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Secreted frizzled-related protein 1 (SFRP1) is a gene that belongs to the secreted glycoprotein SFRP family. SFRP1 has

been classified as a tumor suppressor gene due to the loss of expression in various human cancers, which is mainly

attributed by epigenetic inactivation via DNA methylation or transcriptional silencing by microRNAs. Epigenetic silencing of

SFRP1 may cause dysregulation of cell proliferation, migration, and invasion, which lead to cancer cells formation,

disease progression, poor prognosis, and treatment resistance. Hence, restoration of SFRP1 expression via

demethylating drugs or over-expression experiments opens the possibility for a new cancer therapy approach. While the

role of SFRP1 as a tumor suppressor gene is well-established, some studies also reported the possible oncogenic

properties of SFRP1 in cancers.
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1. Introduction

Secreted frizzled-related protein 1 (SFRP1) is a gene that belongs to the secreted glycoprotein SFRP family. This family is

also composed of another four secreted glycoproteins, namely, SFRP2, SFRP3, SFRP4, and SFRP5, which have been

identified in humans . Among the five members of the SFRP family,  SFRP1  has been extensively studied in human

cancers. This gene is located within the 8p11.21 chromosome region  and encodes a secreted protein with 314 amino

acids (35.4 kDa) . The SFRP1 protein harbors two independent structural domains, namely the carboxy-terminal netrin

(NTR) domain and an amino-terminal cysteine-rich domain (CRD). CRD domain is homologous to the putative Wnt-

binding site of frizzled (Fz) receptors because it contains ten cysteines with a pattern of five disulfide bridges that is similar

to the CRD of Fz . Therefore, SFRP1 can act as a modulator of the Wnt signaling pathway.

SFRP1 has been classified as a tumor suppressor gene due to the loss of its expression in many human cancers. This

may cause dysregulation of cell proliferation, migration, and invasion, which eventually lead to cancer cells’ formation. The

loss of SFRP1 expression is associated with the early development of colorectal cancer (CRC) as well as prostate cancer,

and is linked with disease recurrence in renal cell cancer .

Various mechanisms have been implicated in the loss of  SFRP1  including epigenetic and genetic regulation.

Endogenous  SFRP1  expression increases in a dose-dependent manner after demethylating treatment, signifying DNA

methylation as the main mechanism that is responsible for the silencing of  SFRP1  . Therefore, targeting DNA

methyltransferase activity represents a promising strategy to reduce or reverse the methylation in the SFRP1 promoters.

Previously, HDAC inhibitor (HDACi); romidepsin and DNA methyltransferase inhibitor (DNMTi); and 2′-deoxy-5-azacytidine

(Decitabine) were used to restore SFRP1 expression in cancer cells (please refer to Section 4 below). The restoration

of SFRP1  sensitized the cisplatin-resistant laryngeal carcinoma cells . Moreover, reversing SFRP1 methylation using

Decitabine suppressed cell proliferation, invasion, and migration of nasopharyngeal cancer . Taken together, these

strategies highlight the potential of using epigenetic drugs for cancer treatment. While the role of  SFRP1  as a tumor

suppressor gene is well-established, some studies also reported the possible oncogenic properties of  SFRP1  in

cancers. SFRP1  is highly expressed in the basal-like subtype  as well as in triple-negative breast cancer (TNBC) .

Similarly, SFRP1 was also found to be over-expressed in metastatic renal cell carcinomas but not in primary tumors ,

and this was further verified in gastric cancer cells .

A comprehensive and general review on the  SFRP  family was published more than five years ago .

While  SFRP2  and  SFRP4  were more recently reviewed , an updated review that recapitulates the association

between  SFRP1  and chemoresistance is limited. A pan-cancer analysis suggested that  SFRPs  are strongly correlated

with patient survival, but there is an inconsistency between family members and cancer types . A systematic review and

meta-analysis of the SFRP  family also revealed that SFRP1  hypermethylation was significantly associated with cancer

risk . Therefore, in this review, epigenetic regulation of SFRP1 expression will be highlighted with additional emphasis

on the potentials of SFRP1  in modulating responses toward chemotherapeutic and epigenetic-modifying drugs. We also
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provide the latest evidence of the divergent roles of  SFRP1  in tumorigenesis that may encourage the development of

novel drugs for cancer treatment by targeting SFRP1.

2. Epigenetic Inactivation and Genomic Alterations in SFRP1 Gene

The expression of SFRP1 mRNA is detectable in all tested human tissues and broad expression was observed in the

endometrium , ovary , colon , prostate , and breast . The Cancer Genome Atlas (TCGA) revealed reduced

expression of SFRP1 various cancers including breast, colorectal, lung, bladder urothelial carcinoma, cervical squamous

cell carcinoma, head and neck squamous cell carcinoma, glioblastoma multiforme, kidney renal clear cell carcinoma,

stomach adenocarcinoma, and endometrium cancer compared to the normal tissues . The downregulation

of SFRP1 expression in cancer can be regulated through different mechanisms such as non-coding RNA (ncRNA), DNA

methylation, allelic imbalance, or genomic alterations.

2.1. MicroRNA-27a (miR-27a)

In general, ncRNA functions to regulate gene expression at the transcriptional and post-transcriptional levels.

Dysregulation of ncRNAs plays a significant role in tumor initiation and progression. MicroRNAs (miRNAs) are the widely

studied type of ncRNA and are closely associated with cancer. Numerous miRNAs have been demonstrated to accelerate

tumorigenesis by targeting SFRP1.

SFRP1  is a prior target of miR-27a in several tumors . miR-27a is upregulated in the gastric cancer cell line

MGC803 , breast cancer cell lines BT-20, MCF7, T-47D, and MDA-MB-231 , as well as in osteosarcoma cell lines

HOS, SaOS2, 143B, and MG63 . This miRNA negatively regulated SFRP1 by hindering its expression. In contrast, the

knockdown of miR-27a in gastric cancer cell lines resulted in increased SFRP1 mRNA and at the same time decreased

the expression of Wnt and β-catenin. This indicates that miR-27a targets SFRP1 to activate the Wnt/β-catenin signaling

pathway. The activation of this signaling pathway remarkably increased the proliferation, migration, and invasion of gastric

cancer cells .

Moreover, a higher level of miR-27a and a low level of SFRP1 were found in CRC tissues as compared to normal tissues.

The authors verified the negative correlation of miR-27a with SFRP1  in colon cancer by transfecting HCT-116 cells with

miR-27a mimics . The low expression of SFRP1  resulted from the degradation of the mRNA through the binding of

miR-27a to the SFRP1 3′-UTR and not likely from the inhibition of protein translation . Mu et al. also proved that miR-

27a could promote the proliferation and invasion of human osteosarcoma cells through the SFRP1-dependent Wnt/β-

catenin signaling pathway . This study also demonstrated that knockdown of miR-27a induced the upregulation

of SFRP1 and suppressed the cell proliferation and invasion in osteosarcoma cell lines .

Only miR-27a was studied extensively in multiple cancers to date. There are other miRNAs targeting  SFRP1  being

investigated to a lesser extent as displayed in Table 1.

Table 1. Other microRNAs associated with secreted frizzled-related protein 1 (SFRP1) transcriptional silencing.

MicroRNA Association with SFRP1 Downregulation Cancer References

miR-1207
Upregulation of miR-1207 activated Wnt signaling pathway by

inhibiting SFRP1 activity and is inversely correlated with patients’ overall
survival.

Ovarian

miR-454-3p
Over-expression of miR-454-3p reduces the SFRP1 activity by targeting

3’UTR. High expression of miR-454-3p correlates with shorter relapse-free
survival of breast cancer.

Breast

miR-196a-1
High expression of exosomal miR 196a-1 is associated with poor survival of

gastric cancer. Ectopic miR 196a-1 expression promotes invasion of low
invasive gastric cancer cells by binding to 3’UTR of SFRP1.

Gastric

miR-1301-3p

Significantly upregulated in prostate cancer and targets Wnt pathway
inhibitors, SFRP1 and GSK3β, by directly binding to the 3’UTR. High

expression of miR-1301-3p suppresses the SFRP1 expression and promotes
the expansion of prostate cancer stem cells.

Prostate
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MicroRNA Association with SFRP1 Downregulation Cancer References

miR-1260b
Potential candidate oncogenic miRNA in prostate cancer. Treatment with

Genistein significantly downregulated miR-1260b and induces expression
of SFRP1 and SMAD4 via DNA demethylation and histone modification.

Prostate

miR-582-3p

High expression correlates with the overall and recurrence-free survival of
non-small cell lung carcinoma (NSCLC). Upregulated miR-582-3p

inhibits SFRP1, AXIN2, and DKK3 expression and leads to the interaction of β-
catenin to TCF-4 and subsequently activates Wnt signaling pathway. Activated

Wnt pathway is associated with tumor recurrence in NSCLC.

NSCLC

2.2. DNA Methylation Regulates SFRP1 Expression

The  SFRP1  expression can be epigenetically regulated through promoter DNA methylation. Hypermethylation of

the SFRP1 promoter has been recognized as a common mechanism for downregulation of this gene in cancers .

Methylation inactivates the SFRP1 expression by the addition of a methyl group (CH3) to the CG-rich region (CpG island),

which is mainly located in the promoter regions of SFRP1  . The unmethylated CpG islands enhance the accessibility of

the SFRP1  promoter to the transcription factor and other regulatory units such as enhancers. The presence of DNA

methylation forms a heterochromatin structure and restricts the access of the transcription factor to bind to the promoter

region . This subsequently inhibits the initiation of gene transcription.

SFRP1  hypermethylation and subsequently reduced mRNA expression are extensively studied in CRC. Meta-analysis

using TCGA data showed that hypermethylation of  SFRP1  caused the downregulation of this gene and

high SFRP1 methylation is associated with poorer survival among CRC patients . SFRP1 methylation was also recently

shown to be detectable in circulation , highlighting its potential as a non-invasive biomarker for CRC’s early

detection.  SFRP1  gene methylation was significantly associated with its reduced mRNA expression . Combined

with RUNX3 and carcinoembryonic antigen (CEA), this panel identified CRC with 89.41% sensitivity in tissue and 84.71%

in serum .

In another study, the methylation of the  SFRP1 gene in bladder cancer tissues occurred more frequently than in its

adjacent normal tissues. They discovered that SFRP1 methylation suppresses the gene expression and was associated

with the pathogenesis of bladder cancer via the Wnt signaling pathway .

A study by Zhang et al. postulated that SFRP1 acts as a potential biomarker for NSCLC because the epigenetic silencing

of this gene was associated with lymph nodes metastasis and disease progression within a year after surgery .

Similarly, a meta-analysis in NSCLC discovered  SFRP1’s transcriptional silencing as a consequence from promoter

methylation, revealing a promising application of epigenetic therapy in NSCLC . In addition, by analyzing TCGA data,

Liu et al.  identified significant correlations between  SFRP1_cg15839448 promoter methylation and  SFRP1  gene

expression.

In gastric cancer, SFRP1 methylation was associated with loss of SFRP1 expression and occurred in the early event of

this cancer. The epigenetic silencing of SFRP1 was also significantly correlated with tumor stage and lymph node status

. To illustrate the methylation signatures of SFRP1 among various cancers, the signatures from the TCGA datasets are

displayed in Figure 1. Table 2 summarizes other published literature within six years pertaining to epigenetic regulation

of SFRP1 in human cancers.
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Figure 1.  Methylation signatures of  SFRP1  in Cancer Genome Atlas (TCGA) datasets. Only selected studies with

significant SFRP1 differential methylation were shown. Green indicates CpG islands and the figure was generated using

Wanderer .

Table 2. Regulation of SFRP1 expression by DNA methylation in cancer.

Cancer Description References

Breast

Methylation of SFRP1 was significantly different according to the breast cancer molecular
subtypes. Low methylation of SFRP1 was detected in basal-like subtype compared to
luminal A, luminal B, and HER2 subtypes. SFRP1 may potentially serve as epigenetic

biomarker.

Breast Hypermethylation of SFRP1 was frequently found in breast cancer and caused a reduction
of SFRP1 expression. Methylation of SFRP1 indicates poor prognosis in ER+/HER2.

Breast Aberrant methylation of SFRP1 was observed in 96 breast cancer Chinese patients. This
study also showed that methylation of SFRP1 negatively regulates the expression level.

Glioma

Hypermethylation of SFRP1 was associated with poor survival of patients (within 1–3
months after tumor resection). Low methylation of SFRP1 was discovered in the longer

survival group. Moreover, methylated SFRP1 frequently occurred in the patients that exhibit
higher-grade tumors. This study suggests the hypermethylated SFRP1 as a potential

prognostic biomarker in glioma.

Glioma
The methylation level of SFRP1 increases with higher astrocytoma grades and is the

highest in glioblastoma. SFRP1 is epigenetically silenced and involved in the progression
of glioma.

Glioma
Hydrogen peroxide reverses the methylation of SFRP1 in U251 glioma cells. The

demethylation of SFRP1 leads to the activation of this gene and was partially involved in
the apoptosis process of the hydrogen-peroxide-induced U251 cells.

Ovarian Loss of SFRP1 protein expression caused by promoter hypermethylation was observed in
the subset of high-grade serous ovarian carcinoma.

Ovarian

Aberrant methylation and low expression of SFRP1 were associated with epithelial ovarian
cancer. The activation of this gene inhibits tumor growth through the inactivation of the

Wnt signaling pathway. This study further showed that the SFRP1 over-expression in the in
vivo model could inhibit the growth of cancer cells.

Acute myeloid
leukemia (AML)

Aberrant methylation of SFRP1 was observed in 30.2% of non-M3 AML patients,
and SFRP1 expression was negatively correlated with its promoter methylation.

Malignant pleural
mesothelioma

Long-term asbestos exposure led to hypermethylation of SFRP1 and reduced gene
expression in the mesothelium.
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2.3. Allelic Imbalance of SFRP1

Besides epigenetic mechanisms, genetic events may be involved in the deregulation of  SFRP1. The  SFRP1  loci are

commonly associated with loss of heterozygosity (LOH) in cancer, including hepatocellular carcinoma (HCC). A study by

Huang and colleagues showed only 13% and 6.5% exhibit the allelic imbalance of the  SFRP1 loci D8S532 and

D8SAC016868, respectively. They also discovered patients that who exhibit allelic imbalance of SFRP1 loci experience a

low expression of the gene . This finding is supported by another study where positive LOH at the locus D8S532 is

associated with the downregulation of SFRP1 expression . However, the allelic imbalance of SFRP1  loci in the HCC

patients could not be a crucial event in suppressing  SFRP1 because it only involved a low frequency of LOH. In the

NSCLC, SFRP1 expression is inactivated and 15 out of 40 patients exhibited allelic loss while 25 patients manifest LOH in

the  SFRP1  locus . Fewer studies are looking into the allelic imbalance of  SFRP1  since DNA methylation of the

promoter SFRP1 yield more insight into how SFRP1 is downregulated.

2.4. Genomic Alterations in SFRP1

A query of 10,953 patients in 32 studies from TCGA Pan-Cancer reveals a varying degree of genomic alteration profiles

(Figure 2) . Among all of the alterations, amplification is the most frequent alteration observed, followed by deep

deletion and mutation. SFRP1  is only altered in 455 (4%) among the 10,953 patients, further supporting the notion that

epigenetic mechanisms play a more important role. It has also been proven that in CRC, even though cancer-associated

nonsense mutation that prematurely terminates protein translation at codon 151 (N150) was identified, point mutation is

not the primary cause of SFRP1 inactivation . On the contrary, other evidence has shown that SFRP1 mutations found

in glioblastoma and CRC promote cancer by compromising the senescence-inducing activity of  SFRP1, thus failing to

antagonize Wnt signaling . It is known that senescence is a two-edged sword: it can promote malignant transformation

by modifying the cellular microenvironment or is a potential mechanism for a cell to avoid cancer development . The

role of SFRP1 mutation in cancer-associated senescence warrants further research.

Figure 2. Genomic alterations in SFRP1. Amplification is the most frequent genomic event in SFRP1. Abbreviations: ACC,

adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical

squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma;

COADREAD, colorectal adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal

carcinoma; GBM, glioblastoma multiforme; GBMLGG, glioblastoma multiforme Brain lower grade glioma; HNSC, head

and neck squamous cell carcinoma; KICH, kidney chromophobe; KIPAN, pan-kidney cohort (KICH+KIRC+KIRP); KIRC,

kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; AML, acute myeloid leukemia; LGG, brain

lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell

carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG,

pheochromocytoma and Paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC,

sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; STES, esophagus–stomach cancers;

TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial

carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma .
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3. Role of SFRP1 in Cancer Pathways

SFRP1 is implicated in various cancer-related pathways. Many studies have delineated the involvement of SFRP1 as a

negative modulator of the Wnt signaling pathway. Additionally, SFRP1 is also involved in Hedgehog and TGF-β signaling

pathways.

3.1. Involvement of SFRP1 in the Wnt Signaling Pathway

SFRP1 modulates the Wnt signaling pathway through different modes of activation. Interestingly, NTR and CRD of SFRP1

are necessary for optimal Wnt inhibition. SFRP1 can antagonize Wnt activity by directly binding to the ligand of the Wnt

protein through its NTR domain and eventually inhibits the interaction of the Wnt ligand to the Fz receptor . However,

one study has demonstrated that SFRP1 could also regulate the Wnt signaling pathway by circumventing the interaction

with the Wnt ligand. They discovered that the binding of SFRP1 to β-catenin may inhibit the interaction of β-catenin with T-

cell factor (TCF) in the nucleus, further blocking Wnt signaling activation .

Alternatively, SFRP1 could prevent Wnt signal transduction by interacting with the Fz receptor through their corresponding

CRD motif, thereby preventing Wnt ligand interaction with the receptor . In the absence of Wnt ligands, β-catenin

molecules are combined with the destruction complex, which consists of scaffold proteins: axin, adenomatous polyposis

coli (APC), glycogen synthase kinase (GSK-3β), and casein kinase 1 (CK1). In this state, the β-catenin molecules are

phosphorylated by GSK-3β and CK1. Phosphorylation-mediated ubiquitination of β-catenin by β-TrCP and induced

proteasomal degradation resulted in a low level of β-catenin in the cytoplasm. Subsequently, the cytoplasmic β-catenin

could not be translocated into the nucleus. In the nucleus, the absence of β-catenin initiates a repressive complex

containing T-cell factor/lymphoid enhancing factor (TCF/LEF) and transducin-like enhancer protein such as Groucho to

recruit histone deacetylase (HDACs) in order to repress the Wnt target genes , thus, further inhibiting the

proliferation and invasion of the cells.

The decline of SFRP1 expression promotes the binding of Wnt ligand to the Fz receptor . Upon binding, the lipoprotein

receptor-related protein (LRP) is phosphorylated by CK1 and GSK-3β, which then recruits Dishevelled (Dvl) proteins to

the plasma membranes where they polymerize and activate. The activated Dvl polymers inactivate the destruction

complex and stabilize β-catenin by suppressing the phosphorylation process, thus, leading to the accumulation of β-

catenin in the cytoplasm, and its further entry into the nucleus. Nuclear β-catenin forms an active compound with TCF/LEF

proteins by replacing Groucho proteins, and thereby activating the transcription and expression of Wnt target genes

. Figure 3 illustrates the multiple mechanisms of SFRP1 involvement in the Wnt signaling pathway.

Figure 3.  Schematic diagram of multiple mechanisms of SFRP1 involvement in Wnt signaling pathway. (A) SFRP1

inhibits Wnt activity by directly binding to the ligand of Wnt protein through its netrin (NTR) domain. (B) SFRP1

antagonizes the Wnt signaling pathway by bypassing the interaction with the Wnt ligand and directly binding to the

cytoplasmic β-catenin. (C) SFRP1 binds directly with the Fz receptor through the cycteine-rich domain (CRD) motif
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preventing the binding of Wnt ligands to the receptor. This causes the β-catenin molecules to combine with the destruction

complex and undergo phosphorylation by glycogen synthase kinase (GSK-3β) and casein kinase (CK1). The

phosphorylated β-catenin triggers ubiquitination by β-TrCP and initiates proteasomal degradation. (D) In the absence of

SFRP1, the Wnt ligand binds to the Fz receptor and results in the recruitment of Dvl and destruction complex to the

membrane. The destruction complex is inactivated by Dvl polymers and leads to the accumulation of β-catenin molecules

in the cytoplasm. Then, the accumulated β-catenin molecules enter the nucleus and recruit histone-modifying

coactivators, Pygo and Bcl-9, to activate Wnt target genes’ transcription.

3.2. Involvement of SFRP1 in the Hedgehog Signaling Pathway

The accumulation of β-catenin in the nucleus is a major indicator of activated Wnt signaling. However, some tumor cells

may possess abrogated nuclear β-catenin specifically in the activated Hedgehog (Hh) signaling tumor cells . The Hh

signaling pathway is important for cellular growth and differentiation during embryonic development . Dysregulation of

Hh signaling has been implicated in several cancers including esophageal , gastric , pancreatic , as well as liver

. Previous studies showed activated Hh signaling may attenuate Wnt activity through the high expression of the Wnt

inhibitor, SFRP1 .

Hh pathway activation is achieved by the interaction of Hh ligands to the Patched receptor (Ptch), and thus allows the

accumulation of the transducer smoothened (SMO) at the cell surface. The accumulated SMO stimulates downstream

components of the signaling pathway including Gli1 molecules, which then translocate into the nucleus and further

activate the Hh target genes . SFRP1  is a Hh target gene and is significantly regulated by Gli1  . This targeted

gene comprises of a putative  Gli1  binding site, which allows the binding of  Gli1  to the promoter region of  SFRP1.

Thus, SFRP1 expression is dependent on the Gli1 transcript .

SFRP1 is the hedgehog target that negatively regulates the Wnt signaling pathway. This has been confirmed by He et al.

where knockdown of SFRP1 in the Gli expressing cells is able to induce cytoplasmic β-catenin expression by Wnt-1 . In

addition, differentiated epithelial cells exhibit activated Hh and induce the SFRP1 expression in the differentiated cells to

hinder Wnt signaling activation within stem or progenitor cells .

3.3. Involvement of SFRP1 in TGF-β Signaling Pathway

SFRP1 over-expression restored the activity of GSK3β. Both SFRP1 and GSK3β are important to inhibit the Wnt signaling

pathway . However, emerging evidence showed the restoration of GSK3β in promoting the tumorigenesis is through

other signaling pathways. It has been reported that GSK3β activates Rac family small GTPase-1 (Rac1) , and

activation of this gene is involved in breast , colon , bladder , and gastric cancer , indicating a role of Rac1 in

tumor development. Peng discovered SFRP1 over-expression activates GSK3β/Rac1 and simultaneously inhibits the pro-

apoptotic effect of Smad3 in TGF-β signaling through the phosphorylation of the Smad3 linker region . This study also

demonstrated that the over-expression of SFRP1 activates TGF-β activity, which is correlated with cell proliferation,

epithelial–mesenchymal transition (EMT), and invasion in gastric cancer cells .

On the contrary, SFRP1 was significantly downregulated in the TGF-β-induced EMT in lung cancer cell line A549. TGF-β

suppresses SFRP1 expression and subsequently inactivates GSK3β by phosphorylating Serine 9 of GSK3β. Moreover,

using an in vitro and in vivo model, ectopic expression of SFRP1 was able to inhibit TGF-β activity through suppressing

Wnt pathway . In breast cancer, SFRP1 knockdown activates the TGF-β signaling and further increases the expression

of  ZEB2, zinc finger clusters, that play a critical role in facilitating the EMT process . Upon activation of TGF-β

signaling, the downstream targets including Integrin β  and PAI-1, which are responsible for cell migration and invasion,

are also upregulated. Hence, this explains the migratory and invasive characteristics exhibited by SFRP1 knockdown in

breast cancer cells . This study also suggested the knockdown of  SFRP1  can modulate TGF-β signaling not only

through the Smad-dependent action but also over Smad-independent pathway through ERK1/2 phosphorylation .

3.4. Involvement of SFRP1 in Other Pathways

In androgen-dependent prostate cancer, loss of SFRP1 undergoes different pathways other than Wnt and Hh signaling to

drive cancer cell proliferation. Kawano et al. discovered that SFRP1 represses androgen-receptor (AR) dependent

transcription and subsequently inhibits cell proliferation in the androgen-dependent LNCaP cells . SFRP1 negatively

regulates AR through the CRD motif and binds with the Fz receptor to form SFRP1/Fz complexes. The inactivation of

SFRP1 leads to uncontrolled AR activation, which is involved in the pathogenesis of prostate cancer .

In addition, Bernemann and his colleagues also found that the underlying mechanism of SFRP1 in triple-negative breast

cancer (TNBC) is independent of Wnt signaling pathway. They did not discover any changes in Wnt signaling activity and
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nuclear localization of β-catenin, besides they found the upregulation of genes that are involved in the migration process

and downregulation of apoptotic genes after knockdown of  SFRP1  based on their gene ontology analysis result .

However, this finding is in contrast with Xu et al. whereby they found that the Wnt/β-catenin signaling pathway was

enriched in the TNBC . The contradiction may be due to the heterogeneity of the samples, which lead to the discovery

of different pathways.

One study has suggested that SFRP1 plays an additional inhibitory role in breast cancer by blocking the activity of

thrombospondin-1 (TSP1), which is involved in the modulation of adhesion and migration of cancer cells. This action is

through the binding of NTR-related motif of SFRP1 to the N module of TSP1. They discovered the interaction between

NTR of SFRP1 and TSP1 disrupts the adhesion and migration of MDA-MB-231 breast cancer cell via α3β1 integrin .

 Clinical Utility of SFRP1

4.1. SFRP1 and Chemotherapy Response

As discussed earlier, Bernemann and colleagues found that knockdown of  SFRP1  is strongly correlated with TNBC

subtypes. Moreover, they also found SFRP1 could be used as a potential chemotherapeutic marker to stratify patients’

response toward chemotherapy. Knockdown of  SFRP1  rendered TNBC cell lines more resistance toward paclitaxel,

cisplatin, and doxorubicin chemotherapy as well as radiotherapy .

HDAC inhibitor romidepsin and methyltransferase inhibitor decitabine are the FDA-approved epigenetic-modifying drugs

for the treatment of myelodysplastic syndromes (MDS) and a subset of T cell lymphoma, respectively. In a study by

Cooper and colleagues, epigenetic silencing of SFRP1 was shown to contribute to renal and breast cancer cell survival

. Exposure of clear cell renal cell carcinoma (ccRCC) and TNBC cells to low doses of exogenous SFRP1 resulted in

dose-dependent inhibition of cancer cell through apoptosis induction . Their findings also propose that  SFRP1  re-

expression could be used as a biomarker for romidepsin/decitabine response.

Taxanes, such as docetaxel and taxol, are microtubule-stabilizing agents used as first-line agents in the treatment of

advanced lung adenocarcinoma and other solid tumors since the 1990s . However, poor response to treatment

remains a challenge, and a new target for the treatment of taxane-resistant patients is urgently needed. Via microarray

analysis, epigenetic inactivation of  SFRP1  by DNA methylation was implicated in taxane chemoresistance . The

authors further demonstrated that treatment with demethylating agent 5-azacytidine enhanced the sensitivity of lung

cancer cell lines to taxanes, suggesting SFRP1 methylation as a clinically relevant determinant of taxanes resistance in

lung cancer patients . Another study revealed that downregulation of SFRP1  in laryngeal carcinoma is mediated by

DNA methylation . Subsequent treatment with a demethylating agent significantly increased the expression of this gene

and enhanced the sensitivity of laryngeal carcinoma cells to cisplatin through inhibition of NHE1 gene.

With regards to hematological malignancy, epigenetic silencing of  SFRP1  is infrequently observed in chronic myeloid

leukaemia (CML). However, CML patients with methylated SFRP1 correlated with imatinib therapy resistance as well as

additional second Philadelphia chromosome abnormalities . Moreover, expression of

antagonists SFRP1 and WIF1 was shown to sensitize chronic myeloid leukemia (CML) cells to tyrosine kinase inhibitors

. In in vitro experiments involving K562 cells stably expressing SFRP1, the sensitivity toward imatinib, dasatinib, and

nilotinib, were 75%, 43%, and 48% more sensitive, respectively, when compared to empty vector-transfected controls .

In another study, the dual role of SFRP1 as a biomarker for chemoresistance was demonstrated. Upregulated SFRP1 was

observed in topotecan-resistant ovarian cancer patients, whereby its mRNA level was already high before topotecan

treatment . While the study did not investigate the treatment effects, the authors propose that SFRP1 might act as an

oncogene in patients treated with topotecan, or in a contrary manner, the cancer cells with high SFRP1 expression could

be inherently more resilient to the elimination of rapidly proliferating tumor cells . Collectively, these findings suggested

that  SFRP1  may offer therapeutic benefits and assist patient stratification in chemotherapy treatment. Evidently, more

research is necessary to clarify the role of SFRP1 in modulating response to cancer treatment.

4.2 SFRP1 and Disease Prognosis

SFRP1  hypermethylation or downregulation are also associated with poor prognosis in several cancers. Kaplan–Meier

analysis of nasopharyngeal cancer showed patients that exhibit low SFRP1 had significantly worse overall survival (OS),

disease-free survival (DFS), and distant-metastasis-free survival (DMFS) as compared to patients that have high

expression of this gene . Davaadorj and his team have discovered that the loss of  SFRP1  is associated with poor

prognosis in hepatocellular carcinoma (HCC). They examined the expression status of SFRP1 in 63 pairs of human HCC
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and later they found low  SFRP1  is associated with larger tumor size and vascular invasion as compared to the

positive  SFRP1  patients . Similarly, patients with low  SFRP1  expression had a poor OS in glioblastoma multiforme

(GBM), relative to the positive SFRP1 patients, which seem to have favorable prognosis . SFRP1 methylation is also

associated with ovarian cancer recurrence and short overall survival .

A recent study by Kumar et al. showed promoter methylation of SFRP1  is associated with lymph node metastasis and

poor mean overall survival (OS) in CRC. The majority of CRC samples in this study are methylated at SFRP1 with 72.2%

methylation frequency . On the contrary, Liu and colleagues postulated that the co-hypermethylation

of SFRP1 and SFRP2 were suggested as independent prognostic predictors of survival advantage in postoperative CRC

patients , whereby silencing of SFRP1 and SFRP2 by hypermethylation lead to a better prognosis. Meanwhile, in an in

vivo study to correlate gut microbiota with epigenetic signature, CRC-associated microbiota induced higher numbers of

hypermethylated genes in the murine colonic mucosa, among which SFRP1 was also hypermethylated . Additional

confirmation was obtained in 1000 patients, further demonstrating that CRC-associated dysbiosis may promote CRC

development via epigenome dysregulation. The authors suggested gene methylation as a marker for CRC to predict the

efficacy of prebiotic supplementation in average-risk individuals . Low  SFRP1  expression may also concurrently

activate the Wnt pathway with WIF1 gene . High expression of WIF1 was shown to be significantly correlated with big

tumor diameters and deep invasion of tumor cells. However, the co-expression of high  SFRP1  and  WIF1  may also

increase favorable OS and is associated with low TNM stage in CRC , postulating the role of WIF1 as an oncogene,

while  SFRP1  seemed to be an oncosuppressor, despite both being secreted Wnt antagonists. Nevertheless, the

underlying mechanism is yet to be identified.

Hypermethylation of SFRP1 occurs in 37.5% of acute myeloid leukemia (AML), whereby patients that exhibit intermediate-

risk karyotyping with concurrent methylated SFRP1 showed poor prognosis, especially in the subgroup 60 years old and

younger patients . Association between  SFRP1  hypermethylation and poor prognosis was further supported by

another study conducted among non-M3 AML patients .

As mentioned earlier, SFRP1 possess divergent roles depending on the context. This is shown by a study by Qu et al.,

which demonstrated that gastric patients with high SFRP1 exhibit poor prognosis . Moreover, this study also reveals

high SFRP1 was significantly associated with lymph node metastasis and worse five-year OS. Using gastric cancer cell

line models, they further demonstrated that the  SFRP1  upregulation activates the TGF-β signaling pathway, hence

inducing cell proliferation, EMT process, and cell invasion . Additionally, upregulated SFRP1  in metastatic renal cell

carcinoma (RCC) was also involved in invasiveness of the metastatic cells. Knockdown of the endogenous SFRP1 in this

study has been showed to reduce the invasive properties of metastatic RCC . On top of that, enriched SFRP1 was also

found in the metastatic osteosarcoma .

4.3. SFRP1 in Clinical Trials

Despite  SFRP1  being a well-known gene studied in human cancer, there are only a handful of clinical trials, which

involve SFRP1. Based on the hypothesis that long-term exercise may cause changes in the serum levels of SFRP1  in

patients with breast cancer, a pilot trial (NCT02895178) was conducted . Thirty breast cancer survivors from Wonju

Severance Christian Hospital were enrolled and randomized to two different groups: 12 weeks exercise program and

control group. Then, SFRP1 expression in the serum was measured for the pre- and post-treatment in both groups. This

pilot study is the first study to show a decrease in serum SFRP1  levels in patients with breast cancer due to exercise

training. The decrease of  SFRP1  is accompanied by improving body composition such as a decrease in body fat

percentage and visceral fat areas. This demonstrates that decreased serum level of SFRP1 improves the physical fitness

of breast cancer survivor patients .

NCT01214681 is a clinical trial looking into the impact of the role of non-digestible carbohydrates (NDCs) in CRC

chemoprevention . A number of novel biomarkers of diet-related CRC risk measured in cancer tissue biopsies and in

stool were developed, including  SFRP1. The effects of supplementing healthy individuals with two NDCs, which are

resistant starch (RS) and polydextrose, on fecal calprotectin concentrations and the expression of 12 Wnt-related genes

including  SFRP1,  were investigated . In addition, the trial also seeks to determine whether the effects

on  SFRP1  expression are regulated via the epigenetic mechanisms, which include DNA methylation and microRNA

expression. Although NDC supplementation did not influence fecal calprotectin concentration,  SFRP1  expression was

significantly reduced by RS, which could result in increased Wnt pathway activity. However, RS and polydextrose neither

affect SFRP1 methylation nor alter the expression of 10 microRNAs that were predicted to target this gene. This suggests

another unknown mechanism that reduces  SFRP1  expression. Nevertheless, the effects on Wnt pathway activity and

downstream functional effects in the healthy colorectal mucosa warrants further investigation.
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SFRP1  is among the biomarkers studied in glioblastoma clinical trial NCT00822458 . The phase I clinical trial is

investigating the side effects and best dose of GDC-0449, a Hedgehog signaling antagonist (Vismodegib) in treating

young patients with recurrent medulloblastoma or patients who did not respond to previous treatment. Blood samples are

collected periodically for pharmacokinetic studies. Archived tumor tissues were collected and analyzed for the expression

of genes that activate the Hedgehog (e.g., Gli1, Gli2, SFRP1, ATOH1, and PTCH2) or Wnt (e.g., DKK2 and DKK4) cell

signal pathways via in situ hybridization and real-time PCR. At the time this review was written, there is no published

finding of this trial yet; therefore, the exact role of SFRP1 is undetermined.

5. SFRP1 in Patents

Despite the limited involvement of SFRP1 in cancer clinical trials, research evidence has shown the potential of SFRP1 as

a diagnostic and pharmacogenetics marker, and this has led to several patents being applied or granted. For instance,

Baylin and colleagues from John Hopkins University were granted a patent for methods of identifying epigenetically

silenced genes that are associated with cancer in 2010 . The method is demonstrated by the identification of 74 genes

that are epigenetically silenced in CRC cells, including identification of methylation silencing of SFRP1  and its families

such as SFRP2, SFRP4, and SFRP5. This patent covers three categories, which are C12Q1/6886 nucleic acid products

used in the analysis of nucleic acids, C12Q1/6809 methods for determination or identification of nucleic acids involving

differential detection, and C12Q2600/154 methylation markers.

MDxHealth SA filed for a patent of a kit involving  SFRP1 in identifying and diagnosing cancer-based

on SFRP1 methylation status . In their claim, detection of the epigenetic change of NDRG4 and at least one gene

among 17 other genes including SFRP1 indicate a predisposition to gastrointestinal cancer. Granted in 2016, the kit also

described the pharmacogenetic methods for determining suitable treatment regimens for cancer. Combination

of  NDRG4  and  SFRP1  is able to predict the response of cancer treatment with a DNA damaging agent, DNA

methyltransferase inhibitor, and/or an HDAC inhibitor . Patients with methylated  NDRG4  and  SFRP1  will respond

better to these therapeutic agents. The epigenetic changes of  NDRG4  and  SFRP1  are also indicative of the

histopathological stage of gastrointestinal cancer . This patent includes six categories of claims, which are

C12Q1/6886 nucleic acid products used in the analysis of nucleic acids; C12Q2600/106 pharmacogenomics;

C12Q2600/112 disease subtyping, staging, or classification; C12Q2600/118 prognosis of disease development;

C12Q2600/154 methylation markers; C12Q2600/158 expression markers; and C12Q2600/16 primer sets for multiplex

assays.

More recently, Lothe and colleagues identified  CDO1,  DCLK1, and  SCAN18  as novel, frequently methylated genes in

cholangiocarcinoma, in addition to the previously reported  SFRP1  gene . The combination

of CDO1, DCLK1, ZSCAN18, and SFRP1 reach a sensitivity of 87% and specificity of 100% in fresh, frozen, and archival

material. The group was granted a patent in 2017 under two categories, which are C12Q1/6886 nucleic acid products

used in the analysis of nucleic acids and C12Q2600/154 methylation markers.

6. Conclusions

In this review, we have provided the latest evidence of epigenetic of SFRP1  and its divergent roles in carcinogenesis,

highlighted its pharmacogenomics properties, and deliberated on the clinical trials and patents involving SFRP1. SFRP1
functions as a negative regulator of Wnt signaling; therefore, it has an important role in carcinogenesis. Accumulating

evidence suggests that epigenetic regulation contributes to the silencing of SFRP1. Indeed, in many cancers, SFRP1  is

downregulated via promoter hypermethylation. Restoration of  SFRP1  expression via demethylating drugs or over-

expression experiments increases sensitivity toward various chemotherapeutic agents. Given the importance of SFRP1 in

cancer-related pathways, HDACi and DNMTi appear as promising epigenetic therapy to reverse  SFRP1 methylation.

Interestingly, a combination of chemotherapeutic and epigenetic drug is also highly synergistic at inhibiting cancer cells

than a single agent alone.

On the other hand, owing to its dual roles, knockdown of SFRP1 also renders certain cancer cells to be more resistant

toward selected chemotherapies as well as radiotherapy. Nevertheless, the clinical utility of epigenetic drugs required

extensive investigations and proper utilization, as these drugs are toxic and non-specific gene modulators. Although a lot

of progress has been made regarding the regulation and function of SFRP1 in normal and cancer cells, many questions

remain unanswered. Henceforth, the investigation into the contradictory roles of SFRP1, particularly in cancer prognosis

and its pharmacogenomics utilities, are indispensable.

[108]

[109]

[110]

[110]

[110]

[111]



References

1. Bovolenta, P.; Esteve, P.; Ruiz, J.M.; Cisneros, E.; Lopez-Rios, J. Beyond Wnt inhibition: New functions of secreted
Frizzled-related proteins in development and disease. J. Cell Sci. 2008, 121, 737–746.

2. Shahi, M.; Afzal, M.; Sinha, S.; Castresana, J. Aberrant promoter methylation of SFRP1 (Secreted Frizzled-Related
Protein1) gene in medulloblastoma and glioblastoma. Clin. Cancer Res. 2008, 14 (Suppl. 23), 19.

3. Mao, W.; Wordinger, R.J.; Clark, A.F. Focus on molecules: SFRP. Exp. Eye Res. 2010, 91, 552–553.

4. Chong, J.M.; Uren, A.; Rubin, J.S.; Speicher, D.W. Disulfide bond assignments of secreted Frizzled-related protein-1
provide insights about Frizzled homology and netrin modules. J. Biol. Chem. 2002, 277, 5134–5144.

5. Atschekzei, F.; Hennenlotter, J.; Jänisch, S.; Großhennig, A.; Tränkenschuh, W.; Waalkes, S.; Peters, I.; Dörk, T.;
Merseburger, A.S.; Stenzl, A.; et al. SFRP1 CpG island methylation locus is associated with renal cell cancer
susceptibility and disease recurrence. Epigenetics 2012, 7, 447–457.

6. Hattori, N.; Sako, M.; Kimura, K.; Iida, N.; Takeshima, H.; Nakata, Y.; Kono, Y.; Ushijima, T. Novel prodrugs of
decitabine with greater metabolic stability and less toxicity. Clin. Epigenet. 2019, 11, 111.

7. Wu, K.; Li, Z.H.; Yi, W.; Wu, M.H.; Jiang, M.J.; Zhang, Y.; Zheng, H.L.; Chen, W. Restoration of secreted frizzled-related
protein 1 suppresses growth and increases cisplatin sensitivity in laryngeal carcinoma cells by downregulating NHE 1.
Int. J. Clin. Exp. Pathol. 2017, 10, 8334–8343.

8. Ren, X.-Y.; Zhou, G.-Q.; Jiang, W.; Sun, Y.; Xu, Y.-F.; Li, Y.-Q.; Tang, X.R.; Wen, X.; He, Q.M.; Yang, X.J.; et al. Low
SFRP1 Expression Correlates with Poor Prognosis and Promotes Cell Invasion by Activating the Wnt/β-Catenin
Signaling Pathway in NPC. Cancer Prev. Res. 2015, 8, 968–977.

9. Jeong, Y.J.; Jeong, H.Y.; Bong, J.G.; Park, S.H.; Oh, H.K. Low methylation levels of the SFRP1 gene are associated
with the basal-like subtype of breast cancer. Oncol. Rep. 2013, 29, 1946–1954.

10. Bernemann, C.; Hülsewig, C.; Ruckert, C.; Schäfer, S.; Blümel, L.; Hempel, G.; Götte, M.; Greve, B.; Barth, P.J.; Kiesel,
L.; et al. Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple negative
breast cancer does not rely on WNT signaling. Mol. Cancer 2014, 13, 174.

11. Saini, S.; Liu, J.; Yamamura, S.; Majid, S.; Kawakami, K.; Hirata, H.; Dahiya, R. Functional Significance of Secreted
Frizzled-Related Protein 1 in Metastatic Renal Cell Carcinomas. Cancer Res. 2009, 69, 6815–6822.

12. Qu, Y.; Ray, P.S.; Li, J.; Cai, Q.; Bagaria, S.P.; Moran, C.; Sim, M.-S.; Zhang, J.; Turner, R.R.; Zhu, Z.; et al. High levels
of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. Eur.
J. Cancer 2013, 49, 3718–3728.

13. Lin, H.; Yang, G.; Ding, B.; Zhang, M.; Zhang, M.; Yan, F.; Qu, Y.; Zhang, H. Secreted frizzled-related protein 1
overexpression in gastric cancer: Relationship with radiological findings of dual-energy spectral CT and PET-CT. Sci.
Rep. 2017, 7, 1–9.

14. Surana, R.; Sikka, S.; Cai, W.; Shin, E.M.; Warrier, S.R.; Tan, H.J.G.; Arfuso, F.; Fox, S.A.; Dharmarajan, A.M.; Kumar,
A.P. Secreted frizzled related proteins: Implications in cancers. Biochim. Biophys. Acta 2014, 1845, 53–65.

15. Liu, Y.; Zhou, Q.; Zhou, D.; Huang, C.; Meng, X.; Li, J. Secreted frizzled-related protein 2-mediated cancer events:
Friend or foe? Pharmacol. Rep. 2017, 69, 403–408.

16. Pawar, N.M.; Rao, P. Secreted frizzled related protein 4 (sFRP4) update: A brief review. Cell Signal. 2018, 45, 63–70.

17. Vincent, K.M.; Postovit, L.-M. A pan-cancer analysis of secreted Frizzled-related proteins: Re-examining their proposed
tumour suppressive function. Sci. Rep. 2017, 7, 1–9.

18. Yu, J.; Xie, Y.; Li, M.; Zhou, F.; Zhong, Z.; Liu, Y.; Wang, F.; Qi, J. Association between SFRP promoter
hypermethylation and different types of cancer: A systematic review and meta-analysis. Oncol. Lett. 2019, 18, 3481–
3491.

19. Cheng, C.; Smith, S.K.; Charnock-Jones, D.S. Transcript profile and localization of Wnt signaling–related molecules in
human endometrium. Fertil. Steril. 2008, 90, 201–204.

20. Kardum, V.; Karin, V.; Glibo, M.; Skrtic, A.; Martic, T.N.; Ibisevic, N.; Skenderi, F.; Vranic, S.; Serman, L. Methylation-
associated silencing of SFRP1 gene in high-grade serous ovarian carcinomas. Ann. Diagn. Pathol. 2017, 31, 45–49.

21. Wang, Z.; Li, R.; He, Y.; Huang, S. Effects of secreted frizzled-related protein 1 on proliferation, migration, invasion, and
apoptosis of colorectal cancer cells. Cancer Cell. Int. 2018, 18, 48.

22. García-Tobilla, P.; Solórzano, S.R.; Salido-Guadarrama, I.; González-Covarrubias, V.; Morales-Montor, G.; Díaz-
Otañez, C.E.; Rodríguez-Dorantes, M. SFRP1 repression in prostate cancer is triggered by two different epigenetic
mechanisms. Gene 2016, 593, 292–301.



23. FireBrowse. Available online: (accessed on 29 November 2019).

24. Wu, F.; Li, J.; Guo, N.; Wang, X.-H.; Liao, Y.-Q. MiRNA-27a promotes the proliferation and invasion of human gastric
cancer MGC803 cells by targeting SFRP1 via Wnt/β-catenin signaling pathway. Am. J. Cancer Res. 2017, 7, 405–416.

25. Ba, S.; Xuan, Y.; Long, Z.-W.; Chen, H.-Y.; Zheng, S.-S. MicroRNA-27a Promotes the Proliferation and Invasiveness of
Colon Cancer Cells by Targeting SFRP1 through the Wnt/β-Catenin Signaling Pathway. Cell. Physiol. Biochem. 2017,
42, 1920–1933.

26. Kong, L.-Y.; Xue, M.; Zhang, Q.-C.; Su, C.-F. In vivo and in vitro effects of microRNA-27a on proliferation, migration and
invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/β-catenin signaling pathway. Oncotarget
2017, 8, 15507–15519.

27. Lin, T.; Ma, Q.; Zhang, Y.; Zhang, H.; Yan, J.; Gao, C. MicroRNA-27a functions as an oncogene in human
osteosarcoma by targeting CCNG. Oncol. Lett. 2018, 15, 1067–1071.

28. Mu, Y.; Zhang, L.; Chen, X.; Chen, S.; Shi, Y.; Li, J. Silencing microRNA-27a inhibits proliferation and invasion of
human osteosarcoma cells through the SFRP1-dependent Wnt/β-catenin signaling pathway. Biosci. Rep. 2019, 39,
BSR20182366.

29. Wu, G.; Liu, A.; Zhu, J.; Lei, F.; Wu, S.; Zhang, X.; Ye, L.; Cao, L.; He, S. MiR-1207 overexpression promotes cancer
stem cell–like traits in ovarian cancer by activating the Wnt/β-catenin signaling pathway. Oncotarget 2015, 6, 28882–
28894.

30. Ren, L.; Chen, H.; Song, J.; Chen, X.; Lin, C.; Zhang, X.; Hou, N.; Pan, J.; Zhou, Z.; Wang, L.; et al. MiR-454-3p-
Mediated Wnt/β-catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis. Theranostics 2019, 9,
449–465.

31. Feng, C.; She, J.; Chen, X.; Zhang, Q.; Zhang, X.; Wang, Y.; Ye, J.; Shi, J.; Tao, J.; Feng, M.; et al. Exosomal miR-
196a-1 promotes gastric cancer cell invasion and metastasis by targeting SFRP. Nanomedicine 2019, 14, 2579–2593.

32. Song, X.-L.; Huang, B.; Zhou, B.-W.; Wang, C.; Liao, Z.-W.; Yu, Y.; Zhao, S.-C. miR-1301-3p promotes prostate cancer
stem cell expansion by targeting SFRP1 and GSK3β. Biomed. Pharmacother. 2018, 99, 369–374.

33. Hirata, H.; Hinoda, Y.; Shahryari, V.; Deng, G.; Tanaka, Y.; Tabatabai, Z.L.; Dahiya, R. Genistein downregulates onco-
miR-1260b and upregulates sFRP1 and Smad4 via demethylation and histone modification in prostate cancer cells. Br.
J. Cancer 2014, 110, 1645–1654.

34. Fang, L.; Cai, J.; Chen, B.; Wu, S.; Li, R.; Xu, X.; Yang, Y.; Guan, H.; Zhu, X.; Zhang, L.; et al. Aberrantly expressed
miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling. Nat. Commun. 2015, 6,
1–15.

35. Huang, J.; Zhang, Y.-L.; Teng, X.-M.; Lin, Y.; Zheng, D.-L.; Yang, P.-Y.; Han, Z.-G. Down-regulation of SFRP1 as a
putative tumor suppressor gene can contribute to human hepatocellular carcinoma. BMC Cancer 2007, 7, 126.

36. Kim, J.; Kim, S. In silico Identification of SFRP1 as a Hypermethylated Gene in Colorectal Cancers. Genomics Inform.
2014, 12, 171–180.

37. Wang, X.; Wang, H.; Bu, R.; Fei, X.; Zhao, C.; Song, Y. Methylation and aberrant expression of the Wnt antagonist
secreted Frizzled-related protein 1 in bladder cancer. Oncol. Lett. 2012, 4, 334–338.

38. Lim, D.H.K.; Maher, E.R. DNA methylation: A form of epigenetic control of gene expression. Obstet. Gynaecolt. 2010,
12, 37–42.

39. Pasha, H.F.; Radwan, M.I.; Yehia, A.M.; Toam, M.M. Circulating methylated RUNX3 and SFRP1 genes as a
noninvasive panel for early detection of colorectal cancer. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1342.

40. Zhang, Y.; Miao, F.; Geng, J.; Wang, R.; Chen, L. Transcriptional inactivation of secreted frizzled-related protein 1 by
promoter hypermethylation as a potential biomarker for non-small cell lung cancer. Neoplasma 2010, 57, 228–233.

41. Taguchi, Y.; Iwadate, M.; Umeyama, H. SFRP1 is a possible candidate for epigenetic therapy in non-small cell lung
cancer. BMC Med. Genomics 2016, 9 (Suppl. 1), 28.

42. Liu, S.; Chen, X.; Chen, R.; Wang, J.; Zhu, G.; Jiang, J.; Wang, H.; Duan, S.; Huang, J. Diagnostic role of Wnt pathway
gene promoter methylation in non small cell lung cancer. Oncotarget 2017, 8, 36354–36367.

43. Zhao, C.H.; Bu, X.M.; Zhang, N. Hypermethylation and aberrant expression of Wnt antagonist secreted frizzled-related
protein 1 in gastric cancer. World J. Gastroenterol. 2007, 13, 2214–2217.

44. Díez-Villanueva, A.; Mallona, I.; Peinado, M.A. Wanderer, an interactive viewer to explore DNA methylation and gene
expression data in human cancer. Epigenet. Chromatin 2015, 8, 22.

45. Győrffy, B.; Bottai, G.; Fleischer, T.; Munkácsy, G.; Budczies, J.; Paladini, L.; Børresen-Dale, A.-L.; Kristensen, V.N.;
Santarpia, L. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes. Int. J.



Cancer 2016, 138, 87–97.

46. Li, Z.; Heng, J.; Yan, J.; Guo, X.; Tang, L.; Chen, M.; Peng, L.; Wu, Y.; Wang, S.; Xiao, Z.; et al. Integrated analysis of
gene expression and methylation profiles of 48 candidate genes in breast cancer patients. Breast Cancer Res. Treat.
2016, 160, 371–383.

47. Majchrzak-Celińska, A.; Słocińska, M.; Barciszewska, A.-M.; Nowak, S.; Baer-Dubowska, W. Wnt pathway antagonists,
SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival. J.
Appl. Genet. 2016, 57, 189–197.

48. Kafka, A.; Karin-Kujundžić, V.; Šerman, L.; Bukovac, A.; Njirić, N.; Jakovčević, A.; Pećina-Šlaus, N. Hypermethylation of
Secreted Frizzled Related Protein 1 gene promoter in different astrocytoma grades. Croat. Med. J. 2018, 59, 213–223.

49. Xing, Z.; Ni, Y.; Zhao, J.; Ma, X. Hydrogen Peroxide-Induced Secreted Frizzled-Related Protein 1 Gene Demethylation
Contributes to Hydrogen Peroxide-Induced Apoptosis in Human U251 Glioma Cells. DNA Cell Biol. 2017, 36, 347–353.

50. Zhang, H.; Sun, D.; Qiu, J.; Yao, L. SFRP1 inhibited the epithelial ovarian cancer through inhibiting Wnt/β-catenin
signaling. Acta Biochim. Pol. 2019, 66, 393–400.

51. Guo, H.; Zhang, T.; Wen, X.; Zhou, J.; Ma, J.; An, C.; Zhang, W.; Xu, Z.; Lin, J.; Qian, J. Hypermethylation of secreted
frizzled-related proteins predicts poor prognosis in non-M3 acute myeloid leukemia. Onco-Targets Ther. 2017, 10,
3635–3644.

52. Cheng, Y.Y.; Mok, E.; Tan, S.; Leygo, C.; McLaughlin, C.; George, A.M.; Reid, G. SFRP Tumour Suppressor Genes Are
Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma. Dis. Markers 2017, 2017,
2536187.

53. Qiu, Y.; Xu, L.; Zhou, Y.-H.; Shi, M.; Ma, Y.; Li, M.; Li, J.-C. Involvement of genetic instability in the downregulation of
sFRP1 in Chinese patients with hepatocellular carcinoma. Anat. Rec. 2010, 293, 2020–2026.

54. Fukui, T.; Kondo, M.; Ito, G.; Maeda, O.; Sato, N.; Yoshioka, H.; Yokoi, K.; Ueda, Y.; Shimokata, K.; Sekido, Y.
Transcriptional silencing of secreted frizzled related protein 1 (SFRP1) by promoter hypermethylation in non-small-cell
lung cancer. Oncogene 2005, 24, 6323–6327.

55. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.;
Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics
data. Cancer Discov. 2012, 2, 401–404.

56. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.;
et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 2013, 6, l1.

57. Caldwell, G.M.; Jones, C.; Gensberg, K.; Jan, S.; Hardy, R.G.; Byrd, P.; Chughtai, S.; Wallis, Y.; Matthews, G.M.;
Morton, D.G. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 2004, 64, 883–888.

58. Elzi, D.J.; Song, M.; Hakala, K.; Weintraub, S.T.; Shiio, Y. Wnt Antagonist SFRP1 Functions as a Secreted Mediator of
Senescence. Mol. Cell Biol. 2012, 32, 4388–4399.

59. Zeng, S.; Shen, W.H.; Liu, L. Senescence and Cancer. Cancer Trans. Med. 2018, 4, 70–74.

60. Lopez-Rios, J.; Esteve, P.; Ruiz, J.M.; Bovolenta, P. The Netrin-related domain of Sfrp1 interacts with Wnt ligands and
antagonizes their activity in the anterior neural plate. Neural Dev. 2008, 3, 19.

61. Liang, C.-J.; Wang, Z.-W.; Chang, Y.-W.; Lee, K.-C.; Lin, W.-H.; Lee, J.-L. SFRPs Are Biphasic Modulators of Wnt-
Signaling-Elicited Cancer Stem Cell Properties beyond Extracellular Control. Cell Rep. 2019, 28, 1511–1525.

62. Agostino, M.; Pohl, S.Ö.-G.; Dharmarajan, A. Structure-based prediction of Wnt binding affinities for Frizzled-type
cysteine-rich domains. J. Biol. Chem. 2017, 292, 11218.

63. Ding, M.; Wang, X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity (Review).
Oncol. Lett. 2017, 14, 6327–6333.

64. MacDonald, B.T.; He, X. Frizzled and LRP5/6 Receptors for Wnt/β-Catenin Signaling. Cold Spring Harb. Perspect. Biol.
2012, 4, a007880.

65. Kim, J.-H.; Shin, H.S.; Lee, S.H.; Lee, I.; Lee, Y.S.; Park, J.C.; Kim, Y.J.; Chung, J.B.; Lee, Y.C. Contrasting activity of
Hedgehog and Wnt pathways according to gastric cancer cell differentiation: Relevance of crosstalk mechanisms.
Cancer Sci. 2010, 101, 328–335.

66. Jia, Y.; Wang, Y.; Xie, J. The Hedgehog pathway: Role in cell differentiation, polarity and proliferation. Arch. Toxicol.
2015, 89, 179–191.

67. Yang, L.; Wang, L.-S.; Chen, X.L.; Gatalica, Z.; Qiu, S.; Liu, Z.; Stoner, G.; Zhang, H.; Weiss, H.; Xie, J. Hedgehog
signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. Int. J.
Biochem. Mol. Biol. 2012, 3, 46–57.



68. Akyala, A.I.; Peppelenbosch, M.P. Gastric cancer and Hedgehog signaling pathway: Emerging new paradigms. Genes
Cancer 2018, 9, 1–10.

69. Gu, D.; Schlotman, K.E.; Xie, J. Deciphering the role of hedgehog signaling in pancreatic cancer. J. Biomed. Res.
2016, 30, 353–360.

70. Machado, M.V.; Diehl, A.M. Hedgehog Signaling in Liver Pathophysiology. J. Hepatol. 2018, 68, 550–562.

71. He, J.; Sheng, T.; Stelter, A.A.; Li, C.; Zhang, X.; Sinha, M.; Luxon, B.A.; Xie, J. Suppressing Wnt Signaling by the
Hedgehog Pathway through sFRP-1. J. Biol. Chem. 2006, 281, 35598–35602.

72. Pelullo, M.; Zema, S.; Nardozza, F.; Checquolo, S.; Screpanti, I.; Bellavia, D. Wnt, Notch, and TGF-β Pathways
Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front. Genet. 2019, 10.

73. Yang, L.; Xie, G.; Fan, Q.; Xie, J. Activation of the hedgehog-signaling pathway in human cancer and the clinical
implications. Oncogene 2010, 29, 469–481.

74. Katoh, Y.; Katoh, M. WNT antagonist, SFRP1, is Hedgehog signaling target. Int. J. Mol. Med. 2006, 17, 171–175.

75. Huang, J.; Guo, X.; Li, W.; Zhang, H. Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of
human adipose stem cells into functional hepatocytes. Sci. Rep. 2017, 7, 1–12.

76. Rom, S.; Fan, S.; Reichenbach, N.; Dykstra, H.; Ramirez, S.H.; Persidsky, Y. Glycogen Synthase Kinase 3β Inhibition
Prevents Monocyte Migration across Brain Endothelial Cells via Rac1-GTPase Suppression and Down-Regulation of
Active Integrin Conformation. Am. J. Pathol. 2012, 181, 1414–1425.

77. Chikano, Y.; Domoto, T.; Furuta, T.; Sabit, H.; Kitano-Tamura, A.; Pyko, I.V.; Takino, T.; Sai, Y.; Hayashi, Y.; Sato, H.; et
al. Glycogen Synthase Kinase 3β Sustains Invasion of Glioblastoma via the Focal Adhesion Kinase, Rac1, and c-Jun
N-Terminal Kinase-Mediated Pathway. Mol. Cancer Ther. 2015, 14, 564–574.

78. Rozenchan, P.B.; Pasini, F.S.; Roela, R.A.; Katayama, M.L.H.; Mundim, F.G.L.; Brentani, H.; Lyra, E.C.; Brentani, M.M.
Specific upregulation of RHOA and RAC1 in cancer-associated fibroblasts found at primary tumor and lymph node
metastatic sites in breast cancer. Tumor Biol. 2015, 36, 9589–9597.

79. De Toledo, M.; Anguille, C.; Roger, L.; Roux, P.; Gadea, G. Cooperative Anti-Invasive Effect of Cdc42/Rac1 Activation
and ROCK Inhibition in SW620 Colorectal Cancer Cells with Elevated Blebbing Activity. PLoS ONE 2012, 7, e48344.

80. Chen, X.; Zhang, J.-X.; Luo, J.-H.; Wu, S.; Yuan, G.-J.; Ma, N.-F.; Feng, Y.; Cai, M.-Y.; Chen, R.-X.; Lu, J.; et al.
CSTF2-Induced Shortening of the RAC1 3′UTR Promotes the Pathogenesis of Urothelial Carcinoma of the Bladder.
Cancer Res. 2018, 78, 5848–5862.

81. Ji, J.; Feng, X.; Shi, M.; Cai, Q.; Yu, Y.; Zhu, Z.; Zhang, J. Rac1 is correlated with aggressiveness and a potential
therapeutic target for gastric cancer. Int. J. Oncol. 2015, 46, 1343–1353.

82. Peng, J.-X.; Liang, S.-Y.; Li, L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1-mediated restraint of
TGFβ/Smad3 signaling. Oncol. Rep. 2019, 41, 224–234.

83. Ren, J.; Wang, R.; Huang, G.; Song, H.; Chen, Y.; Chen, L. sFRP1 Inhibits Epithelial–Mesenchymal Transition in A549
Human Lung Adenocarcinoma Cell Line. Cancer Biother. Radiopharm. 2013, 28, 565–571.

84. Garg, M. Epithelial-mesenchymal transition—Activating transcription factors—Multifunctional regulators in cancer.
World J. Stem Cells 2013, 5, 188–195.

85. Gauger, K.J.; Chenausky, K.L.; Murray, M.E.; Schneider, S.S. SFRP1 reduction results in an increased sensitivity to
TGF-β signaling. BMC Cancer 2011, 11, 59.

86. Kawano, Y.; Diez, S.; Uysal-Onganer, P.; Darrington, R.S.; Waxman, J.; Kypta, R.M. Secreted Frizzled-related protein-1
is a negative regulator of androgen receptor activity in prostate cancer. Br. J. Cancer 2009, 100, 1165–1174.

87. Zheng, L.; Sun, D.; Fan, W.; Zhang, Z.; Li, Q.; Jiang, T. Diagnostic Value of SFRP1 as a Favorable Predictive and
Prognostic Biomarker in Patients with Prostate Cancer. PLoS ONE 2015, 10, e0118276.

88. Xu, J.; Prosperi, J.R.; Choudhury, N.; Olopade, O.I.; Goss, K.H. β-Catenin Is Required for the Tumorigenic Behavior of
Triple-Negative Breast Cancer Cells. PLoS ONE 2015, 10, e0117097.

89. Martin-Manso, G.; Calzada, M.J.; Chuman, Y.; Sipes, J.M.; Xavier, C.P.; Wolf, V.; Kuznetsova, S.A.; Rubin, J.S.;
Roberts, D.D. sFRP-1 binds via its netrin-related motif to the N-module of thrombospondin-1 and blocks
thrombospondin-1 stimulation of MDA-MB-231 breast carcinoma cell adhesion and migration. Arch. Biochem. Biophys.
2011, 509, 147–156.

90. Cooper, S.J.; von Roemeling, C.A.; Kang, K.H.; Marlow, L.A.; Grebe, S.K.; Menefee, M.E.; Tun, H.W.; Colon-Otero, G.;
Perez, E.A.; Copland, J.A. Re-expression of tumor suppressor, sFRP1, leads to antitumor synergy of combined HDAC
and methyltransferase inhibitors in chemoresistant cancers. Mol. Cancer Ther. 2012, 11, 2105–2115.



91. Joshi, M.; Liu, X.; Belani, C.P. Taxanes, past, present, and future impact on non-small cell lung cancer. Anticancer
Drugs 2014, 25, 571–583.

92. Ren, J.; Wang, R.; Song, H.; Huang, G.; Chen, L. Secreted Frizzled Related Protein 1 Modulates Taxane Resistance of
Human Lung Adenocarcinoma. Mol. Med. 2014, 20, 164–178.

93. Pehlivan, M.; Sercan, Z.; Sercan, H.O. sFRP1 promoter methylation is associated with persistent Philadelphia
chromosome in chronic myeloid leukemia. Leuk. Res. 2009, 33, 1062–1067.

94. Pehlivan, M.; Caliskan, C.; Yuce, Z.; Sercan, H.O. Forced expression of Wnt antagonists sFRP1 and WIF1 sensitizes
chronic myeloid leukemia cells to tyrosine kinase inhibitors. Tumour Biol. 2017, 39, 1010428317701654.

95. Menyhárt, O.; Fekete, J.T.; Győrffy, B. Gene Expression Indicates Altered Immune Modulation and Signaling Pathway
Activation in Ovarian Cancer Patients Resistant to Topotecan. Int. J. Mol. Sci. 2019, 20, 2750.

96. Davaadorj, M.; Imura, S.; Saito, Y.; Morine, Y.; Ikemoto, T.; Yamada, S.; Takasu, C.; Hiroki, T.; Yoshikawa, M.; Shimada,
M. Loss of SFRP1 Expression Is Associated with Poor Prognosis in Hepatocellular Carcinoma. Anticancer Res. 2016,
36, 659–664.

97. Chang, L.; Lei, X.; Qin, Y.U.; Zeng, G.; Zhang, X.; Jin, H.; Wang, C.; Wang, X.; Su, J. Expression and prognostic value
of SFRP1 and β-catenin in patients with glioblastoma. Oncol. Lett. 2016, 11, 69–74.

98. Su, H.-Y.; Lai, H.-C.; Lin, Y.-W.; Chou, Y.-C.; Liu, C.-Y.; Yu, M.-H. An epigenetic marker panel for screening and
prognostic prediction of ovarian cancer. Int. J. Cancer 2009, 124, 387–393.

99. Kumar, A.; Gosipatala, S.B.; Pandey, A.; Singh, P. Prognostic Relevance of SFRP1 Gene Promoter Methylation in
Colorectal Carcinoma. Asian Pac. J. Cancer Prev. 2019, 20, 1571–1577.

100. Liu, X.; Fu, J.; Bi, H.; Ge, A.; Xia, T.; Liu, Y.; Sun, H.; Li, D.; Zhao, Y. DNA methylation of SFRP1, SFRP2, and WIF1 and
prognosis of postoperative colorectal cancer patients. BMC Cancer 2019, 19, 1212.

101. Sobhani, I.; Bergsten, E.; Couffin, S.; Amiot, A.; Nebbad, B.; Barau, C. Colorectal cancer-associated microbiota
contributes to oncogenic epigenetic signatures. Proc. Natl. Acad. Sci. USA 2019, 116, 24285–24295.

102. Huang, S.; Zhong, X.; Gao, J.; Song, R.; Wu, H.; Zi, S.; Yang, S.; Du, P.; Cui, L.; Yang, C.; et al. Coexpression of
SFRP1 and WIF1 as a prognostic predictor of favorable outcomes in patients with colorectal carcinoma. Biomed. Res.
Int. 2014, 2014, 256723.

103. Abd Elrahman, M.Z.; Nigm, D.A.; Abo Elfadle, A.A. Methylated SFRP1,2 and CD25 Expression in Acute Myeloid
Leukemia Play an Important Role in the Pathogenesis of the Disease and in Turn in its Treatment. J. Leuk. 2016, 4, 2.

104. Heng, L.; Jia, Z.; Bai, J.; Zhang, K.; Zhu, Y.; Ma, J.; Zhang, J.; Duan, H. Molecular characterization of metastatic
osteosarcoma: Differentially expressed genes, transcription factors and microRNAs. Mol. Med. Rep. 2017, 15, 2829–
2836.

105. Kim, T.H.; Chang, J.S.; Park, K.-S.; Park, J.; Kim, N.; Lee, J.I.; Kong, I.D. Effects of exercise training on circulating
levels of Dickkpof-1 and secreted frizzled-related protein-1 in breast cancer survivors: A pilot single-blind randomized
controlled trial. PLoS ONE 2017, 12, e0171771.

106. Chemoprevention of Colorectal Cancer: The Role of Non-digestible Carbohydrates—Full Text View—ClinicalTrials.gov.
Available online: (accessed on 26 December 2019).

107. Malcomson, F.C.; Willis, N.D.; McCallum, I.; Xie, L.; Ibero-Baraibar, I.; Leung, W.C.; Kelly, S.; Bradburn, D.M.; Belshaw,
N.J.; Johnson, I.T.; et al. Effects of supplementation with nondigestible carbohydrates on fecal calprotectin and on
epigenetic regulation of SFRP1 expression in the large-bowel mucosa of healthy individuals. Am. J. Clin. Nutr. 2017,
105, 400–410.

108. GDC-0449 in Treating Young Patients with Medulloblastoma That Is Recurrent or Did Not Respond to Previous
Treatment—Full Text View—ClinicalTrials.gov. Available online: (accessed on 26 December 2019).

109. Baylin, S.B.; Herman, J.; Suzuki, H.; Sidransky, D. Genomic Screen for Epigenetically Silenced Genes Associated with
Cancer. 2010. Available online: (accessed on 23 December 2019).

110. Engeland, M.V.; Bruine, M.A.D.; Griffioen, A.; Louwagie, J.; Bierau, K.; Britchard, G.; Otto, G.; Penning, M. Epigenetic
Change in Selected Genes and Cancer. 2016. Available online: (accessed on 23 December 2019).

111. Lothe, R.A.; Lind, G.E.; Ahmed, D.; Andresen, K.; Skotheim, R.I. Methods and Biomarkers for Detection of
Gastrointestinal Cancers. 2017. Available online: (accessed on 23 December 2019).

Retrieved from https://encyclopedia.pub/entry/history/show/28272




