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Crohn’s disease (CD) and ulcerative colitis (UC) are both highly inflammatory diseases of the gastrointestinal tract,

collectively known as inflammatory bowel disease (IBD). Although the cause of IBD is still unclear, several

experimental IBD murine models have enabled researchers to make great inroads into understanding human IBD

pathology. Murine experimental models of human IBD exhibit immune pathological signatures resembling Crohn’s

disease (CD) or ulcerative colitis (UC). These models include the chemical-induced trinitrobenzene sulfonic acid

(TNBS) model, oxazolone and dextran sulfate sodium (DSS) models, the gene-deficient I-kappa-B kinase gamma

(Iκκ-γ) and interleukin(IL)-10 models, and the CD4+ T-cell transfer model. Although most pre-clinical murine models

do not fully recapitulate the complexity of human IBD, these models have added to our knowledge about the

causes of disease and have provided targets for developing new treatments. 
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1. Introduction

The use of pre-clinical murine models of human IBD is currently employed by researchers to better understand

disease etiology. Murine experimental models of human IBD exhibit immune pathological signatures resembling

Crohn’s disease (CD) or ulcerative colitis (UC). These models include the chemical-induced trinitrobenzene

sulfonic acid (TNBS) model, oxazolone and dextran sulfate sodium (DSS) models, the gene-deficient I-kappa-B

kinase gamma (Iκκ-γ) and interleukin(IL)-10 models, and the CD4  T-cell transfer model . Although most

pre-clinical murine models do not fully recapitulate the complexity of human IBD, these models have added to the

knowledge about the causes of disease and have provided targets for developing new treatments.

2. Chemical Induced Colitis

2.1. Oxazolone Colitis

Oxazolone colitis (OC) is induced by the intrarectal administration of a haptenising agent known as oxazolone (4-

ethoxymethylene-2-phenyl-2-oxazolin-5-one) in ethanol (Figure 1) .

+ [1][2][3][4][5][6]
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Figure 1. Immune response during oxazolone colitis. Oxazolone administration results in the production of IL-25,

activation of ILC2, and production of IL-13, activating CD4+ T cell responses and amplifying type-2 cytokine

production. Oxazolone administration also results in the expansion of T cells with surrogate markers of NKT cell

function and IL-13 production by populations of CD1-restricted NKT cells. The resulting chronic inflammatory

responses result in goblet cell depletion, increased intestinal permeability, and increased adhesion of commensal

intestinal microbiota to the epithelium. Key: inflamed epithelial cells (Infl.EC), healthy epithelial cells (HEC),

damaged epithelial cell (dam.EC). Created with BioRender.com, accessed on 18 August 2022.

Two methods of OC induction are currently employed to elicit either a self-resolving acute or a chronic response.

The former is achieved by the single administration of an oxazolone enema, while the latter is preceded by a

dermal pre-sensitisation five days before administration of an oxazolone enema, leading to chronic OC . Both

acute and chronic OC in mice are characterised by a superficial inflammation of the distal colon mucosa, a high

volume of inflammatory infiltrate (neutrophils, macrophages, and lymphocytes), goblet-cell depletion, oedema

[7][8]
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formation, epithelial cell loss, haemorrhage, and vascular dilation . These histologic features, as well as the

distribution of OC, resemble human UC .

Chronic activation of type-2 immune responses has been proposed to be the main driver of human UC  (Figure

1). In the murine model, oxazolone activation of the type-2 immune response is characterised by the production of

interleukin (IL)-4 in the acute phase, then superseded by the production of IL-13 in the chronic phase .

Increased production of IL-13 (and IL-5) was also evident in lamina propria T cells isolated from UC patients .

Interestingly, the use of mice deficient in IL-4 receptor-alpha (IL-4Rα), a common receptor for both IL-4 and IL-13,

resulted in the exacerbation of OC, which could only be rescued by depletion of IL-13 in these mice . Moreover,

OC was prevented in mice given an IL-13 receptor subunit alpha-2 (IL-13Rα2) fusion protein that neutralises IL-13

bioactivity , alluding to the possible involvement of IL-13 signalling in the exacerbation of IBD in both pre-clinical

models and patients . 

Although the initial cell source of IL-13 in UC is yet undetermined, both natural killer T cells (NKT) and conventional

CD4  T cells secrete copious amounts of IL-13 during OC . CD1d-restricted NKT cells expressing an invariant

T-cell receptor can secrete IFN-γ or IL-4, activating CD4  T cells to become Th1 or Th2 cells (Figure 1) .

2.2. TNBS-Induced Colitis

This pre-clinical model also utilises intrarectal administration of a haptenising agent in ethanol: 2,4,6-

trinitrobenzene sulfonic acid (TNBS). Administration of 0.5 mg of TNBS in 50% ethanol to mice resulted in chronic

transmural colitis, characterised by diarrhoea, weight loss, and rectal prolapse, pathology that mimics some

characteristics of CD in humans . Although one administration of TNBS resulted in acute chemical damage to the

gut epithelium, inflammation was self-limiting, rather than the chronic inflammation seen in human disease .

Differing responses in mice are apparent in this acute model of colitis, varying according to several factors

including age, genetic background, and TNBS dose . To achieve chronic colitis, this model was developed by

pre-sensitising the skin with 1% TNBS, followed by up to six repeated weekly intrarectal administrations of

increasing doses of TNBS . This model resembled the chronic phase of CD and was accompanied by

production of IL-23 and IL-17 by lamina propria cells .

Isolated lamina propria CD4  T cells from mice given TNBS secreted high levels of the Th1 cytokine interferon

(IFN)-γ, resembling the cytokine profile produced by isolated lamina propria CD4  T cells from CD patients . This

distinguished them from the Th2 profile of the same cells isolated from UC patients, or mice given oxazolone .

Although antibodies against IL-12, a pivotal cytokine for Th1 differentiation, abrogated established colitis and the

initiation of TNBS-disease in BALB/c mice , TNBS-dependent colitis was exacerbated in IFN-γ-deficient mice on

a BALB/c background .

The clinical importance of the TNBS model is demonstrated by the translation of Neurath’s anti-IL-12 antibody

findings from TNBS murine experiments to successful human trials . Importantly, the antibody used in these

same studies was later found to react with the promiscuous p40 subunit shared by both IL-12 (a 70 kDa
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heterodimer of the p40 and a p35 subunit) and IL-23 (heterodimer of the p40 and a p19 subunit) (summarized in

). Clinical trials with “brakinumab”, a monoclonal antibody recognising the human p40 subunit, downregulated

both IL-12p70 and IL-23 secretion  and resulted in a clinical improvement in patients with active CD . Drug

development of brakinumab was discontinued due to the existence of another IL-12/IL-23 inhibitor, Stelera

(ustekinumab), on the market, which significantly increased the induction and maintenance of clinical remission in

patients with UC . Despite the findings of exacerbated TNBS-colitis in mice lacking the p19 subunit of IL-23,

novel therapies targeting IL-23 and the IL-23R have been developed and deemed successful when tested in

clinical trials of patients with IBD .

2.3. Dextran-Sulphate-Sodium-Induced Colitis

Dextran sulphate sodium (DSS) colitis is the most widely used experimental murine model of colitis, established by

Okayasu in 1990 through the administration of DSS with a molecular weight of 40–50 kDa in drinking water .

DSS is thought to form nano-lipid vesicles with medium-chain fatty acids (MCFAs) in the colon, which fuse with

colonocyte membranes and increase inflammatory cytokine levels . A high-fat diet rich in MCFAs exacerbated

weight loss, inflammatory cytokine expression, and colon shortening in this model, with dodecanoic acid favouring

disruption of intestinal barrier function and increased vesicle formation in vitro . One day after administration,

DSS particles were present systemically in Kupffer cells of the liver, in macrophages of the mesenteric lymph node,

and in the lamina propria of the large intestine . DSS administration was also characterised by erosion of the

intestinal epithelium, inflammatory infiltration of the large intestine, and dysbiosis of the intestinal microbiome .

While these features are similar to those found in human disease, the transmural inflammation apparent in TNBS-

colitis is absent in this model . Although repeated rounds of DSS can be administered to provide the pattern of

remitting, relapsing inflammation in human IBD, some of the limitations of this model include inter-batch variability

of DSS and the need to optimise DSS dose, given the impact of the intestinal microbiome on disease .
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Figure 2. Immune response to DSS administration. DSS administration results in epithelial release of IL-1β,

activation of ILC3, and release of IL-23. IL-23 release results in the influx of neutrophils and CD4+ T cells, which

further respond through enhanced IL-17 signalling. The resulting chronic inflammatory responses result in goblet

cell depletion, increased intestinal permeability, and increased adhesion of commensal intestinal microbiota to the

epithelium. Key: Inflamed epithelial cells (Infl.EC), healthy epithelial cells (HEC), damaged epithelial cell (dam.EC),

macrophages (MΦ), neutrophils (NΦ). Created with BioRender.com, accessed on 18 August 2022.

DSS-colitis can be induced in immunodeficient mice including recombination-activating gene (RAG)-1-deficient and

severe combined immune deficient (SCID) mice, suggesting the dispensability of the adaptive immune system in

initiating disease . Although Kim et al. demonstrated colitis induction in RAG-1-deficient mice, the resultant

mild colitis in these mice compared to their wild-type counterparts insinuates that lymphocytes may be necessary

for subsequent colitis progression . Histological assessment of biopsy specimens from IBD patients correlated

UC and CD with severe mononuclear cell infiltration and basal plasmacytosis (plasma B cells) . In the acute

phase of the DSS-colitis model, this infiltrate consisted of innate macrophage, neutrophil, and eosinophil

populations recruited following increased cytokine and chemokine expression .
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Elevated expression of IL-17 and IL-23 was reported in IBD patients and in DSS-colitis, where expression of the

two cytokines was intertwined (Figure 2) . The use of the DSS-colitis model to test the role of

these cytokines in disease has revolutionised not only the possible interventions available for patients but has also

developed our understanding of mucosal immunology. At steady state, the p19 subunit of IL-23 is highly expressed

within Peyer’s patches and the thymus, as well as in polarised Th1 cells, activated macrophages, and dendritic cell

populations derived from peripheral blood . IL-23 induced proliferation of memory T cells and elevated secretion

of IL-17 in vitro . Subsequently, IL-23 signalling within intestinal epithelial cells was found to play an important

role in protection against DSS colitis by regulating regenerating-islet-derived protein 3-beta (Reg3β)-dependent

control of flagellated intestinal bacterial abundance and promoting IL-22 production . Indeed DSS-colitis was

exacerbated in IL-22-deficient mice  and blockade of IL-22 expression delayed recovery from DSS-colitis and

exacerbated disease scores .

3. Spontaneous Colitis

3.1. Iκκ-γ (NEMO) Deficiency Colitis

Conditional ablation of the NF-kB essential modulator (NEMO), also known as I-kappa-B kinase gamma (Iκκ-γ),

within the intestinal epithelium, resulted in spontaneous colitis in mice . Chronic disease in intestinal-epithelial-

cell-specific NEMO-deficient mice was associated with TNFR1-dependent colonic epithelial cell death,

compromised epithelial integrity, bacterial translocation in the colon, immune cell infiltration, and increased

expression of pro-inflammatory cytokines including TNF-α . Absence of disease in double-deficient

(NEMO  + MYD88 ) mice, lacking NEMO and the important bacterial sensor myeloid differentiation primary

response 88 (MYD88), supported a role for the gut microbiota in driving colitis . Indeed NEMO  mice raised

under germ-free conditions did not develop spontaneous colitis, whereas co-housing of these mice with specific

pathogen-free animals restored disease . 

3.2. Interleukin-10 (IL-10) Deficiency Colitis

Although IBD is common among adults, childhood IBD constitutes about a quarter of all patients with IBD .

Approximately 15% of childhood IBD occurs in children <6 years old and is termed very early onset IBD (VEO-IBD)

. While most childhood IBD cases are polygenic in nature, many children with VEO-IBD have an underlying

monogenetic disorder that results in severe enterocolitis, including mutations in IL-10 and/or IL-10R (summarized

in ). Mice deficient in IL-10 develop spontaneous enterocolitis, characterised by progressive cellular infiltration of

the cecum, colon, rectum, and small intestine, with transmural lesions and a high incidence of colorectal

adenocarcinomas observed in 6-month-old mice . Mice lacking IL-10 receptor β also developed spontaneous

enterocolitis . However, this receptor is shared with other type II cytokine receptors including those specific

for IL-22, IL-26, and lambda interferons, in addition to IL-10 .

An important role for the gut microbiota in influencing the general enterocolitis seen in IL-10-deficient mice was

implicated by a lack of disease in mice housed in specific pathogen-free conditions, or in germ-free conditions 
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. Treatment of IL-10-deficient mice with two different antibiotics, both shown to improve scores in patients with

Crohn’s disease , attenuated the development of spontaneous colitis . Similar to IBD patients, colitic IL-10-

deficient mice exhibited a markedly reduced species diversity in their faecal microbiome when compared to

disease-free controls . In addition, IL-10/IL-22 double-deficient mice lacking colitis exhibited higher

microbial diversity when compared to IL-10-deficient mice .

4. Immune Cell Induced Colitis

T-Cell Adoptive Transfer Model

The transfer of murine CD45RB CD4  T cells from healthy donors to severe combined immunodeficiency (SCID)

(Figure 3) mice resulted in the development of a lethal wasting disease, an influx of inflammatory cells, and

increased inflammatory cytokine production in the colon of the recipient .

Figure 3. CD45RB CD4  T cell adoptive transfer scheme. Created with BioRender.com, accessed on 18 August

2022.
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The resulting chronic colitis that developed within 5–8 weeks was T cell dose-dependent, and despite the presence

of transferred T cells in several organs, significant pathology was limited to the large intestine . Interestingly, the

transfer of naïve CD45RB CD4  cells into SCID mice with a reduced microbiota significantly reduced colitis

when compared to SCID mice housed in SPF conditions . Restoration of T-cell proliferation in germ-free RAG-

deficient mice following reconstitution with cecal bacterial lysate-pulsed dendritic cells and induction of colitis in

SPF RAG-deficient mice following the transfer of T cells specific for a microbiota flagellin antigen cemented the role

of the commensal microbiota in driving disease in this model .

Although both CD45RB  and CD45RB CD4  T cells homed to the intraepithelial and lamina propria

compartments of both the small and large intestine , CD45RB  or total unfractionated CD4  T-cells were

incapable of inducing colitis . Following the discovery that the CD45RB  population comprised a population of

CD4 CD25  regulatory T cells that could cure colitis in SCID or RAG1-deficient recipients of CD4 CD45RB  T

cells , the T-cell transfer model of colitis was further refined by reconstitution of SCID mice with CD25-depleted

CD4  cells . Although colitis in this model was accredited to the production of the Th1 cytokine IFN-γ ,

enhanced emergence of IL-17A IFN-γ population of T cells and suppression of populations of Foxp3  and IL-10-

producing regulatory T cells was attributed to IL-23R signalling in T cells . Similarly, an absence of IL-23 in IL-

12p19-deficient RAG-deficient recipients resulted in significantly decreased levels of proinflammatory cytokine

production in the intestine . While intestinal inflammation was significantly reduced in the RAG-deficient

recipients of IL-23R-deficient CD45RB CD4  T cells, or p19 RAG  recipients of CD4 CD25 CD45RB  T

cells, these mice still exhibited systemic inflammation and weight loss , suggesting a tissue-restricted activity

of IL-23.

Using IFN-γ-deficient RAG  recipients, IFN-γ was subsequently shown to be dispensable for the induction and

progression of CD4 CD25 CD45RB  T cell transfer colitis . Inflammatory responses in these recipients

favoured IL-17A production, where neutralisation of IL-17A/F significantly reduced weight loss and

histopathological score in these animals . A population of CD4 IL-17F  T cells was sufficient to induce colitis

in RAG1-deficient recipients, where the transition of these precursors to Th1-like cells was an absolute requirement

for disease . Interestingly, IL-21 signalling was recently proposed to dampen T-cell transfer colitis by reducing IL-

17A production and augmenting IL-22 production in populations of ILC3s .

An advantage to this model is the ability to examine early immunological events associated with gut inflammation,

including regulatory T cells responses. In addition, the apparent inflammatory response in both the small bowel as

well as the colon makes this model ideal for the study of CD . However, the SCID and RAG  recipients used in

this model spontaneously develop T and B cell populations as they age , while NK cells from RAG  mice are

reported to exhibit altered function and fitness . The lower prevalence of human SCID patients, estimated at 1 in

58,000 new-borns in the United States (0.0017%) , compared to a higher incidence of CD (estimated at 10.7

cases per 100,000 individuals in the United States (0.0107%) , points to a factorial model of CD

induction/development, independent of primary immunodeficiencies in T and B cells. This excludes this model as

an exact model of CD, despite the many similarities.
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