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Software product lines (SPLs) have reached a considerable level of adoption in the software industry. The most commonly

used models for managing the variability of SPLs are feature models (FMs). The analysis of FMs is an error-prone,

tedious task, and it is not feasible to accomplish this task manually with large-scale FMs.
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1. Introduction

Today software customers are demanding new and better products and services, which has forced the software industry

to devise new approaches that increase the productivity of their processes and the quality of their products. For some time

now, researchers in the field of software engineering have studied various alternatives for software development; among

these is the software product lines (SPLs) approach. There are several differences between traditional single-system

development and SPLs. The main difference is a paradigm change from individual software systems to a product line

(also known as a family product) approach. According to , adopting this new paradigm implies a change in strategy: from

the ad hoc next-contract vision to a strategic view of a field of business.

SPLs are defined as a set of characteristics to satisfy the specific needs of a particular market segment . The use of

SPLs as a software development methodology provides a set of benefits, including a reduction in development times and

increases in productivity, among others . Furthermore, Van der Linden et al. argue that these improvements

significantly affect the development process, particularly in relation to costs and time to market, but it is at the level of

software reuse that it is possible to achieve unprecedented levels of reuse .

SPL development is based on a common set of fundamental elements: an architecture, a collection of software

components, and a set of products . One of the key concepts is variability, which provides SPLs with the flexibility

required for product diversification and differentiation . Variability refers to combining the different functionalities that

each component gives to the LPS, and this can be represented graphically using variability models. Nowadays, there are

various methods of representing the variability in an LPS; however, feature models (FMs) are the most widely used

method .

SPLs and variability are currently a fully active research area, showing their validity and relevance in the software

engineering community. This relevance can be seen in a series of tertiary studies, i.e., studies that identify how variability

is modeled . Additionally, here can see how SPL engineering and variability management has been applied along with

the Internet of Things .

Building and maintaining an FM is considered an expensive and error-prone task . Moreover, the evolution and

changes in the FM can introduce redundancy into the models, leading to the information being modeled in a contradictory

way, resulting in modeling errors .

Throughout the SPL framework, starting from the creation of the FMs, the validation of the SPLs, the derivation of

products, and even the modification or extension of the product family, it is essential to consult the FMs to obtain relevant

information on the processes mentioned above. However, providing answers to these queries is not trivial because, given

the structure of FMs, this process requires algorithms that support a set of rules and constraints that tend to be more

complex depending on the model’s size. This process of securing information is known as the automated
analysis of feature models(AAFM), and it has been identified as one of the most critical areas in the SPL community .

According to , it is possible to propose ad hoc algorithms to perform AAFM.
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2. Software Product Lines

SPLs are defined as a set of similar software products created from reusable artifacts in the context of a specific

application domain . SPLs are developed in two stages: domain engineering and application engineering . In

the domain engineering stage, the common and variant elements are described. The application engineering stage is

where the individual products of the SPL are built by reusing domain devices and exploiting the variability of the

SPLs. Figure 1 shows the SPL framework, including both stages and their interactions.

Figure 1. SPL framework, stages and their relationships.

Software development based on SPLs has brought about benefits such as the reuse of components, increases in

productivity, reductions in development times, relatively fewer major errors, improvements in product quality, and lower

costs, among others . Contrary to what one may initially believe, the successful implementation of SPLs is not a

phenomenon exclusive to large development companies but is also feasible in small and medium-sized companies, as

demonstrated in .

3. Variability

One of the main concepts in SPLs development is variability, which gives SPLs the flexibility required to diversify and

differentiate products .

Variability is introduced by defining reusable artifacts, such as architectures or components. These artifacts are included in

the definition of a product family, depending on their inclusion or exclusion in each final product, giving rise to particular

products . Several authors have proposed models to manage the variability of SPLs. Most of these proposals are

based on the FODA model . This FODA model consists of characteristics and relationships that are graphically

extended in the form of a tree.

For example, a software product must be able to adapt to the needs of each client or allow options for some specific

configuration so that the products can reach different market segments . In domain engineering, it is common to

describe SPL and manage its variability with the aid of FMs .

4. Feature Models

The origin of FMs can be traced to the FODA method . This model is still present but with slight variations and

adaptions in some SPL methods based on visual representations of the product’s features.

The structure of an FM is a type of tree of which the root node represents the product family, and the features are

organized throughout the tree. These features can be assembled to give rise to particular software products . FMs have

been a relevant topic for SPLs in recent years, showing the best evolution behavior in terms of the number of published

papers and references .
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To illustrate the concepts present in an FM, consider the following scenario. A mobile phone must have the possibility of

making a call and have a screen, but not all mobile phones must have a GPS. Furthermore, some of these features can

depend on others for their inclusion or exclusion. For example, if a mobile phone has a GPS, it cannot have a basic

screen. See details in Figure 2.

Figure 2. Example of an FM for a Mobile Phone SPL.

5. Automated Analysis of FMs–Reasoning Algorithms

Automatic analysis of FMs (AAFM) extracts information from such models using automated mechanisms . This

information includes verifying whether a given product represents a valid combination of features or checking the similarity

between FMs. The analysis of FMs is an error-prone, tedious task, and it is not feasible to achieve this task manually with

large-scale FMs. AAFM is an active area of research and is gaining importance for both practitioners and researchers in

the SPL community .

Benavides et al. mention that AAFM can be defined as the computer-assisted extraction of information from FMs .

Different proposals for extracting this information have been made, based on specific algorithms or binary decision

diagrams, such as BDD, SAT, and CSP . Table 1 presents a summary of these proposals.

Table 1. Proposals to extract information from FMs.

Proposal Characteristics

Constraint
Satisfaction
Problem (CSP)

This consists of a set of variables, finite domains for those variables, and a set of constraints that
restrict the values of the variables. It can perform most of the operations currently identified in feature
models .

Boolean
Satisfiability
Problem (SAT)

This consists of a set of Boolean variables connected by logical operators. The SAT problem consists
of deciding whether a given propositional formula satisfies whether logical values can be assigned to
its variables so that the formula is true .

Binary Decision
Diagrams (BDD)

A data structure is used to represent a boolean function. A BDD is an acyclic, directed, rooted graph
composed of a group of decision nodes and two terminal nodes called 0-terminal and 1-terminal. Each
node of the graph represents a variable in a Boolean function and has two child nodes representing an
assignment of the variable to 0 and 1 .

The process of extracting information from an FM starts with the translation of the features and relationships encoded in

the FMs and any additional information into a knowledge base described in a logical paradigm . Subsequently, queries

to the knowledge base can be performed using solvers.These operations are performed automatically using different

approaches. Most of them translate FMs into specific logical paradigms, such as propositional logic, constraint

programming, and description logic .

A classification of different proposals related to automatic or semi-automatic FM construction is presented in . The

authors of that study conceptualized an analysis framework for work in the field of automated FM construction. The

framework considers four dimensions (proposal, input, tasks, and output) and fifteen sub-dimensions.
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