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Immunotherapy has gradually become an emerging treatment modality for tumors after surgery, radiotherapy, and

chemotherapy. Cytokine therapy is a promising treatment for cancer immunotherapy. There are many preclinical

theoretical bases to support this treatment strategy and a variety of cytokines in clinical trials. When cytokines were

applied to tumor immunotherapy, it was found that the efficacy was not satisfactory. As research on tumor immunity

has deepened, the role of cytokines in the tumor microenvironment has been further explored.
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1. Introduction

So far, cancer is still the most severe disease. The treatment methods usually include surgery, chemotherapy, and

radiotherapy. Tumor immunotherapy, which inhibits tumor development by activating the immune system, has been

considered the fourth most popular tumor therapy . The immune escape strategy of tumor cells is regarded as

a significant obstacle to immunotherapy for all cancers and provides favorable conditions for tumor progression

and immune tolerance. In cancer immunotherapy, drugs activate the immune system against tumor progression

and metastasis through enhanced immune responses .

The earliest records of immunotherapy for cancer can be traced back to ancient Egypt, when some tumors

subsided naturally after inflammation . The first to study cancer treatment through the immune system were two

German doctors, Fehleisen and Busch, who found that the tumor disappeared after the patient was infected with

erysipelas . The subsequent considerable development comes from William Coley, who first attempted to use

the immune system to treat tumors in 1891 . He found some cases of natural remission in cancer patients after

an erysipelas infection. He studied in depth the records left by his predecessors and found as many as 47 cases of

cancer patients who could not be cured in theory and reported natural remission after acute bacterial infection 

. However, because the proposed “Coley’s toxins” did not have a precise mechanism of action at that time and

because of the risk of using highly pathogenic bacteria to infect cancer patients, the research results of Coley were

shelved by academic circles until 1967, when Jacques Miller discovered the existence of T cells, he described their

functions in Nature. People began to pay attention to the immune system .
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Meanwhile, people also began to figure out how to use immunotherapy to treat cancer. IFN-α was approved for

cancer immunotherapy in 1986 . High-dose recombinant IL-2 was approved for metastatic renal cell carcinoma

treatment in 1992 and then approved for metastatic melanoma in 1998.

In recent years, some cytokines have been used in various animal cancer models for research . Cytokines are

soluble proteins that respond to immune cells by transmitting inflammatory or anti-inflammatory signals, with dual

and conflicting signals . Once the cytokine meets the membrane receptor on the target cell, the intracellular

signal pathway will be triggered, thus inducing different cells’ survival, activation, and differentiation in the tumor

microenvironment (TME). Various cytokines play their roles in the location of the tumor.

Most of the cytokines used in tumor therapy are “pro-inflammatory” factors that enhance the immune system

response by stimulating immune cells to modulate the immune microenvironment of tumors. The immune system

relies on APC cells to present antigens to immunological effector cells, which act as antitumor agents by secreting

antibodies or by direct killing. Due to the immune escape mechanism, adding cytokines to therapy can enhance

this antitumor pathway. For example, IL-2 can promote T cell responses, NK and CD4+ cell proliferation, and

antibody production by B cells ; IFN-γ primarily regulates CD8+ and CD4+ T cell immune responses .

These properties allow the delivery of cytokines into the tumor microenvironment using drug delivery systems to

enhance tumor immunotherapy.

On the one hand, some cytokines, such as IL-4 and IL-8, accelerate the progression of tumors and inhibit

immunity. On the other hand, other cytokines have also played a vital role in enhancing the antitumor immune

response. Cytokines used in cancer immunotherapy can be divided into the following categories: ① IL-2 Family: IL-

2,7,15,21; ②  IFN-α; ③  IFN-γ; ④  IL-12; ⑤  TNF; ⑥  colony-stimulating factor (CSF) Family: GM-CSF, Granulocyte

(G)-CSF, erythropoietin (EPO), IL-3; ⑦ IL-1 Family: IL-1,18 .

In recent years, the involvement of various nanomaterials in tumor immunomodulation therapy has been shown to

effectively target tumor tissues, which helps reduce the dose of administered drugs and mitigate adverse effects 

. The application of nanomaterials can avoid degradation of the drug before reaching the tumor and achieve

enrichment at the tumor site through enhanced permeability and retention (EPR) effects or active targeting .

2. Organic Nanomaterials

After years of exploration, researchers have discovered a variety of organic nanomaterials that can be used to

deliver cytokines to target cells. Using these materials to transport cytokines is more efficient than using free drugs.

At the same time, because organic materials are easier to modify and process, researchers can change the

materials according to different needs to make the materials have other functions. These efforts make cytokines

more and more important in cancer immunotherapy. This entry summarizes the existing organic nanomaterials into

the following six categories: poly (lactic-co-glycolic acid)-based nanomaterials, poly-γ-glutamic acid-based

nanomaterials, β-cyclodextrin-based nanomaterials, chitosan-based nanomaterials, polyethyleneimine-based

nanomaterials, and liposome-based nanomaterials (Table 1).
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Table 1. Classification of nanomaterials and cytokines involved in the regulation.

3. Inorganic Nanomaterials

With the rapid development of organic nanomaterials, researchers have found that several inorganic nanomaterials

can carry drugs to transfer or induce cytokines. Furthermore, inorganic nanomaterials’ physical and chemical

properties can synergize in cancer immunotherapy. For example, the magnetic properties of Fe O  nanoparticles
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Polyethyleneimine-based nanomaterials IL-6, TNF-α, IL-12, IFN-γ

Liposomes-based nanomaterials IL-2, TGF-β

Inorganic
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Magnetic nanoparticles IFN-γ, TNF-α, IFN-α
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[22][23][24]

[25][26]

[27][28][29]

[30]

[31][32]

[33][34]

[35][36]

[37][38]

[39][40][41]

[39][42][43]

[42][44][45]

2 3



Cytokine Therapy with Nanomaterials Participates in Cancer Immunotherapy | Encyclopedia.pub

https://encyclopedia.pub/entry/38207 4/10

can be used to enhance immunotherapy. This entry mainly introduces silica nanoparticles, magnetic nanoparticles,

and gold nanoparticles. (Table 1)

3.1. Silica Nanoparticles

In the past decade or so, mesoporous silica nanoparticles have been widely studied. Mesoporous silica

nanoparticles (MSNPs), with the advantages of a larger contact area, a higher drug loading rate, and better

modifiability than other nanoparticles. These advantages have led to its importance in the biomedical field. Some

drug-loading systems can enhance biocompatibility when combined with silica . Mesoporous silica

nanoparticles can easily adjust the pore size, thus changing the mode of drug delivery. Modified MSNPs are a safe

and efficient nanomaterial for targeted tumor therapy .

Liu et al. reported that silica nanoparticles could have a role in promoting humoral immunity . Choi, E.W. et al.

investigated the effect of silica NPs loaded with GM-CSF mRNA on dog leukocytes . Kong, M. et al. embedded

ATRA, DOX, and IL-2 in hollow MSNPs for immunotherapy of the B16F10 melanoma model . The nanoparticle-

mediated combination treatment plays a regulatory role in the tumor microenvironment by activating TILs,

promoting the secretion of cytokines, and down-regulating MDSCs. Wan, Y.F. et al. prepared tumor-targeted,

microenvironment-responsive mesoporous silica nanoparticles used to wrap IL-12 . Studies have shown that the

nanoparticles can effectively target tumor tissue, be swallowed by macrophages, release IL-12 locally, and

repolarize TAM to an M1 phenotype that can kill the tumor with fewer side effects.

3.2. Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) are mainly based on Fe O  and Fe O . Because of the biocompatibility and

modifiability they possess, these nanoparticles are well-suited as drug delivery platforms for drug delivery. In

addition, the magnetism of MNPs provides an essential ability to transmit heat . The magnetic properties of

MNPs make them uniquely suited to receive magnetic field stimulation in vitro, a property that can be used for

immune enhancement.

Mejías, R. et al. used dimercaptosuccinic acid (DMSA) for surface modification of Fe O  NPs. They studied the

inhibitory effect on tumors after adsorption of IFN-γ in a mouse pancreatic ductal adenocarcinoma model . The

nanoparticles enabled efficient drug delivery and tumor enrichment with a substantial increase in T cells and

macrophages for effective tumor suppression. Hu, B. et al. prepared anti-cancer magnetic polymer microspheres

T9-TNF-PC-M containing human transferrin receptor monoclonal antibody (T9), TNF, and Fe O  ultrafine magnetic

powder (M) by solvent evaporation method . The T9-TNF-PC-M has a stable release rate of tumor necrosis

factor, a solid magnetic response, and high drug loading in phosphate-buffered saline solution. The cytotoxicity test

in vitro showed that T9-TNF-PC-M and their conjugates strongly inhibited human hepatocellular carcinoma cells.

The in vivo targeted therapy showed that the antitumor activity of microsphere T9-TNF-PC-M and T9-TNF against

Bel-7204 was significantly higher than that of free tumor necrosis factor. Ye, H. et al. synthesized magnetic

liposomes containing recombinant human interferon-α2β (MIL) by combining the magnetic nanomaterial Fe O
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with liposomes and evaluated the biosafety and therapeutic effect of this combination on cells and hepatocellular

carcinoma in mice . The results show that MIL can neither dissolve red blood cells nor affect the platelet

aggregation rate in blood. The nanoparticles effectively prolonged the drug action time by applying a magnetic field

externally. MIL significantly inhibits the development of hepatocellular carcinoma cells. The targeting experiment of

MIL showed that MIL could considerably reduce the tumor volume of nude mice, which was 38% of that of the

control group.

3.3. Gold Nanoparticles

Gold nanoparticles (GNPs) are widely explored because of their excellent prospects in nanotechnology, especially

in biological nanotechnology for detection, imaging, and therapy . Colloidal gold was commonly used in treating

various diseases, primarily because of its optical properties and magnetism. GNPs have low toxicity and good

biocompatibility, which benefits their interaction with other biomolecules . GNPs are increasingly used in clinical

research because they are easy to synthesize and process . Gold is usually designed as nanoparticles,

nanocages, nanoshells, nanostars, nanorods, and so on .

A team from Milan, Italy, has developed a drug delivery platform that enhances tumor targeting by modifying gold

nanoparticles to deliver cytokines to tumor cells . One of the gold nanoparticles labeled with a novel tumor-

homing peptide containing the CD13 ligand ASN-Gly-Arg (NGR) expressed in tumor neovascularization can be

used as a carrier for the delivery of cytokines to tumors . In mice with fibrosarcoma, NGR-labeled nanoparticles

can deliver very low but pharmacologically active levels of TNF to cancer. This experiment shows that NGR-labeled

gold nanoparticles can be treated as a new platform, enhancing drug delivery targeting.

Mohseni, N. et al. developed a gold nanorod coupled with interferon-γ and methionine combined with near-infrared

laser hyperthermia, which can be used to treat tumors . Different concentrations of GNPs were added to

cultured breast cancer cells and irradiated using NIR light. In the process of NIR light irradiation, the number of

tumor cell deaths in the presence of GNPs was significantly higher.

3.4. Calcium Carbonate/Calcium Phosphate Nanoparticles

CaCO  and Ca (PO )  nanoparticles are suitable drug carriers with good biosafety and degradability and have

already been used in tissue engineering and drug delivery . Because of their responsiveness to the acidic tumor

microenvironment, CaCO  and Ca (PO )  nanoparticles are well-suited drug delivery systems for tumor

immunotherapy .

Liu et al. prepared calcium carbonate nanoparticles loaded with shiitake mushroom polysaccharides, which could

be treated as immune adjuvants to strengthen cellular and humoral immune responses. In a tumor model, the NPs

induced the secretion of IL-2 and IL-4 . Mao et al. prepared M-CSF-loaded CaCO  nano micelles that were pH-

responsive to the tumor microenvironment and could effectively target C57BL/6 mouse melanoma tissue and

release M-CSF to enhance the antitumor effects of macrophages and T cells . Chen et al. used CaCO
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nanogels with anti-CD47 antibodies to prevent local murine melanoma tumor recurrence and to improve

macrophage phagocytosis and antigen presentation by postoperative in situ spraying .

4. Novel Nano Delivery Systems

With the development of nanomaterials and cytokine therapies, a series of novel nano-delivery systems have

emerged in recent years. Hybridized nanoparticles have come into the limelight due to their ability to combine

various types of nanoparticles. By combining two or more nanomaterials, the nanoparticles can synergize with

cytokines to enhance tumor immunotherapy. Zhang et al. prepared lipid-polymer nanoparticles synthesized by

PCL-PEG-PCL and DOTAP (IMNPs). The nanoparticles loaded with TLR 7/8 agonist and TLR4 agonist

monophosphoryl lipid A (MPLA) could effectively target DC cells to suppress tumors and prolong survival in mice

. Gao et al. developed a Gd-Au DENP-PS nanoplatform for encapsulating PD-1 siRNA. The nanoparticles are

dendritic molecules that activate T cells and bind to IDO to enhance tumor immunotherapy . A manganese-

based hybrid nanoparticle was also reported. Using amorphous porous manganese phosphate (APMP) loaded with

DOX and phospholipids (PL), Hou et al. The drug enhanced cellular immune response and tumor-killer cell

recruitment while increasing the secretion of cytokines, acting as an antitumor agent .

Membrane camouflage nanoparticles (MCNPs), usually derived from erythrocytes, cancer cells, neutrophils, and

platelets, are potential drug delivery platforms because of their immune advantages. These materials can often

avoid drug clearance in vivo and target tumor cells more effectively, and they have a high affinity for cells of the

exact origin . Erythrocyte membrane is the most common source of MCNPs due to its ease of obtaining,

excellent biocompatibility, and strong protection for loaded drugs . Cancer cell membrane nanoparticles have the

following distinctive characteristics: they cannot be easily removed; adhesion molecules on the membranes can

promote the homologous targeting of cancer cells; and CD47 on the membrane of cancer cells prevents

phagocytes from engulfing nanoparticles . Platelet membrane is rich in sources, has potential camouflage to

evade immune surveillance, and avoids the circulatory release of drugs, which has become an ideal material for

biomimetic carriers. Therefore, developing nanoparticles camouflaged by platelet membranes is a promising

research direction . Neutrophil membranes are also unique because they have a variety of cytokine receptors on

their surface . In summary, the excellent camouflage and good biocompatibility provided by cell membranes will

have significant advantages in competing with other immunomodulator delivery technologies.

Similarly, because of its outstanding biocompatibility, the cell-based nano-drug delivery system is also a new way

of drug delivery, such as nanosystems based on red blood cells (RBC) , nanosystems based on immune cells

, nanosystems based on stem cells , and nanosystems based on platelets . This kind of system will deliver

cytokines to tumor cells more efficiently. Therefore, more attention should be paid to applying cytokine drugs to

cell-based nanosystems.

NPs based on phototherapy have the advantages of a solid curative effect, low invasion, and few adverse

reactions in tumor therapy. Photothermal therapy (PTT) and photodynamic therapy (PDT) are the two primary

treatment modalities of phototherapy. PTT and PDT based on nanoparticles can kill tumors directly and induce
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continuous antitumor immune effects. PTT uses heat to kill tumors, while PDT kills tumors by producing large

amounts of ROS in tumor cells. In particular, the death of many tumor cells after PTT and PDT results in a more

intense immune response, including reprogramming and activation of the immune microenvironment, modulation of

cytokines, and mediation of a more intense T-cell immune response . If phototherapy can be

combined with existing cytokine immunotherapy, it will become a more efficient method for tumor treatment.
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