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The advent of nanotechnology has brought about significant technological advancements in many fields of study.

The birth of nanofluids as an advanced thermal transport media in the area of thermal management is a laudable

and notable feat. Nanofluids (mono and hybrid nanofluids) have been extensively researched and established to be

better than conventional thermal transport media due to their enhanced thermophysical and convective properties.
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1. Preparation Techniques

Mono and hybrid nanofluids were prepared by suspending mono nanoparticles (MNPs) and hybrid nanoparticles

(HNPs) in orthodox thermal fluids (Figure 1). The stability of these thermal fluids is of utmost importance as it

significantly influences their thermal–optical–rheological properties and thermal performance in different

applications. Generally, mono and hybrid nanofluids are formulated using one-step and two-step strategies. The

two-step method involves two processes; first, the synthesis of MNPs or HNPs, and second, suspending of the

MNPs or HNPs into the base fluids. The two-step strategy is the most used method published in the literature for

the formulation of mono and hybrid nanofluids. This method can be engaged in large-scale production of mono and

hybrid nanofluids suitable for industrial application with cost benefits. The flaw associated with this method involves

the possibility of sedimentation and agglomeration of MNPs and HNPs owing to the Van der Waals forces of

attraction among the particles .[1]
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Figure 1. Representation of typical nanofluid preparation.

The one-step strategy involves simultaneous synthesis and suspension of MNPs and HNPs in the respective base

fluids. This method is known to provide improved stability and homogeneity of mono and hybrid nanofluids, thereby

eliminating arduous processes in comparison to the one-step strategy by reducing MNPs and HNPs clusters .

The industrial use of this method appears impracticable except for low vapor pressure fluids, and it is found to be

expensive .

2. Stability

[1][2]

[3]
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Suspending MNPs and HNPs in different base fluids induces charges leading to the formation of an electrical

double layer (EDL) around the particle surface . Thus, mono and hybrid nanofluids are said to be electrically

conducting fluids. The imposition of a potential across these fluids causes oppositely charged electrodes to attract

MNPs or HNPs and EDL. The formulation of EDL depends on the volume/weight fraction/concentration, size, and

surface charge of the particles and the ion concentration in the base fluids. The application of mono and hybrid

nanofluids strongly depends on the stability of these thermal fluids because their thermal–optical–rheological

properties and thermal performance are linked to the concentration of MNPs or HNPs in the suspension .

Under the two-step strategy, the agglomeration and sedimentation of mono and hybrid nanofluids can be avoided,

thereby improving the stability of the same by employing mechanical (sonication), surfactant addition, surface

modification, and pH control techniques. Figure 2, Figure 3, Figure 4 and Figure 5 reveal the influence of

viscosity, stability, thermal conductivity, and convective heat transfer performance, respectively, on sonication

duration. In Figure 2, increasing sonication time is shown to enhance the stability (as measured using the zeta

potential technique) of TiO /water nanofluid. From Figure 3, the thermal conductivity of MWCNT/water nanofluid is

noticed to enhance as temperature and sonication time increase. It is illustrated in Figure 4 that sonication time

reduces nanofluid viscosity as the shear rate increases. In Figure 5, the peak convective heat transfer coefficient is

achieved at the optimum sonication time under increasing flow development.

Figure 2. Effect of ultrasonic duration on stability of TiO /water nanofluid. Adapted from .

[4]

[5][6]

2

2
[7]
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Figure 3. Effects of ultrasonication time and temperature on thermal conductivity of nanofluids .[8]
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Figure 4. Variation in dynamic viscosity as function of sonication time at various shear rates at 45 °C .[8]



Nanofluid Preparation and Stability | Encyclopedia.pub

https://encyclopedia.pub/entry/40603 6/11

Figure 5. Influence of sonication duration on convective heat transfer coefficient (Re = 1200) of aqueous nanofluid.

Adapted from .

With the aid of ultrasonicators, numerous studies have reported the effect of sonication time, amplitude, modes,

and probe tip width on the thermal conductivity, absorbance wavelength, viscosity, cluster size, surfactants,

diameter of CNTs, and particle size . It is reported that optimum sonication parameters

lead to optimum stability conditions and other relevant measured parameters. These findings indicate the need to

optimize sonication parameters in relation to other parameters to achieve improved stability. Nevertheless, this is

not the case for most studies reported in the literature for mono and hybrid nanofluids, irrespective of the purpose

of the experiments. Surfactants are chemical compounds used to improve the stability of mono and hybrid

nanofluids by reducing the electrostatic repulsion and Van der Waals interaction between particles to evade the

agglomeration of particles in the base fluid . An increase in thermal conductivity, zeta potential, surface tension,

and viscosity of mono and hybrid nanofluids under the utilization of different surfactants has been published in the

literature . In addition, the pH can be modulated to improve the stability of mono and hybrid

nanofluids. The surface electric charges introduced due to the suspension of MNPs or HNPs into base fluids are

altered to enhance the stability of mono and hybrid nanofluids. The farther the pH value from the isoelectric point

(IEP), the greater the stability of the mono and hybrid nanofluids. Furthermore, the surface modification technique

can be used to improve the stability of mono and hybrid nanofluids. It is worth noting that this technique is always

surfactant-free with more improved stability . The effect of surfactants on the thermal conductivity and

thermal efficiency of mono and hybrid nanofluids is shown in Figure 6 and Figure 7, respectively. From Figure 6,

variation in the thermal conductivity is observed for the 0.5 wt % MWCNT/DW nanofluid formulated using different

surfactants and subjected to increasing temperature. Figure 7 shows that the thermal efficiency of a hybrid

nanofluid varies with the type and concentration of surfactant used in the formulation. For all the hybrid nanofluids,

the thermal efficiency increased as the Reynolds number rises.

[9]

[10][11][12][13][14][15][16][17][18][19]

[20]

[5][18][21][22][23][24]

[6][17][25]
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Figure 6. Influence of different surfactants (GA, SDBS, and SDS) thermal conductivity of aqueous MWCNT

nanofluids .

Figure 7. Influence of surfactants (PVP and SDS) on thermal efficiency of hybrid nanofluids in a helical coil heat

exchanger .

[8]

[26]
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For the characterization of mono and hybrid nanofluids, numerous techniques have been reported in the open

literature. These include Raman spectroscopy, Fourier transform infrared spectroscopy, high-resolution

transmission electron microscopy, X-ray diffractometer, scanning electron microscopy, vibrating sample

magnetometer, transmission electron microscopy, light scattering, and energy-dispersive X-ray spectroscopy 

. Scanning electron microscopy is the most reported technique for characterizing mono and hybrid

nanofluids. To monitor the stability of mono and hybrid nanofluids, visual inspection, zeta potential, ultraviolet-

visible (UV) spectrophotometer, and thermal property tracking (viscosity, thermal conductivity, turbidity, and density)

methods are engaged .
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