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This work compares and analyzes static approximate adders which are suitable for FPGA and ASIC type

implementations. We consider many static approximate adders and evaluate their performance with respect to a digital

image processing application using standard figures of merit such as peak signal to noise ratio and structural similarity

index metric. We provide the error metrics of approximate adders, and the design metrics of accurate and approximate

adders corresponding to FPGA and ASIC type implementations. For the FPGA implementation, we considered a Xilinx

Artix-7 FPGA, and for an ASIC type implementation, we considered a 32-28 nm CMOS standard digital cell library. While

the inferences from this work could serve as a useful reference to determine an optimum static approximate adder for a

practical application, in particular, we found approximate adders HOAANED, HERLOA and M-HERLOA to be preferable.
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1. Introduction

Computation-intensive technologies such as artificial intelligence, machine learning, big data and analytics, data mining,

cloud computing, Internet-of-Things, etc., often deal with a data deluge, which makes processing using accurate

computing techniques expensive in terms of time and resources. In such cases, it would be more feasible and economical

if computing is performed such that the results are sufficiently correct, which is called approximate, inaccurate or

imprecise computing.

Approximate computing encompasses hardware, software and memory storage . With respect to approximate

hardware, research has focused on arithmetic circuits  and logic circuits . Within the realm of approximate arithmetic

circuits, adders and multipliers have received significant attention, and this is because addition and multiplication are often

performed in microprocessors  and digital signal processors .

This work discusses approximate adders, which are derived by introducing inaccuracies in an accurate adder. Basically,

there are two kinds of approximate adders, namely static approximate adders (SAAs) and dynamic approximate adders

(DAAs). Approximation is fixed in an SAA that may produce an accurate sum or an approximate sum corresponding to a

specified accuracy in a single clock cycle and guarantees assured savings in design metrics compared to the accurate

adder. On the other hand, approximation is variable in a DAA, which may produce an approximate or accurate sum on

demand involving single or multiple clock cycles. Generally, DAAs comprise an additional error detection and correction

logic (EDCL) to adjust their sum corresponding to a specified accuracy. While EDCL is necessary, nevertheless it

represents a design overhead in DAAs. In 

In this work, we focus on SAAs. SAAs can be classified into three categories based on their implementation platform as:

(a) suitable for FPGA implementation ; (b) suitable for ASIC type implementation ; and (c) suitable for both

FPGA and ASIC type implementations . With respect to ASIC type

implementation, full-custom and semi-custom design approaches may be adopted. The former involves a manual

transistor-level design, while the latter involves an automated gate-level design where a gate-level approximate adder can

be described in a hardware description language (HDL) that can be synthesized using a logic synthesis tool. Additionally,

a gate-level design is suitable for an FPGA implementation. Hence, gate-level SAAs, suitable for FPGA and ASIC type

implementations, are particularly interesting since they are generic and versatile and they form the focus of this work. The

objective of this work is to perform a comparative evaluation of different SAAs from the perspectives of error metrics and

design metrics, and provide some inferences about which SAA(s) are better optimized. In the rest of the work, Section 2

reviews several gate-level SAAs that are suitable for FPGA and ASIC type implementations. Section 3 discusses digital

image processing involving the accurate adder and various approximate adders and presents the error metrics of

approximate adders. Section 4 gives FPGA- and ASIC-based design metrics of accurate and approximate adders

corresponding to the application considered. Section 5 gives the concluding remarks.
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2. Static Approximate Adders

An SAA is usually partitioned into two parts  viz. a precise part where addition is performed accurately and an

imprecise part where addition is performed inaccurately. Less significant adder input bits are allotted to the imprecise part

and more significant adder input bits are allotted to the precise part. Hence, the precise part is more significant than the

imprecise part. A block schematic of the accurate adder and generic architectures of many SAAs are shown in Figure 1,

where the precise and imprecise parts of the approximate adders are highlighted in blue and red, respectively.

In Figure 1, X and Y denote the adder inputs and SUM denotes the adder output. N is the adder size in bits and P is the

number of input bits allotted to the imprecise part. Hence, (N–P) input bits are allotted to the precise part. If (N–P) is

significantly greater than P, the speed of an approximate adder would be dictated by the speed of its precise part. Given

this, for an FPGA implementation, the accurate adder and the precise part of the approximate adders can be described

using the addition operator; thereby, the fast carry logic of an FPGA slice can be utilized to realize the accurate adder and

approximate adders in a high-speed fashion. For a semi-custom ASIC type implementation using standard cells, the

accurate adder and the precise part of the approximate adders can be described using a high-speed adder architecture

such as a carry look-ahead adder (CLA), and they can be synthesized using a logic synthesis tool with speed set as the

optimization goal. The precise parts of the approximate adders shown in Figures 1b–n are almost the same, except for the

difference pertaining to whether the precise part may incorporate a carry input or not. Hence, the differences between

various approximate adders are primarily attributed to the differences in logic between their imprecise parts.

Since the precise parts of the approximate adders can be realized in the same manner, the following discussion would

deal with the imprecise parts of approximate adders shown in Figures 1b–n, which correspond to LOA, LOAWA,

APPROX5, HEAA, M-HEAA, OLOCA, HOERAA, SETA, LZTA, LDCA, HOAANED, HERLOA and M-HERLOA. The

approximate adders presented in  were called LOAWA and HEAA in , and we retain the same acronyms here for

referencing. Further, the approximate adder constructed using an approximate full adder (AMA5) in [16] was called

APPROX5 in  and we use the same acronym here for referencing. In the following discussions, OR refers to logical

OR, AND (NAND) refers to logical AND (NAND), and XOR (XNOR) refers to logical XOR (XNOR) performed between

Boolean literals.
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Figure 1. Block schematics of accurate adder and approximate adders: (a) Accurate adder; (b–n) Approximate adders.

Figure 1b shows LOA . In the imprecise part of LOA, X  up to X  are bitwise OR-ed with Y  up to Y , respectively,

to produce the corresponding sum bits SUM  up to SUM . X  and Y  are AND-ed to provide the carry input to the

precise part.

Figure 1c shows LOAWA . The logic corresponding to sum bits SUM  up to SUM are the same for LOAWA as LOA.

However, unlike LOA, there is no carry input provided from the imprecise part to the precise part in LOAWA.
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In the case of APPROX5 , shown in Figure 1d, Y  up to Y are forwarded as the corresponding sum bits SUM  up

to SUM  using buffers, and X  up to X are discarded. X  is given as the carry input to the precise part.

In the case of HEAA , shown in Figure 1e, X  up to X  are bitwise OR-ed with Y  up to Y , respectively, to produce

the corresponding sum bits SUM  up to SUM . X  and Y  are AND-ed and given as the carry input to the precise

part, which also serves as the select input to a 2:1 multiplexer (MUX21). If the select input of MUX21 is 0, the OR of X

and Y  is produced as SUM  and if the select input is 1, SUM  is assigned a 0.

The modified version of HEAA is shown in Figure 1f , which is referred to as M-HEAA in this work. The modification

pertains to the assignment of a constant 1 to (P–2) least significant sum bits of the imprecise part, i.e., SUM  up to

SUM . The rest of the logic of M-HEAA is the same as HEAA. Likewise, OLOCA , shown in Figure 1g, is a modified

version of LOA in that (P–2) least significant sum bits, i.e., SUM  up to SUM  of the imprecise part of LOA are assigned

a constant 1 to obtain OLOCA. Excepting for this, the rest of the logic of OLOCA is the same as LOA.

In the case of HOERAA , shown in Figure 1h, SUM  up to SUM  are assigned a constant 1, and SUM  is produced

by OR-ing X  and Y  like M-HEAA and OLOCA. Like HEAA and M-HEAA, X  and Y  are AND-ed and given as the

carry input to the precise part and also to the select input of a MUX21. If the select input of MUX21 is 0, the OR of X

and Y  is produced as SUM  and if the select input is 1, the AND of X  and Y  is produced as SUM .

In the case of SETA [22], shown in Figure 1i, the imprecise part does not supply a carry input to the precise part. The OR

of X  with Y  and X  with Y  produce sum bits SUM  and SUM , respectively. The AND of X  and Y  is

individually OR-ed with the respective bitwise OR-ed outputs of X  up to X with Y  up to Y to produce the

corresponding sum bits SUM  up to SUM .

LZTA [23] is shown in Figure 1j, where all the sum bits of the imprecise part, i.e., SUM  up to SUM  are assigned a

constant 0. As a result, X  up to X  and Y  up to Y  are discarded, and X  and Y are OR-ed and given as the

carry input to the precise part.

In the case of LDCA [24], shown in Figure 1k, the imprecise part is subdivided into two sections of size L bits and (P–L)

bits, and these two sections are typically equal in size. The sum bits corresponding to the L bit section, i.e., SUM  up to

SUM , are assigned a constant 1. In the (P–L) bit section, Y  up to Y  are forwarded as the sum bits SUM  up to

SUM  through buffers, and X  is given as the carry input to the precise part.

HOAANED [25] is shown in Figure 1l. Just like M-HEAA, OLOCA and HOERAA, SUM  up to SUM  are assigned a

constant 1 in HOAANED, and X  and Y are OR-ed to produce SUM . Like HEAA, M-HEAA and HOERAA, in

HOAANED, X  and Y are AND-ed and given as the carry input to the precise part and also as the select input of a

MUX21. If the MUX21 select input is 0, the OR of X  and Y and the AND of X  and Y are OR-ed to produce

SUM ; otherwise, the AND of X  and Y alone would yield SUM .

HERLOA [26], shown in Figure 1m, consists of a unique logic in the imprecise part. X  and Y  are XOR-ed and X

and Y  are AND-ed and these two are then OR-ed to produce SUM . The XOR of X  and Y  is complemented

and NAND-ed with the AND of X  and Y , which is then AND-ed with the OR of X  and Y  to produce SUM .

The XOR of X  and Y  and the AND of X  and Y  are AND-ed and this is individually OR-ed with the respective

bitwise OR-ed outputs of X  up to X with Y  up to Y to produce the corresponding sum bits SUM  up to SUM .

Like LOA, HEAA, M-HEAA, OLOCA, HOERAA and HOAANED, X  and Y  are AND-ed and given as the carry input to

the precise part in HERLOA.

M-HERLOA [27], shown in Figure 1n, is a modification of HERLOA in that the logic corresponding to more significant sum

bits of the imprecise part (here, SUM  up to SUM ) are retained the same as HERLOA and the remaining less

significant sum bits of the imprecise part (here, SUM  up to SUM ) are assigned a constant 1. However, the optimum

number of least significant sum bits in the imprecise part, which may be assigned a constant 1 in M-HERLOA is best

decided depending on which assignment enables reduced error metrics commensurate with a target application.

3. Digital Image Processing Using Accurate and Approximate Adders

We considered digital image processing (reconstruction) as a practical application, as in [28], to evaluate the performance

of different approximate adders vis-à-vis the accurate adder. We considered many digital images with a grayscale

resolution of 8 bits and a spatial resolution of 512 × 512 for experimentation. Image processing was performed as

described in [25], whereby an original image was translated into a matrix form which was then processed by computing

fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) accurately or approximately. The matrix output was
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subsequently re-translated into a digital image. Integer Fourier transforms were computed wherein multiplication was

performed accurately, while addition was performed accurately or approximately. To perform accurate addition, we used

the accurate adder and to perform approximate addition, we used different approximate adders individually. We

considered a 32-bit addition as in [28], which implies that the size of the accurate adder and approximate adders are 32

bits. It was ensured that no data loss or overflow occurred during the FFT and IFFT computations.

Having an optimum imprecise part in an approximate circuit is important as that would pave the way for an acceptable

compromise between output quality and savings in design metrics gained by an approximate circuit compared to the

accurate circuit [21,25]. It was observed in [11,16] that for digital image processing and digital video encoding

applications, the approximation limit may be optimally specified in the range of 7 to 9 least significant bits while

considering a 32-bit arithmetic. Following a trial-and-error approach, as discussed in [25], the optimum imprecise part of

the approximate adders was determined as 10 bits in size and the optimum precise part as 22 bits in size.

An example image viz. cameraman, which was processed accurately and approximately using accurate and approximate

adders is shown in Figure 2 for an illustration. Two figures of merit viz. peak signal to noise ratio (PSNR) [29] and

structural similarity index metric (SSIM) [30] were estimated to ascertain the quality of reconstructed images, and they are

given above the images in Figure 2. While PSNR is a figure of merit widely used in digital signal processing, SSIM is a

figure of merit of specific relevance for digital image processing. A high value of PSNR indicates less distortion in an

image. SSIM is estimated by comparing a reference (original) image with a target image. Here, the target image may refer

to an accurately or approximately reconstructed image. SSIM ranges from 0 to 1 decimal, with 0 indicating no similarity

and 1 indicating a perfect similarity between the reference and target images. Hence, a high value of SSIM is also

preferred. A perusal of Figure 2 would reveal major or minor distortions in the form of grains, spots and/or shaded regions

in the images obtained using approximate adders compared to the images obtained using the accurate adder.

The image reconstructed by computing accurate FFT and IFFT involving accurate addition is shown in Figure 2a, while

the images reconstructed by computing approximate FFT and IFFT involving approximate additions are shown in Figures

2b–n.

Figure 2. The cameraman image processed accurately and approximately using (a) accurate adder and (b–n)

approximate adders.



Due to the accurate computation, PSNR = ∞ for Figure 2a and its SSIM = 1. PSNR and SSIM calculated for the images

reconstructed using different approximate adders are given in Tables 1 and 2, respectively. From Figure 2 and Tables 1

and 2, it is noted that among the approximate adders, HOAANED consistently results in an improved PSNR and this is

attributed to its near-normal error distribution characteristic. HOAANED also enables an enhanced SSIM in comparison

with many approximate adders, except HERLOA and M-HERLOA. HERLOA and M-HERLOA consistently result in almost

the same SSIM, which is greater than the SSIM of images reconstructed using other approximate adders, and this is due

to a better approximate logic employed in their imprecise parts. To validate this, an error analysis was performed by

supplying one million random inputs to the accurate adder and approximate adders. The extent of error occurring in the

approximate adders relative to the accurate adder was plotted in the form of an error distribution, as shown in Figure 3,

which portrays the error magnitudes in terms of their percentage occurrence.

Two well-known error metrics, namely mean absolute error (MAE) and root mean square error (RMSE) were calculated

for the approximate adders relative to the accurate adder by considering the application of one million random input

vectors. The equations for MAE and RMSE are given in [34]. MAE is also called mean error distance in the literature.

Nevertheless, RMSE is more important since it better quantifies the extent of signal degradation in digital signal

processing [31]. 

Table 1. PSNR (in dB) of various digital images reconstructed using different approximate adders.

Approximate

Adder
Barbara Boat Einstein Lake Cameraman Peppers Woman

Average
PSNR

LOA 32.4863 32.5604 32.5567 32.6313 32.1966 32.6581 32.8121 32.5574

LOAWA 25.1106 24.8022 25.7325 25.2703 25.0872 25.1460 25.2304 25.1970

APPROX5 31.6881 31.8445 31.8320 31.7789 31.3060 31.8853 32.1200 31.7793

HEAA 30.6490 30.5959 31.0126 30.6447 30.6800 30.7053 30.8507 30.7340

M-HEAA 29.6692 29.5523 30.1740 29.6633 29.6510 29.6921 29.8162 29.7454

OLOCA 32.0496 32.1698 32.1424 32.1815 31.8063 32.2262 32.3729 32.1355

HOERAA 32.9709 33.0211 33.1791 32.9155 32.7300 33.0998 33.2847 33.0287

SETA 25.1447 24.8346 25.7657 25.3066 25.1226 25.1806 25.2653 25.2314

LZTA 30.8740 30.9092 31.0290 30.8975 30.9622 31.0619 30.8768 30.9444

LDCA 31.7570 31.9085 31.8894 31.8521 31.3805 31.9542 32.1818 31.8462

HOAANED 34.7582 34.6552 34.7908 34.7423 34.7383 34.7416 34.7845 34.7444

HERLOA 33.7722 33.6949 33.9227 33.7501 33.7766 33.8136 33.8772 33.8010

M-HERLOA 32.8549 32.7319 33.1088 32.8431 32.8210 32.8586 32.9572 32.8822

Table 2. SSIM (in decimal) of various digital images reconstructed using different approximate adders.



Approximate

Adder
Barbara Boat Einstein Lake Cameraman Peppers Woman

Average
SSIM

LOA 0.8527 0.8602 0.8440 0.8666 0.8422 0.8447 0.8150 0.8465

LOAWA 0.8396 0.8464 0.8198 0.8514 0.8181 0.8302 0.7884 0.8277

APPROX5 0.8450 0.8461 0.8318 0.8537 0.8322 0.8284 0.8063 0.8348

HEAA 0.9426 0.9480 0.9370 0.9485 0.9266 0.9471 0.9174 0.9382

M-HEAA 0.9362 0.9426 0.9305 0.9426 0.9297 0.9458 0.9086 0.9337

OLOCA 0.8463 0.8517 0.8373 0.8587 0.8412 0.8359 0.8096 0.8401

HOERAA 0.9297 0.9358 0.9226 0.9394 0.9113 0.9279 0.9028 0.9242

SETA 0.8412 0.8475 0.8213 0.8527 0.8175 0.8319 0.7901 0.8289

LZTA 0.8290 0.8516 0.8234 0.8490 0.8237 0.8287 0.7813 0.8267

LDCA 0.8480 0.8484 0.8349 0.8562 0.8374 0.8313 0.8103 0.8381

HOAANED 0.9301 0.9361 0.9225 0.9372 0.9072 0.9286 0.9020 0.9234

HERLOA 0.9619 0.9660 0.9578 0.9663 0.9462 0.9643 0.9445 0.9581

M-HERLOA 0.9601 0.9640 0.9559 0.9648 0.9469 0.9637 0.9423 0.9568



Figure 3. Error distribution of 32-bit approximate adders with a 10-bit imprecise part along with a highlight of their MAE

and RMSE: (a) LOA; (b) LOAWA; (c) APPROX5; (d) HEAA; (e) M-HEAA; (f) OLOCA; (g) HOERAA; (h) SETA; (i) LZTA;

(j) LDCA; (k) HOAANED; (l) HERLOA; (m) M-HERLOA. The error magnitudes are given in the X axis and the percentage

of their occurrences is given in the Y axis.

From Figure 3, it is seen that HOAANED has a near-normal error distribution, which is a reflection of the fact that its

positive and negative (true) error magnitudes are rather balanced and become almost neutralized on average – this is the

reason for the greater PSNR of images reconstructed using HOAANED compared to the PSNR of images reconstructed

using other approximate adders, as seen from Table 1.

In Figure 3, HERLOA has a restricted magnitude of error occurrences compared to the other approximate adders, and this

may be the reason for the reduced distortions noticed in Figure 2m compared to Figure 2b–l. HERLOA does not have a

positive error magnitude, and HERLOA is closely followed by M-HERLOA in terms of an optimized error distribution.

Although the magnitude of error occurrences is relatively greater in M-HERLOA compared to HERLOA, the former has

some positive error magnitudes, which contributes to an overall decrease in its MAE and RMSE.

Figure 4 depicts MAE and RMSE calculated for different approximate adders by considering the application of one million

random input vectors. MAE is depicted by the blue bars and RMSE is depicted by the orange bars in Figure 4. In general,

approximate adders which include a carry input in their precise part that is supplied from the imprecise part would have

less errors compared to approximate adders which have disjoint precise and imprecise parts. This is because a valid carry

input supplied from the imprecise part may significantly impact the output of the precise part and, thus, the overall sum.

Hence, LOAWA and SETA, which do not feature an internal carry input, have higher MAE and RMSE compared to their

counterparts, which feature an internal carry input. LZTA is worse since the sum bits belonging to the imprecise part of

LZTA are assigned a constant 0 and so the information corresponding to the imprecise part may become completely lost

during the data processing depending upon the specified inputs. Figure 4 shows that M-HERLOA has less MAE and

RMSE compared to other approximate adders, with M-HERLOA having MAE and RMSE closer to HERLOA.

To achieve a higher PSNR, HOAANED is preferable and to achieve a higher SSIM, HERLOA and M-HERLOA are

preferable. Nevertheless, in terms of the error metrics and image processing figures of merit combined, M-HERLOA may

be preferable to its approximate counterparts.



Figure 4. Error parameters (MAE and RMSE) calculated for different approximate adders of size 32 bits comprising a 10-

bit imprecise part.

4. Accurate and Approximate Adders—Implementation Results

Accurate and approximate adders were implemented commensurate with the digital image processing application

discussed using FPGA and ASIC design platforms. For the FPGA implementation, the accurate and approximate adders

were described behaviorally in Verilog HDL and synthesized and implemented on a Xilinx Artix-7 FPGA device (part:

xc7a100tcsg324-3) using Vivado design tool version: 2018.3. We described the accurate adder and the exact parts of

approximate adders using the addition operator in Verilog. As a result, the fast carry logic (CARRY4) inherent in an FPGA

slice was utilized to realize high speed addition. Flow_AreaOptimized_high was specified as the synthesis strategy and

the default implementation strategy was used. Following an efficient FPGA design practice, a pair of register banks was

provided before the adder inputs to eliminate unnecessary input–output (IO) routing delay from dominating the critical path

delay. A register bank collects the adder outputs and, thus, the adder is sandwiched between the input and output register

banks, with these register banks driven by a common clock. The adders were successfully synthesized and implemented,

and the FPGA design metrics obtained after placement and routing namely delay (representative of minimum clock

period), number of slice look-up tables (LUTs) and flip-flops consumed, and the total on-chip power consumption of the

adders are given in Table 3.

Table 3. Design metrics of accurate and approximate adders implemented on an Artix-7 FPGA.

Adder Delay (ns) LUTs Flip-Flops Power (W)

Accurate (FPGA) 2.10 32 97 0.209

LOA 1.89 27 97 0.198

LOAWA 1.86 27 97 0.198

APPROX5 1.84 22 88 0.200

HEAA 1.89 27 97 0.199

M-HEAA 1.87 23 73 0.188

OLOCA 1.87 23 73 0.187

HOERAA 1.87 23 73 0.188

SETA 1.85 31 97 0.199



LZTA 1.87 22 69 0.184

LDCA 1.83 22 78 0.195

HOAANED 1.87 23 73 0.188

HERLOA 1.89 28 97 0.199

M-HERLOA 1.90 25 79 0.190

From Table 3, we see that, in general, the approximate adders have less delay, consume fewer LUTs and flip-flops and

have less on-chip power compared to the accurate FPGA adder. This is because the accurate adder is 32 bits in size,

whereas the precise part of the approximate adders is only 22 bits in size, since 10 bits have been allocated to the

imprecise part. Hence, the delay of the approximate adders is dominated by the delay of their precise part. Because the

imprecise parts of the approximate adders have reduced logic compared to the accurate adder, fewer LUTs and/or flip-

flops were required for their implementation and, thus, overall, the approximate adders require lesser resources (LUTs

and flip-flops) compared to the accurate adder. For example, M-HERLOA requires 7 LUTs and 18 flip-flops less compared

to the accurate FPGA adder in Table 3. Since 6 least significant sum bits were assigned a constant 1 in M-HERLOA, 12

input flip-flops and 6 output flip-flops were not required, thus saving 18 flip-flops compared to the accurate adder.

Additionally, the reduction in logic of the approximate adders results in their reduced power consumption compared to the

accurate adder. The differences between the resource utilization and power consumption of approximate adders are due

to the differences between their imprecise part logic. The delay is almost the same for the approximate adders and only

minor variations are observed between them. This is partly because the precise part of some approximate adders accepts

a carry input from the imprecise part, while this is absent in the other approximate adders, and partly due to the area

optimized place and route as performed by the FPGA design tool.

In Section 3, in terms of error metrics and/or image processing results, it was noted that HOAANED, HERLOA and M-

HERLOA are preferable. From Table 3, it is noted that compared to the accurate FPGA adder, HOAANED has 11% less

delay, requires 28.1% fewer LUTs and 24.7% fewer flip-flops, and consumes 10% less power; HERLOA has 10% less

delay, requires 12.5% fewer LUTs and consumes 4.8% less power; and M-HERLOA has 9.5% less delay, requires 21.9%

fewer LUTs and 18.6% fewer flip-flops, and consumes 9.1% less power.

For an ASIC type standard cell-based implementation, the accurate and approximate adders were described structurally

in Verilog HDL. To realize the accurate and approximate adders for high speed, the accurate adder and precise parts of

the approximate adders were described using a high speed CLA architecture [32]. The 32-bit accurate adder was

described using eight 4-input CLAs, and the 22-bit precise parts of the approximate adders were described using five 4-bit

CLAs and a 2-bit CLA. The 2-bit CLA may or may not include a carry input and this depends on the approximate adder

architecture considered, i.e., whether the approximate adder may or may not have a carry input supplied from the

imprecise part to the precise part. It may be recalled from Section 2 that LOAWA and SETA do not feature an internal

carry input from the imprecise part to the precise part, while the rest of the approximate adders do.

The accurate and approximate adders were synthesized for high-speed using Synopsys Design Compiler with speed set

as the optimization goal and their total area (cells area plus interconnect area) was estimated. A 32/28 nm CMOS

standard cell library [33] was used for the implementation. A typical case library specification with a supply voltage of 1.05

V and an operating junction temperature of 25 °C was considered. After synthesis, the adders were simulated and their

functionality was verified. Subsequently, the switching activity data obtained was used to estimate the total average power

dissipation using PrimePower. PrimeTime was used to estimate the critical path delay. The adder outputs were assigned a

fanout-of-4 drive strength and default wire loads were included. The ASIC-based design metrics are given in Table 4.

In Table 4, we see that all the approximate adders have the same delay and this is because their precise parts were

realized for high-speed using a common CLA architecture. The areas of approximate adders, however, differ and this is

due to the differences in the logic composition of their imprecise parts. Consequently, their power dissipation also differs.

To assign a constant 1 to some least significant sum bits in M-HEAA, OLOCA, HOERAA, LDCA, HOAANED and M-

HERLOA, tie-to-high (TIEH) standard cells were used and to assign a constant 0 to some least significant sum bits in

LZTA, tie-to-low (TIEL) standard cells were used. TIEH and TIEL standard cells of [42] have the same design attributes.

Given that HOAANED, HERLOA and M-HERLOA are preferable, from Table 4, it is noted that HOAANED, HERLOA and



M-HERLOA have 17.9% less delay compared to the accurate CLA. Further, compared to the accurate CLA, HOAANED

occupies 24.7% less area and dissipates 28.2% less power, HERLOA occupies 21.5% less area and dissipates 21.5%

less power, and M-HERLOA occupies 23.1% less area and dissipates 26.7% less power.

Power-delay product (PDP), which is representative of energy and considered as a low power figure of merit, was

calculated for accurate and approximate adders corresponding to FPGA and ASIC type implementations and normalized,

which is shown in Figure 5. To normalize the PDP, the highest PDP corresponding to an adder (i.e., accurate adder) was

considered as the baseline and this was used to divide the PDP of all the adders corresponding to FPGA and ASIC type

implementations separately. The green and blue bars shown in Figure 5 represent the normalized PDP corresponding to

FPGA and ASIC type implementations, respectively. Power and delay are preferred to be less for a digital design and,

hence, PDP is also preferred to be less. In Figure 5, the approximate adders are found to have less PDP compared to the

accurate adder, meaning the former are more energy efficient than the latter.

Table 4. Design metrics of accurate and approximate adders synthesized using a 32/28 nm CMOS standard digital cell

library.

Adder Delay (ns) Area (µm ) Power (µW)

Accurate (CLA) 1.17 564.60 94.33

LOA 0.96 428.36 71.77

LOAWA 0.96 413.37 68.86

APPROX5 0.96 424.58 73.54

HEAA 0.96 430.65 71.49

M-HEAA 0.96 422.32 66.11

OLOCA 0.96 420.03 66.38

HOERAA 0.96 430.38 68.82

SETA 0.96 419.68 72.94

LZTA 0.96 415.56 63.14

LDCA 0.96 420.07 68.05

HOAANED 0.96 425.36 67.73

HERLOA 0.96 443.28 74.01

M-HERLOA 0.96 433.94 69.11

2



Figure 5. Normalized PDP of accurate and approximate adders corresponding to FPGA and ASIC type implementations.

The normalized PDP plots of the adders corresponding to FPGA and ASIC type implementations indicate a similar trend.

Among the adders, LZTA is very energy efficient. However, the image processing results shown in Figure 2 and Tables 1

and 2, and the error distribution and error metrics given in Figures 3 and 4, clearly show that LZTA is not preferable. In

approximate computation, output quality assumes higher precedence than savings in design metrics gained compared to

accurate computation. Given this, LZTA is not preferable, although it may have a high energy efficiency. On the contrary,

HOAANED, which enables a higher PSNR, and HERLOA/M-HERLOA, which enable a higher SSIM, are preferred and

they report a significant improvement in energy efficiency compared to the accurate adder. From Figure 5, we note that

HOAANED, HERLOA and M-HERLOA achieve 19.9%, 14.3% and 17.5% reduction in PDP, respectively, compared to the

accurate adder for an FPGA implementation, and 41.1%, 35.6% and 39.9% reduction in PDP, respectively, compared to

the accurate CLA for an ASIC-type implementation.

5. Conclusion

A comparative analysis of different gate-level SAAs, suitable for both FPGA and ASIC type implementations, has been

performed in this work. Digital image processing was considered as an example application and the image processing

results were shown. The error metrics of approximate adders corresponding to the image processing application were

calculated and provided for a comparison. Further, the design metrics of accurate and approximate adders commensurate

with the target application were provided corresponding to FPGA and ASIC type implementations. The objective is to

identify those approximate adders that would facilitate an acceptable compromise between output quality and savings in

design metrics compared to the accurate adder. In this context, approximate adders HOAANED, HERLOA and M-

HERLOA are found to be preferable. Nevertheless, the optimum approximate adder suitable for a target application may

be best determined based on a trial-and-error experimentation.
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