Linear Motor Driven Leg-Press Dynamometer

Subjects: Rehabilitation

Contributor: Matúš Krčmár, Ján Cvečka, , Helmut Kern, Stefan Löfler, Matej Vajda

Regarding the acute responses after leg-press strength training with or without serial stretch-loading stimuli, visible changes were observed in the muscle force, rate of force development, and hormonal concentrations between preand postmenopausal women (only one study). Long-term studies revealed different training adaptations after performing leg-press strength training with unique serial stretch-loading stimuli. A positive trend for leg-press strength training with serial stretch-loading was recorded in the young population and athletes; however, more variable training effects favoring one or the other approach were achieved in the older population.

proprioception isokinetic strength power musculoskeletal injuries

1. Introduction

Currently, using the terms "machine" or "training device" in reference to training and rehabilitation is somewhat controversial and/or sensitive for many practitioners from many areas of sports training and medicine. Some object to the nonfunctionality of these devices, while others use these devices during training alone or during the rehabilitation process. However, in both the abovementioned areas of sports training and medicine, the employment of machines is widely accepted and can play an important role in various situations. For instance, before and after operation, injured athletes noticed various deficits in addition to the safer and more controllable environments during complex solution processes ^[1]. When referencing the term 'machine', we must understand that these machines have progressed over time and are now very sophisticated, with multiple functions, modes, and outcomes, especially in terms of rehabilitation, where they accelerate recovery after injuries, operations, and other health-related complications ^[2]. In particular, robots are frequently applied for the rehabilitation of upper and lower extremities, and they can include grounded and wearable exoskeletons and grounded end-effector devices for controlling single or multiple joints. However, this area requires further exploration due to the limited number of studies 3. Among many other sophisticated machines, the researchers' laboratory has developed in collaboration with the University of Vienna a linear motor-driven leg press dynamometer (Figure 1) that presents a unique serial stretch loading mode that allows for the generation of force peaks during exercise.

Figure 1. Represents unique linear motor-driven leg press dynamometer (**A**) and position during testing/training (**B**).

Strength and power are two factors that affect sports performance, and they are also the subject of wider research by many researchers, mainly in connection with the elderly population and/or rehabilitation ^{[4][5][6]}, which is one of the reasons that led us to build a unique linear motor-driven leg press dynamometer. The main aim was to build a diagnostic and training device that could be used for multiple purposes in both younger and older subjects as well as for rehabilitation. The uniqueness of this device lies in the fact that it can generate force peaks by rapid changes in the direction or velocity of the movement during the concentric and eccentric phases of the movement.

2. Leg Press Used for Testing and Acute Responses

Five studies used a leg press device as a testing device only ^{[Z][8]} or in combination for testing and determining the acute effects after a strength loading protocol ^{[Z][9][10][11]}. In the study of Sedliak et al. ^[Z], leg presses were used to test the bilateral MVC force before and after the training program. In this study, acute responses after bilateral isokinetic leg extensions were monitored. Except for these two studies, a leg press was used for both testing and as an acute loading protocol in the remaining studies. Altogether, when summarizing all these studies, all possible modes were used for testing and acute loading, including isometric, isokinetic, isoinertial (constant), and isokinetic with SSL stimuli. Only two studies used this device to directly compare acute responses after isokinetic strength training with SSL stimuli and without them ^{[10][11]}. Kovárová et al. ^[10] compared the acute responses of the isokinetic bilateral strength protocol with SSL stimuli and the isoinertial protocol (75% 1RM) on bone metabolism outcomes (bone alkaline phosphatase and sclerostin). Their results indicate no significant effect of any of the strength protocols. It should be noted that the results may be hindered by the number of subjects in the study, which was relatively low (*n* = 7), and the selected markers of bone metabolism; moreover, for minor changes, other parameters could be more appropriate (e.g., β -CTX, P1NP, and others) ^[12]. In another study, Vajda et al. ^[11] also compared acute responses after isokinetic bilateral strength training, including SSL stimuli and isoinertial (constant) resistance (75% 1RM), in pre- and postmenopausal women. The results indicate possible different acute

responses of muscle force, RFD, and hormonal concentrations between pre- and postmenopausal women after the protocol with SSL and isoinertial training. MVC and RFD were significantly decreased after the protocol with SSL in premenopausal women and significantly decreased in postmenopausal women after the isoinertial protocol. The hormone concentration was affected after both protocols only in the premenopausal women. A possible explanation may be age-dependent effects because some data showed that middle-aged women react differently to loading strategies (more resistant to fatigue than younger women) ^[13]. However, this supposition needs to be further examined due to the limited number of studies that have reported isokinetic strength training (whether acute or long-term) alone and because of the unique nature of the SSL stimuli, compared to the traditional training provided to postmenopausal women and other populations.

3. Leg Press Used for Training and Its Effect on Various Outcomes

Eight studies used leg press devices for training purposes, and unique SSL stimuli were used directly during the training process ^{[14][15][16][17][18][19][20][21]}. Two studies directly compared LP strength training with and without SSL stimuli ^{[14][15]}, five studies compared LP strength training with SSL stimuli and ES (electrical stimulation) training ^[16] ^{[17][18][19][21]}, and one study also compared LP strength training with SSL stimuli and standard physiotherapeutic training ^[12].

For instance, Cvečka et al. ^[14] compared LP strength training with and without SSL stimuli in a group of young men who trained regularly. The results of their study suggest that the group that trained with the unique SSL stimuli achieved almost double the increments in almost all measured outcomes, except for RFD, maximal concentric force, and CMJ %. However, there was no between-group statistical significance in any of the outcomes measured. Similar results were obtained in the study by Kern et al. ^[15], who also compared LP strength training with and without SLL stimuli in a group of young men who trained regularly. The results suggested no significant differences between the groups in muscular strength or jump and sprint performance. However, only the group with SSL stimuli significantly improved the RFD and 30 m sprint time results and increased the fast muscle fiber diameter. The above studies indicate that using unique SSL stimuli that can generate force peaks may have a more beneficial effect or produce trends toward greater improvements compared to standard stimuli in young males.

The effects of training between LP strength training with SSL stimuli and ES training were only determined in elderly populations. The results from these studies were somewhat similar, with no significant differences between the groups, as shown in **Table 1**. However, few studies clearly showed the beneficial effects of one training alternative. For instance, Šarabon et al. ^[17] compared the effects of LP strength training with SSL stimuli and ES training in seniors on static balance. The results suggest that LP strength training with SSL stimuli led to significant CoP velocity improvement in all measured directions as well as anterior–posterior amplitude improvements compared to the ES group, where only the mediolateral CoP velocity was improved. However, no significant differences between groups were reported. In contrast, Zampieri et al. ^[19] compared LP strength training with SSL stimuli and ES stimuli and ES training and showed that the ES group presented significant improvements in almost all measured outcomes compared to the LP SSL group (only chair raise test and 10 m fast walking test). Similarly, another study

by Zampieri et al. ^[21] compared LP strength training with SSL stimuli and ES straining, and the results suggested that only the ES group presented significant improvements in isometric MVC torque, increased myofiber and mitochondria size, and upregulated IGF1 pan, IGF-1a, IGF-1b, and IGF-1c isoforms. The isokinetic LP SSL group only significantly induced IGF1b isoforms and significantly improved the chair raise test. Only one study ^[20] was focused on comparing the potential differences between LP strength training with SSL stimuli and standard physiotherapy training. As shown in **Table 1**, both groups improved all measured outcomes, with no significant differences between the groups.

Sample	Design	Measures	Intervention	Results
Young well- trained males	Randomized controlled	Isometric bilateral MVC	Duration 8 weeks	Both groups showed sig. increases in MVC
lookingtin LD	trial	force on a leg	Trained 3 x/week	(LP SSL: 48.1%, <i>p</i> <
SSL group $(n = 17, 23, 3 + 1)$	Two groups pre/post	press device Isokinetic	Isokinetic bilateral LP SSL group	0.01; LP group: 24.8%, <i>p</i> < 0.01) RFD (LP SSL:
(// = 17, 25.5 ± 2.6 years)	design	maximal and	- 6 sets and 6 reps	37.9%, <i>p</i> < 0.05; LP group: 31.4%, <i>p</i> <
Isokinetic LP group $(n = 16, 22.6 \pm 2.5 \text{ years})$		maximal and mean force in concentric and eccentric phase of leg press exercise Isometric bilateral RFD (200 ms) on a	 0.3 m/s and 0.2 m/s extension and flexion velocity, respectively 5 mm SSL counter movements Isokinetic bilateral LP 	0.05) and maximal concentric force (LP SSL: 45.4%, $p <$ 0.01; LP group: 47.0%, $p <$ 0.01). Mean concentric force sig. increased only in LP SSL (47.5%, $p <$ 0.01)
		device	group	Maximal eccentric
		CMJ height	- 9 sets and 6 reps (higher volume compensate for time loss due to SSL mode duration in the LP SSL group)	force sig. increased in both groups (LP SSL: 43.6%, $p <$ 0.01; LP group: 24.7%, $p <$ 0.01) Mean eccentric force sig. increased in both
	Young well- trained males Isokinetic LP SSL group $(n = 17, 23.3 \pm 2.6 \text{ years})$ Isokinetic LP group $(n = 16, 22.6 \pm 2.5 \text{ years})$	Young well- trained males SSL group SSL group (n = 17, 23.3 ± 2.6 years) Isokinetic LP group (n = 16, 22.6 ± 2.5 years)	SampleDesignMeasuresYoung well- trained malesRandomized controlled trialIsometric bilateral MVC force on a leg press deviceIsokinetic LPIsokinetic pre/postIsokinetic bilateral maximal and mean force in concentric and eccentric phase of leg press exercise(n = 16, 22.6 ± 2.5 years)Isometric bilateral RFD (200 ms) on a leg press deviceSometric bilateral RFD (200 ms) on a leg press	SampleDesignMeasuresInterventionYoung well- trained malesRandomized controlled trialIsometric bilateral MVC force on a leg press deviceDuration 8 weeksIsokinetic LP SSL groupTwo groups pre/postTrained 3 x/week(n = 17, 23.3 ± 2.6 years)designbilateral maximal and mean force in concentric and eccentric phase of leg press exercise- 6 sets and 6 reps(n = 16, 22.6 ± 2.5 years)Isometric bilateral RFD (200 ms) on a leg press device- 5 mm SSL counter movements(200 ms) on a leg press deviceCMJ height- 9 sets and 6 reps (higher volume compensate for time loss due to SSL mode duration in the LP SSL group)

Table 1. Long-term training studies using a leg press dynamometer during strength training.

Study	Sample	Design	Measures	Intervention	Results
				0.3 m/s and 0.2 m/s extension and flexion velocity, respectively	43.5%, <i>p</i> < 0.01; LP group: 24.9%, <i>p</i> < 0.05)
					CMJ sig. increased only in the LP SSL group (7.2%, <i>p</i> < 0.05)
					Isokinetic LP SSL achieved almost double the % increments in MVC, mean concentric force, maximal eccentric force and mean eccentric force compared to the isokinetic LP group only
					RFD, maximal concentric force and CMJ % improvements were similar between the groups
Kern et al. ^[<u>15</u>]	Young male athletes ($n =$ 29, 22.95 ±.2 years) Isokinetic LP SSL group (23.1 ± 2.7 years)	Randomized controlled trial Two groups pre/post design	Isometric unilateral MVC force and RFD (0– 50 ms) on a leg press device SJ height	Duration 8 weeks Trained 3 x/week Unilateral or bilateral training is not defined Concentric velocity was 0.3 m/s and eccentric one 0.2 m/s	Both groups showed significantly improved isometric unilateral MVC force (LP SSL: 48.1%, $p < 0.01$; LP group: 24.8%, $p <$ 0.01)

Study	Sample	Design	Measures	Intervention	Results
	Isokinetic LP group (22.6 ± 3.9 years)		30-m sprint time Muscle biopsies - fiber type distribution and diameter Gene expression	 Isokinetic LP SSL group 6 sets of 6 reps with maximal effort including short countermovement (0.5 cm) every 2 cm Isokinetic LP group standard isokinetic mode with 6 sets and 8 reps (compensate time difference compared to the other group) 2 min rest time between the sets 	Only the LP SSL group showed sig. improvements in the RFD (30.2%, $p <$ 0.001), SJ height (7.4%, $p <$ 0.005) as well as 30-m sprint time (-1.3%, $p <$ 0.05) No significant differences between the groups in the strength outcomes, jump and sprit time Only the LP SSL group significantly increased fast muscle fiber diameter (9%, p < 0.001) Changes were significantly higher in the LP SSL group compared to the LP group only ($p <$ 0.001) LP SSL group showed sig. increases in IGF-1Ec (2-fold change, $p <$ 0.05) and PGC-1 α (228%, $p <$ 0.05)

Study	Sample	Design	Measures	Intervention	Results
					 Significant downregulation of myostatin occurred only in the LP SSL group (4-fold change, p < 0.0005)
Kern et al. ^[16]	Seniors (gender not defined)Group 1 (Vienna): 2 subgroups 2 subgroups 1 Isokinetic LP SSL group ($n = 16, 74.93$ ± 5.48 years) 1 ES group ($n = 16, 73.20 \pm 6.56$ years) Group 2 (Bratislava): 2 subgroups 1 sokinetic LP SSL group ($n = 9, 71.12 \pm 100$	Randomized controlled trial Four groups pre/post design	Unilateral knee extension	 8–10 weeks of training (10 in Group 1, 8 in Group 2) Bilateral training Two subgroups (isokinetic LP SSL groups) performed a ST on the LP device with SSL mode One subgroup from each group (ES groups) performed home-based electrical stimulation Detailed training program is not specified 	Group 1: LP SSL subgroup showed sig. improvements in all functional tests except for MVC force. ES subgroup showed sig. improvements in all functional tests except for dynamic balance Group 2: LP SSL subgroup showed sig. improvement in only the chair raise test (from 12.52 \pm 1.98 to 10.12 \pm 1.41 s, <i>p</i> = 0.041) while others remained unchanged. ES subgroup showed sig. improvements in also chair rise test (from 13.12 \pm 2.60 to 11.25 \pm 1.66 s, <i>p</i> = 0.018)
	3.34 years)				Both groups and their subgroups showed

Study	Sample	Design	Measures	Intervention	Results
	 ES group (n = 9, 70.41 ± 3.74 years) 				sig. increases in myofiber diameter
Šarabon et al. ^[17]	Sedentary seniors (gender not defined) 74.3 \pm 7.0 years Three groups: - Isokinetic LP SSL group ($n = 28$) - ES group ($n = 27$) - CON group ($n = 19$)	Randomized controlled trial Three groups pre/post design	 30 s static balance average velocity, amplitude, and frequency of CoP total, medial- lateral, anterior- posterior direction 	 Duration 9 weeks Trained 3 x/week Bilateral training Isokinetic LP SSL group velocity of the pedals was 0.3 m/s and 0.2 m/s for concentric and eccentric phase, respectively every 8 mm was interrupted by a short stop that resulted in force peaks 2–3 sessions/week 4–5 sets/session time/set from 8 to 14 s ES group: anterior thigh stimulation (both legs) with frequency of 60 Hz 	The Isokinetic LP SSL group showed sig. improvements in CoP velocity in anterior-posterior (from 14.4 \pm 1.5 to 11.4 \pm 1.1 mm/s, $p <$ 0.05), medial-lateral (from 7.5 \pm 0.7 to 6.1 \pm 0.5 mm/s, $p <$ 0.05) and total direction (from 17.6 \pm 1.6 to 15.2 \pm 1.2 mm/s, $p <$ 0.05) as well as anterior-posterior amplitude (from 5.6 \pm 0.5 to 4.9 \pm 0.5 mm, p < 0.05) The ES group showed sig. improvements in medial-lateral CoP velocity (from 6.9 \pm 0.7 to 5.6 \pm 0.4 mm/s, p < 0.05) The CON group sig. worsened CoP anterior-posterior velocity (from 14.6 \pm

Study	Sample	Design	Measures	Intervention	Results
				 45 contractions (3 × 15 reps, 2 sessions in the first 2 weeks) 75 contractions (from week 3 to 9) CON group: continued in their normal daily activities 	1.7 to 16.1 ± 1.5 mm/s, <i>p</i> < 0.05)
Cvečka et al. ^[18]	Sedentary seniors Gender and age are not defined Two groups: - Isokinetic LP SSL group - ES group	Randomized controlled trial Two groups pre/post design	Isometric MVC torque on a chair dynamometer - bilateral or unilateral testing is not defined Chair rising test TUG 10 m walk test	 Duration 8 weeks Bilateral or unilateral training is not defined Isokinetic LP SSL group frequency of 16 and 14 Hz 5 sets with 12–14 s of contraction time 3 x/week ES group knee extensors ES 	The LP SSL group showed sig. improvements in MVC torque (from 222 to 236 Nm, $p <$ 0.05), chair rising test (from 12.5 to 10.4 s, p < 0.05), TUG (from 6.29 to 5.68 s, $p <$ 0.05), 10 m walk test (from 5.06 to 4.80 s, p < 0.05), and postural stability test (data not shown) The ES group showed sig. improvements in MVC torque (from
				 3 x/week 3 sets of 10 min (first 2 weeks 3 sets of 6 min) 	232 to 248 Nm, $p <$ 0.05), chair rising test (from 13.10 to 10.80 s, $p <$ 0.05), TUG (from 7.61 to 6.96 s, p < 0.05), and 10 m

Study	Sample	Design	Measures	Intervention	Results
					walk test (from 5.96 to 5.52 s, $p < 0.05$) No sig. differences between the groups
Zampieri et al. ^[19]	Sedentary seniors (M/F) Isokinetic LP SSL group $(n = 9, M = 5, F = 4, 71.8 \pm 7.1 \text{ years})$ ES group $(n = 16, M = 8, F = 8, 70.6 \pm 2.8 \text{ years})$	Randomized controlled trial Two groups pre/post design	Isometric MVC torque on a chair dynamometer Functional tests using "SFT battery" - TUG - Chair raise Chair raise - 10 m habitual walking test - 10 m fast walking test Muscle biopsy including myofiber diameter Unilateral or bilateral testing is not specified	 Duration 9 weeks Isokinetic LP SSL group 3 x/week ES group 3 x/week Detailed training program is not specified in both groups Unilateral or bilateral training is not specified 	The isokinetic LP SSL group showed sig. improvements in chair rise test (from 10.95 ± 1.75 to 9.54 ± 1.92 s, $p < 0.05$) and 10 m fast walking test (from 1.90 ± 0.19 to 2.01 ± 0.23 s, $p <$ 0.005) The ES group showed sig. improvements in isometric MVC torque (from 1.42 ± 0.34 to 1.51 ± 0.38 Nm, $p <$ 0.05), TUG (from 8.42 ± 1.95 to $7.04 \pm$ 1.09 s, $p < 0.0005$), chair rise test (from 13.85 ± 3.33 to 10.53 ± 3.63 s, $p < 0.005$), 10 m habitual walking test (from 1.20 ± 0.19 to 1.26 ± 0.18 s, $p <$ 0.05) and 10 m fast walking test (from 1.58 ± 0.28 to $1.66 \pm$ 0.24 s, $p < 0.05$)

Study	Sample	Design	Measures	Intervention	Results
					The isokinetic LP SSL group showed sig. decreases in slow (from 55.43 \pm 17.33 to 53.12 \pm 16.06 µm, $p < 0.001$) and fast type myofiber diameter (from 48.96 \pm 16.18 to 46.43 \pm 15.96 µm, p < 0.001)
					The ES group showed sig. decreases in slow type myofiber diameter (from 50.30 \pm 14.78 to 48.48 \pm 16.67 µm, <i>p</i> < 0.001) but sig. increases in the fast type myofiber diameter (from 46.53 \pm 14.04 to 47.54 \pm 15.79 µm, <i>p</i> < 0.001)
Billy et al. ^[20]	Sedentary seniors (M/F) Total knee arthroplasty Isokinetic LP SSL group (n = 26, M = 9, F = 17, F = 10, F =	Randomized controlled trial Two groups pre/post design	Isometric unilateral MVC peak force of leg extension on a leg press device Isometric unilateral MVC torque of knee	Duration 6 weeks Trained 2 x/week Unilateral training- involved and uninvolved leg Isokinetic LP SSL group - 4 to 6 sets of 22 to 25 s with SSL	The LP SSL group showed sig. improvements in MVC force on a leg press device with involved leg (from 8.9 \pm 0.77 to 10.3 \pm 1.06 N/kg, <i>p</i> < 0.05), MVC on force chair with involved (from 0.8 \pm 0.06 to 1.0 \pm 0.09 Nm/kg, <i>p</i> < 0.01) and

Study	Sample	Design	Measures	Intervention	Results
Study	Sample 64.9 ± 6.0 years) Physiotherapy group (<i>n</i> = 29, M = 9, F = 20, 68.3 ± 6.7 years)	Design	Measures extension on a force chair TUG Stair test Pain and function Active and passive range of motion	Intervention during concentric phase interrupted by a countermovement (1 to 2 cm backward) Pivsiotherapy group Pivsiotherapy group outerapy, ROM- exercises, isometric and dynamic strengthening exercises, and gait-retraining exercises, and gait-retraining exercises 1 to 3 sets of 10 to 15 reps with individualized intensity	Resultsuninvolved leg (from 1.2 ± 0.09 to $1.2 \pm$ 0.11 Nm/kg, $p < 0.01$)- The LP SSL group showed sig. improvements in all other functional outcomesPhysiotherapy group showed sig. improvements in MVC force on a leg press device with involved leg (from 6.7 ± 0.54 to 9.1 ± 0.70 N/kg, $p < 0.05$), MVC on force chair with involved (from $0.7 \pm$ 0.06 to 0.9 ± 0.06 Nm/kg, $p < 0.00$) and uninvolved leg (from 1.1 ± 0.08 to $1.2 \pm$ 0.07 Nm/kg, $p < 0.01$)- The PT group showed sig. improvements in
				session was 30	showed sig. improvements in all other functional outcomes No sig. differences
					between the groups after training were recorded in any of the examined outcomes

Study	Sample	Design	Measures	Intervention	Results	
Zampieri et al. ^[21]	Sedentary seniors (M/F) Isokinetic LP SSL group $(n = 7, M = 4, F_{15} 3, F$	Randomized controlled trial Two groups pre/post design	Isometric MVC torque on a force chair Time to raise from a chair	Duration 9 weeks Trained 2–3 x/week Isokinetic LP SSL group - intensity	The isokinetic LP SSL group showed sig. improvements in chair raise test (p = 0.050) but no sig. changes in MVC torque	J = squat ds, m/s = leter, M = th unique males ^[14] (ed in the
	70.1 ± 2.9		Muscle biopsies	approximately 90% of MVC	The ES group showed sig.	ed in the ion; thus, ery useful ining and in Table 1 , _P device plex, and has been throplasty
	ES group $(n = 10 \text{ M} = 5)$		Gene expression	 detailed training program of leg press training is improvements in MVC torque (p = 0.026) and chair rais 	improvements in MVC torque ($p =$ 0.026) and chair raise test ($p = 0.036$)	
(F 7 (<u>23)[24][25</u>]	F = 5,		Mitochondrial dynamics	not defined ES group	The ES group	
	71.4 ± 7.1 years)		Unilateral or bilateral testing is not specified	- ES of the thigh quadriceps musculature of both legs at 60 Hz by 3 5-s train of	snowed sig. increases in myofiber size (from 49.16 ± 15.80 to 51.01 ± 16.38 μ m, $p <$ 0.0001) The isokinetic LP SSL group showed sig. decreases in myofiber size (from 57.87 ± 19.17 to 55.21 ± 18.13 μ m, p	
				impulses with 4.5-s off intervals		
				 intensity: approximately 40% of MVC 		a, J.;
				Unilateral or bilateral training is not specified	< 0.0001) Only the ES group showed sig. decreases in the	y.
					atrophy factor ($p = 0.031$)	retch

d, J.;

Richardson, R.S. Impact of maximal strength training on work enciency and muscle liber type in the elderly: Implications for physical function and fall prevention. Exp. Gerontol. 2017, 91, 64–71.

	Study	Sample	Design	Measures	Intervention	Results	n old
						The ES group showed sig. upregulation of IGF1 pan (p = 0.001), IGF- 1a (p = 0.001), IGF- 1b (p = 0.014), IGF- 1c isoforms (p = 0.013)	derka, s to n thritis.
						The Isokinetic LP SSL group showed sig. induction of IGF1b isoforms (p =	á, M.; c
1						0.002)	sponse
1						Only the ES group showed sig. increases in mitochondria size	9.
1						(from 72.3 \pm 1.9 to 80.4 \pm 2.5 μ m ² , <i>p</i> = 0.009), although the mitochondria number	e opl.
1						sig. decreased (from 48.3 ± 1.3 to 38.6 ± 1.2 um^2 p = 0.0001)	meta-
1						 No changes in the 	ng auf
1						isokinetic LP SSL group	a, J.; es

trained with vibration-al-proprioceptive stimulation. Neurol. Res. 2011, 33, 998–1009.

- Kern, H.; Loefler, S.; Hofer, C.; Vogelauer, M.; Burggraf, S.; Grim-Stieger, M.; Cvecka, J.; Hamar, D.; Sarabon, N.; Protasi, F.; et al. FES Training in Aging: Interim results show statistically significant improvements in mobility and muscle fiber size. Eur. J. Transl. Myol. 2012, 22, 61–67.
- 17. Nejc, S.; Loefler, S.; Cvecka, J.; Sedliak, M.; Kern, H. Strength training in elderly people improves static balance: A randomized controlled trial. Eur. J. Transl. Myol. 2013, 23, 85–89.
- 18. Cvecka, J.; Tirpakova, V.; Sedliak, M.; Kern, H.; Mayr, W.; Hamar, D. Physical activity in elderly. Eur. J. Transl. Myol. 2015, 25, 249–252.

- Zampieri, S.; Mosole, S.; Löfler, S.; Fruhmann, H.; Burggraf, S.; Cvečka, J.; Hamar, D.; Sedliak, M.; Tirptakova, V.; Šarabon, N.; et al. Physical exercise in Aging: Nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people. Eur. J. Transl. Myol. 2015, 25, 237–242.
- Bily, W.; Franz, C.; Trimmel, L.; Loefler, S.; Cvecka, J.; Zampieri, S.; Kasche, W.; Sarabon, N.; Zenz, P.; Kern, H. Effects of Leg-Press Training with Moderate Vibration on Muscle Strength, Pain, and Function After Total Knee Arthroplasty: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2016, 97, 857–865.
- 21. Zampieri, S.; Mammucari, C.; Romanello, V.; Bardberi, L.; Pietrangelo, L.; Fusella, A.; Mosole, S.; Gherardi, G.; Höfer, C.; Löfler, S.; et al. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics. Physiol. Rep. 2016, 4, e13005.
- 22. Shaw, I.; Shaw, S.B.; Brown, A.G.; Shariat, A. Review of the Role of Resistance Training and Muscu- loskeletal Injury Pre-vention and Rehabilitation. Gavin J. Orthop. Res. Ther. 2016, 1, 1–5.
- Nguyen Ch Lefèvre-Colau, M.M.; Poiraudeau, S.; Rannou, F. Rehabilitation (exercise and strength training) and osteoar-thritis: A critical narrative review. Ann. Phys. Rehabil. Med. 2016, 5, 190–195.
- 24. Jakobsen, T.L.; Kehlet, H.; Husted, H.; Petersen, J.; Bandholm, T. Early Progressive Strength Training to Enhance Recovery After Fast-Track Total Knee Arthroplasty: A Randomized Controlled Trial. Arthritis Care Res. 2014, 66, 1856–1866.
- Husby, S.V.; Foss, A.O.; Husby, S.O.; Winther, B.S. Randomized controlled trial of maximal strength training vs. standard rehabilitation following total knee arthroplasty. Eur. J. Phys. Rehabil. Med. 2018, 54, 371–379.

Retrieved from https://encyclopedia.pub/entry/history/show/53683