. trichocarpa MTP has up to 22 MTP genes . In A. thaliana, AtMTP1 and AtMTP3 ZnTs localized on the

vacuole membrane maintain Zn  homeostasis . AtMTP1 and AtMTP3 are involved in the sequestration of excess

cytoplasmic Zn  into vacuoles . Whereas AtMTP1 is more ubiquitously expressed, expression of AtMTP3 is restricted

to the root epidermis and cortex . Like mammalian ZnT5 and ZnT6, AtMTP5 and AtMTP12 form a heterodimer at the

Golgi membrane and transport Zn  into the Golgi lumen .

3.3. Yeast ZnTs

Researchers'understanding of ZnTs in yeast derives primarily from Saccharomyces cerevisiae. In S. cerevisiae, vacuolar

ZnTs ZRC1 and COT1 act as Zn /H  antiporters and regulate Zn  homeostasis by transporting and storing Zn  in the

vacuole . ScZRC1 senses Zn  availability in the cytosol, possibly through the histidine-repeat motifs, and transports

Zn  from the cytosol to the vacuole when cytosolic Zn  is abundant, thereby conferring resistance to Zn  toxicity .

S. cerevisiae also possesses Msc2 and Zrg17, which transport Zn  from the nucleus and ER to the cytoplasm .

ScMsc2 and ScZrg17 interact physically to form a heterodimer and likely serve to maintain the Zn  levels in the ER of

Zn -adequate cells . Schizosaccharomyces pombe also has a zinc transporter, called ZHF1, which maintains

Zn  homeostasis in the ER and nucleus and sequesters Cd  into the ER . The structures of yeast ZnTs have not yet

been reported. While ScZRC1, ScCOT1, and ScZrg17 are predicted to have six transmembrane (TM) helices, ScMsc2 is

presumed to contain up to 16 TM helices.

3.4. Bacterial ZnTs

Bacterial ZnTs YiiP, ZitB, and CzcD have been functionally characterized. Insight into the structural features and Zn

transport mechanisms of bacterial ZnTs comes primarily from YiiP. YiiP was first identified in Escherichia coli . In vitro,

YiiP also binds Hg , Co , Ni , Mn , Ca , and Mg  but is unlikely to transport them efficiently . Like mammalian

ZnTs, YiiP functions as a Zn /H  antiporter .
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Other ZnTs have been identified recently in bacteria. ZitB conducts Zn  efflux across the cytoplasmic membrane, thereby

reducing Zn  accumulation in the cytoplasm and rendering bacteria more resistant to Zn  . By contrast, ZntA, a Zn -

transporting P-ATPase, is required for growth at more toxic concentrations . CzcD is a Cd , Co , and Zn /H -K

antiporter involved in maintaining intracellular divalent cation and potassium homeostasis through active efflux of Zn ,

Cd , and Co  in exchange for K  and protons .
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