

Cytokine Therapy with Nanomaterials Participates in Cancer Immunotherapy

Subjects: **Others**

Contributor: Heping Lian , Shuang Ma , Duoyi Zhao , Wei Zhao , Yan Cui , Yingqi Hua , Zhiyu Zhang

Immunotherapy has gradually become an emerging treatment modality for tumors after surgery, radiotherapy, and chemotherapy. Cytokine therapy is a promising treatment for cancer immunotherapy. There are many preclinical theoretical bases to support this treatment strategy and a variety of cytokines in clinical trials. When cytokines were applied to tumor immunotherapy, it was found that the efficacy was not satisfactory. As research on tumor immunity has deepened, the role of cytokines in the tumor microenvironment has been further explored.

immunotherapy

drug delivery systems

cytokine therapy

nanomaterial

combination therapy of cancer

1. Introduction

So far, cancer is still the most severe disease. The treatment methods usually include surgery, chemotherapy, and radiotherapy. Tumor immunotherapy, which inhibits tumor development by activating the immune system, has been considered the fourth most popular tumor therapy [1][2]. The immune escape strategy of tumor cells is regarded as a significant obstacle to immunotherapy for all cancers and provides favorable conditions for tumor progression and immune tolerance. In cancer immunotherapy, drugs activate the immune system against tumor progression and metastasis through enhanced immune responses [3][4].

The earliest records of immunotherapy for cancer can be traced back to ancient Egypt, when some tumors subsided naturally after inflammation [5]. The first to study cancer treatment through the immune system were two German doctors, Fehleisen and Busch, who found that the tumor disappeared after the patient was infected with erysipelas [6][7]. The subsequent considerable development comes from William Coley, who first attempted to use the immune system to treat tumors in 1891 [8][9]. He found some cases of natural remission in cancer patients after an erysipelas infection. He studied in depth the records left by his predecessors and found as many as 47 cases of cancer patients who could not be cured in theory and reported natural remission after acute bacterial infection [5][10]. However, because the proposed “Coley’s toxins” did not have a precise mechanism of action at that time and because of the risk of using highly pathogenic bacteria to infect cancer patients, the research results of Coley were shelved by academic circles until 1967, when Jacques Miller discovered the existence of T cells, he described their functions in *Nature*. People began to pay attention to the immune system [11].

Meanwhile, people also began to figure out how to use immunotherapy to treat cancer. IFN- α was approved for cancer immunotherapy in 1986 [12]. High-dose recombinant IL-2 was approved for metastatic renal cell carcinoma treatment in 1992 and then approved for metastatic melanoma in 1998.

In recent years, some cytokines have been used in various animal cancer models for research [13]. Cytokines are soluble proteins that respond to immune cells by transmitting inflammatory or anti-inflammatory signals, with dual and conflicting signals [14]. Once the cytokine meets the membrane receptor on the target cell, the intracellular signal pathway will be triggered, thus inducing different cells' survival, activation, and differentiation in the tumor microenvironment (TME). Various cytokines play their roles in the location of the tumor.

Most of the cytokines used in tumor therapy are “pro-inflammatory” factors that enhance the immune system response by stimulating immune cells to modulate the immune microenvironment of tumors. The immune system relies on APC cells to present antigens to immunological effector cells, which act as antitumor agents by secreting antibodies or by direct killing. Due to the immune escape mechanism, adding cytokines to therapy can enhance this antitumor pathway. For example, IL-2 can promote T cell responses, NK and CD4+ cell proliferation, and antibody production by B cells [15][16]; IFN- γ primarily regulates CD8+ and CD4+ T cell immune responses [17]. These properties allow the delivery of cytokines into the tumor microenvironment using drug delivery systems to enhance tumor immunotherapy.

On the one hand, some cytokines, such as IL-4 and IL-8, accelerate the progression of tumors and inhibit immunity. On the other hand, other cytokines have also played a vital role in enhancing the antitumor immune response. Cytokines used in cancer immunotherapy can be divided into the following categories: ① IL-2 Family: IL-2,7,15,21; ② IFN- α ; ③ IFN- γ ; ④ IL-12; ⑤ TNF; ⑥ colony-stimulating factor (CSF) Family: GM-CSF, Granulocyte (G)-CSF, erythropoietin (EPO), IL-3; ⑦ IL-1 Family: IL-1,18 [18].

In recent years, the involvement of various nanomaterials in tumor immunomodulation therapy has been shown to effectively target tumor tissues, which helps reduce the dose of administered drugs and mitigate adverse effects [19][20]. The application of nanomaterials can avoid degradation of the drug before reaching the tumor and achieve enrichment at the tumor site through enhanced permeability and retention (EPR) effects or active targeting [21].

2. Organic Nanomaterials

After years of exploration, researchers have discovered a variety of organic nanomaterials that can be used to deliver cytokines to target cells. Using these materials to transport cytokines is more efficient than using free drugs. At the same time, because organic materials are easier to modify and process, researchers can change the materials according to different needs to make the materials have other functions. These efforts make cytokines more and more important in cancer immunotherapy. This entry summarizes the existing organic nanomaterials into the following six categories: poly (lactic-co-glycolic acid)-based nanomaterials, poly- γ -glutamic acid-based nanomaterials, β -cyclodextrin-based nanomaterials, chitosan-based nanomaterials, polyethyleneimine-based nanomaterials, and liposome-based nanomaterials (**Table 1**).

Table 1. Classification of nanomaterials and cytokines involved in the regulation.

	Nanomaterials	Cytokines	References
Organic	PLGA-based nanomaterials	TNF- α , IL-6, IFN- α , GM-CSF	[22][23][24]
	Poly- γ -glutamic acid-based nanomaterials	IL-10, IL-12, IL-6, TNF- α , IFN- γ	[25][26]
	β -Cyclodextrin-based nanomaterials	VEGF, IL-10, IL-12	[27][28][29][30]
	Chitosan-based nanomaterials	IL-2, IL-12, IL-15, IL-21	[31][32]
	Polyethyleneimine-based nanomaterials	IL-6, TNF- α , IL-12, IFN- γ	[33][34]
	Liposomes-based nanomaterials	IL-2, TGF- β	[35][36]
Inorganic	Silica nanoparticles	IL-2, IFN- γ , IL-12	[37][38]
	Magnetic nanoparticles	IFN- γ , TNF- α , IFN- α	[39][40][41]
	Gold nanoparticles	TNF- α , IFN- γ	[39][42][43]
	Calcium carbonate/Calcium phosphate nanoparticles	IL-2, IL-4, M-CSF	[42][44][45]

Releasable Organic Nanomaterials

1. Chen, Q.; Wang, C.; Chen, G.; Hu, Q.; Gu, Z. Delivery strategies for immune checkpoint blockade. *Adv. Healthc. Mater.* 2018, 7, 1800424.

With the rapid development of organic nanomaterials, researchers have found that several inorganic nanomaterials can carry drugs to transfer or induce cytokines. Furthermore, inorganic nanomaterials' physical and chemical properties can synergize in cancer immunotherapy. For example, the magnetic properties of Fe₃O₄ nanoparticles

2. Khuri, D.N.; Smith, E.L.; Breitjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. *Nat. Rev. Clin. Oncol.* 2016, 13,

can²⁷³ to enhance immunotherapy. This entry mainly introduces silica nanoparticles, magnetic nanoparticles, and gold nanoparticles. (Table 1)

3. Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. *Nat. Rev. Cancer* 2012, 12, 252–264.

3.1. Silica Nanoparticles

4. Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. *Science* 2011, 331, 1565–1570.

In the past decade or so mesoporous silica nanoparticles have been widely studied. Mesoporous silica nanoparticles (MSNPs), with the advantages of a larger contact area, a higher drug loading rate, and better modifiability than other nanoparticles. These advantages have led to its importance in the biomedical field. Some challenges ahead. *J. Cancer Metastasis Treat.* 2017, 3, 250–261.

5. Oiseth, S.J.; Aziz, M.S. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. *J. Cancer Metastasis Treat.* 2017, 3, 250–261.

6. Oiseth, S.J.; Aziz, M.S. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. *J. Cancer Metastasis Treat.* 2017, 3, 250–261.

7. Busch, W. Aus der Sitzung der medicinischen Section vom 13 November 1867. *Berl. Klin. Wochenschr.* 1868, 5, 137.

Liu et al. reported that silica nanoparticles could have a role in promoting humoral immunity [52]. Chol, E.W. et al. investigated the effect of silica NPs loaded with GM-CSF mRNA on dog leukocytes [53]. Kong, M. et al. embedded ATRA, DOX, and Th17 mRNA in silica NPs to treat murine lymphoma cells. The results showed that the mRNA-encapsulated silica NPs could significantly increase the proliferation of Th17 cells [54].

8. Coley, W.B. The treatment of malignant tumors by repeated inoculations of lymphocytic extracts. With a report of ten original cases. *Trans. Am. Acad. Sci.* 1827–1924, 1890, 105, 1–87.

9. McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue microenvironment-responsive mesoporous silica nanoparticles used to wrap IL-12 [38]. Studies have shown that the sarcomas. *Iowa Orthop. J.* 2006, 26, 154.

nanoparticles can effectively target tumor tissue, be swallowed by macrophages, release IL-12 locally, and promote the secretion of cytokines, and down-regulating MDSCs. Wan, Y.F. et al. prepared tumor-targeted, McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue microenvironment-responsive mesoporous silica nanoparticles used to wrap IL-12 [38]. Studies have shown that the sarcomas. *Iowa Orthop. J.* 2006, 26, 154.

10. Decker, A.W.K. and Silva, R.F. Sanabria, M.; Hu, A.; Angelo, J.S.; Guimaraes, F.; Burt, B.M.; Kheradmand, F.; Paust, S. Cancer immunotherapy: Historical perspective of a clinical revolution

3.2. Magnetic Nanoparticles

11. Miller, J.; Mitchell, G.; Weiss, N. Cellular basis of the immunological defects in thymectomized mice. *Nature* 1967, 214, 992–997.

12. Aunzky, W.; Gash, G.; Mio, H.; Troppmann, J.; Leiter, E.; Geissler, D.; Fleiner, R.; Huber, C. Interferon alpha in the treatment of hematologic neoplasms. *Wien. Med. Wochenschr.* (1946) 1986, 136, 172–181.

13. Propper, D.J.; Balkwill, F.R. Harnessing cytokines and chemokines for cancer therapy. *Nat. Rev. Clin. Oncol.* 2022, 19, 237–253.

14. Nagarshett, N.; Wicha, M.S.; Zou, W. Cytokines in the cancer microenvironment and their relevance in cancer immunotherapy. *Nat. Rev. Immunol.* 2017, 17, 559–572.

15. McDermott, D.F.; Regan, M.M.; Clark, J.I.; Flaherty, L.E.; Weiss, G.R.; Logan, T.F.; Kirkwood, J.M.; Gordon, M.S.; Sosman, J.A.; Ernstoff, M.S.; et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. *J. Clin. Oncol.* 2005, 23, 133–141.

16. Datchleras, J.; Sgouros, G.; Lichtenberg, B.; Hafner, M.; Le, C.; Agarwal, S.; Hartl, A. Antitumor magnetic liposomes, MBI, in high-dose interleukin-2 (Adleukin) therapy: consistency in best management of Fe₃O₄

with nanoparticles. *J Immunother Cancer* 2014, **2**, 26. effect of this combination on cells and hepatocellular carcinoma in mice [41]. The results show that MIL can neither dissolve red blood cells nor affect the platelet aggregation rate in blood. The nanoparticles effectively prolonged the drug action time by applying a magnetic field externally. MIL significantly inhibits the development of hepatocellular carcinoma cells. The targeting experiment of 2019, **11**, a028480.

MIL showed that MIL could considerably reduce the tumor volume of nude mice, which was 38% of that of the control group. *Qi, Y.; Su, M.; Liu, L.; Tang, Y.; Pan, Y.; Sun, J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Dev Ther. 2021, 15, 2269–2287.*

3.3. Gold Nanoparticles

*Zhang, Y.; Li, N.; Sun, H.; Irvine, D.J. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun. 2018, **9**, 1–15.* Gold nanoparticles (GNPs) are widely explored because of their excellent prospects in nanotechnology, especially *biofunctional nanotechnology, for antigenic targeting, Chelotherapy* [55]. *Colloidal gold was combined with anti-tumor drugs, primarily responsive nanoparticles, to realize the dual delivery. GNPs have low toxicity and good biocompatibility, which is better for the treatment of AOS. *Nature* 2013, **7**, 3912–3925.* are increasingly used in clinical research because they are easy to synthesize and process [57]. Gold is usually designed as nanoparticles, *Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. *Adv. Drug Deliv. Rev.* 2013, **65**, 71–79.*

A team from Milan, Italy, has developed a drug delivery platform that enhances tumor targeting by modifying gold nanoparticles to deliver cytokines to the receptor [42] [58] [60]. *Ons of the 48 experiments showed enhanced tumor-homing and tumor targeting. *Mol. Med. Rep.* 2015, **12**, 3515–3520.* Pressed in tumor neovascularization can be used as a carrier for the delivery of cytokines to tumors [42]. In mice with fibrosarcoma, NGR-labeled nanoparticles *Da Silva, C.; Camps, M.; Li, T.; Chan, A.; Ossendorp, F.; Cruz, L. Co-delivery of immunomodulators in biodegradable nanoparticles improves therapeutic efficacy of cancer gold nanoparticles can be treated as a new platform, enhancing drug delivery targeting. *Biomaterials* 2019, **220**, 119417.*

*Mitaili, N. E.; de Leon, G.; Dossenbach, B.; Peribahn, T. Formation and characterization of las PLGA/PLGA/EGO Nanoparticles Loaded with mifamurtide [43]. *Chitosan/poly(γ-glutamic acid) nanoparticles were added to cultured breast cancer cells. *PLoS One* 2021, **12**, 1–19.* The process of NIR light irradiation, the number of tumor cell deaths in the presence of GNPs was significantly higher.*

*Castro, F.; Pinto, M.L.; Almeida, R.; Pereira, F.; Silva, A.M.; Pereira, C.L.; Santos, S.G.; Barbosa, M.A.; Goncalves, R.M.; Oliveira, M.J. Chitosan/poly(γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. *Biomater. Sci.* 2019, **7**, 3386–3403.* CaCO_3 and $\text{Ca}_3(\text{PO}_4)_2$ nanoparticles are suitable drug carriers with good biosafety and degradability and have already been used in tissue engineering and drug delivery [61]. Because of their responsiveness to the acidic tumor microenvironment, CaCO_3 and $\text{Ca}_3(\text{PO}_4)_2$ nanoparticles are well-suited drug delivery systems for tumor immunotherapy [62].

*Li, J.; Wang, Y.; Zhang, W.; Su, H.; Jia, J.; Mao, Z. *Low-weight polyethyleneimine cross could be linked 2-hydroxypropyl-β-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition [44]. *Novel siRNA-encapsulated nanoparticles* 2013, **8**, 2101–2117.* molecules that were pH-responsive to the tumor microenvironment and could effectively target C57BL/6 mouse melanoma tissue and release M-CSF to enhance the antitumor effects of macrophages and T cells [45]. Chen et al. used CaCO_3 Dastmalchi, S.; Lotfipour, F. Preparation and characterization of chitosan/β-cyclodextrin*

nanoparticles containing plasmid DNA encoding interleukin-12 and drug. *Drug Rese* 2012, **63**, 7–10. improve macrophage phagocytosis and antigen presentation by postoperative *in situ* spraying [63].

29. Clemente, N.; Boggio, E.; Gigliotti, L.C.; Raineri, D.; Ferrara, B.; Miglio, G.; Argenziano, M.;

Chiocchetti, A.; Cappellano, G.; Trotta, F.; et al. Immunotherapy of experimental melanoma with

4. Novel Nano-Delivery Systems

30. Rodell, C.B.; Arlauckas, S.P.; Cuccarese, M.F.; Garris, C.S.; Li, R.; Ahmed, M.S.; Kohler, R.H.; Pittet, M.J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of various types of nanoparticles. By combining two or more nanomaterials, the nanoparticles can synergize with cytokines to enhance tumor immunotherapy. *Nat. Biomed. Eng.* 2018, **2**, 578–588.

31. Seo, S.H.; Han, H.D.; Noh, K.H.; Kim, J.W.; Suh, S.W. Chitosan hydrogels containing GM-CSF and a cancer drug exert synergistic anti-tumor effects via the induction of CD8⁺ T cell-mediated anti-tumor immunity. *Clin. Exp. Metastasis* 2009, **26**, 179–187.

32. Xu, Q.; Guo, L.; Gu, X.; Zhang, B.; Hu, X.; Zhang, J.; Chen, J.; Wang, Y.; Chen, C.; Gao, B.; et al. DOX and phospholipids (PL). Hou et al. The drug enhanced cellular immune response and tumor-killer cell recruitment while increasing the secretion of cytokines, acting as an antitumor agent [66].

TPP/nanoparticles formulated with IL-12. *Biomaterials* 2012, **33**, 3909–3918.

33. Kim, H.; Park, W.; Kim, D.; Park, Y.M.; Na, Y. A self-assembled polymeric micellar immunomodulator for cancer treatment based on cationic amphiphilic polymers. *Biomaterials* 2014, **35**, 9912–9919.

34. Jiang, J.; Zhang, Y.; Peng, K.; Wang, Q.; Hong, X.; Li, H.; Fan, G.; Zhang, Z.; Gong, T.; Sun, X. excellent biocompatibility, and strong protection for loaded drugs [69]. Cancer cell membrane nanoparticles have the following distinctive characteristics: they cannot be easily removed; adhesion molecules on the membranes can potentiate cancer immunotherapy. *Acta Biomater.* 2017, **61**, 114–123.

35. Guo, B.; Geng, S.A.; Elshabani, T.; Wu, P.; Li, D. Membrane-Disributed Immunotherapy via evadiposome Anchored Anti-CD137 that Prevents Lethal Toxicity and Elicits Local and Systemic for bioimmunotherapy. *Cancer Res.* 2013, **73**, 1547–1558.

36. Zheng, Y.; Tang, L.; Mabardi, L.; Kumari, S.; Irvine, D.J. Enhancing Adoptive Cell Therapy of their surface [73]. In summary, the excellent camouflage and good biocompatibility provided by cell membranes will have significant advantages in competing with other immunomodulator delivery technologies.

Noninternalizing Receptors. *ACS Nano* 2017, **11**, 3089–3100.

37. Lin, K.; Yang, B.; Li, T.; Tseng, J.; Wu, S.; Qian, Q. Mucin-1 Receptivity, Tare, Cell-Based Xanthohexose, Biodegradable Hollow way of Mesoporous Silica Nanoparticles for Regulating Tumor (M2) Macrophages and Enhancing Immune cells [73]. A strategy for Efficiency in Therapeutics [73], and has been used on platelets [75]. This kind of system will deliver cytokines to tumor cells more efficiently. Therefore, more attention should be paid to applying cytokine drugs to

38. Wan, Y.; Yu, W.; Li, J.; Peng, N.; Ding, X.; Wang, Y.; Zou, T.; Cheng, Y.; Liu, Y. Multi-functional cell-based nanosystems.

carboxymethyl chitin-based nanoparticles for modulation of tumor-associated macrophage

polarity. *Carbohydr. Polym.* 2021, **267**, 118245.

39. Mejias, R.; Pentero, Y.; Gómez, S.; Gutiérrez, P.; Pérez, S.; Gómez, R.; Arellano, P.T.; Serna, C. Two primary treatments for glioma patients: Methyl DP-based. Dimers of these can be coordinated to reduce

contain nanoparticles for magnetically guided disseminal delivery of interferon gamma for cancer immunotherapy. *Biomaterials* 2011, **32**, 2028–2052. Many tumor cells after PTT and PDT results in a more intense immune response, including reprogramming and activation of the immune microenvironment, modulation of cytokines, and mediation of a more intense T-cell immune response [76]–[77]–[78]–[79]–[80]. If phototherapy can be combined with existing cytokine immunotherapy, it will become a more efficient method for tumor treatment.

40. Hu, B.; Du, H.J.; Yan, G.P.; Zhuo, R.X.; Wu, Y.; Fan, C.L. Magnetic polycarbonate microspheres for tumor-targeted delivery of tumor necrosis factor. *Drug Deliv.* 2014, **21**, 204–212.
41. Ye, H.; Tong, J.; Wu, J.; Xu, X.; Wu, S.; Tan, B.; Shi, M.; Wang, J.; Zhao, W.; Jiang, H.; et al. Preclinical evaluation of recombinant human IFNalpha2b-containing magnetoliposomes for treating hepatocellular carcinoma. *Int. J. Nanomed.* 2014, **9**, 4533–4550.
42. Curnis, F.; Fiocchi, M.; Sacchi, A.; Gori, A.; Gasparri, A.; Corti, A. NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. *Nano Res.* 2016, **9**, 1393–1408.
43. Mohseni, N.; Sarvestani, F.S.; Ardestani, M.S.; Kazemi-Lomedasht, F.; Ghorbani, M. Inhibitory effect of gold nanoparticles conjugated with interferon gamma and methionine on breast cancer cell line. *Asian Pac. J. Trop. Biomed.* 2016, **6**, 173–178.
44. Liu, Z.; Yu, L.; Gu, P.; Bo, R.; Wusiman, A.; Liu, J.; Hu, Y.; Wang, D. Preparation of lentinan-calcium carbonate microspheres and their application as vaccine adjuvants. *Carbohydr. Polym.* 2020, **245**, 116520.
45. Mao, K.; Cong, X.; Feng, L.; Chen, H.; Wang, J.; Wu, C.; Liu, K.; Xiao, C.; Yang, Y.G.; Sun, T. Intratumoral delivery of M-CSF by calcium crosslinked polymer micelles enhances cancer immunotherapy. *Biomater. Sci.* 2019, **7**, 2769–2776.
46. Dormer, K.; Seeney, C.; Lewelling, K.; Lian, G.; Gibson, D.; Johnson, M. Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field. *Biomaterials* 2005, **26**, 2061–2072.
47. Allouche, J.; Boissière, M.; Hélary, C.; Livage, J.; Coradin, T. Biomimetic core–shell gelatine/silica nanoparticles: A new example of biopolymer-based nanocomposites. *J. Mater. Chem.* 2006, **16**, 3120–3125.
48. Huo, Q.; Liu, J.; Wang, L.Q.; Jiang, Y.; Lambert, T.N.; Fang, E. A new class of silica cross-linked micellar core-shell nanoparticles. *J. Am. Chem. Soc.* 2006, **128**, 6447–6453.
49. Ghaferi, M.; Koohi Moftakhari Esfahani, M.; Raza, A.; Al Harthi, S.; Ebrahimi Shahmabadi, H.; Alavi, S.E. Mesoporous silica nanoparticles: Synthesis methods and their therapeutic use-recent advances. *J. Drug Target.* 2021, **29**, 131–154.
50. Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. *Adv. Mater.* 2012, **24**, 1504–1534.
51. Watermann, A.; Brieger, J. Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. *Nanomaterials* 2017, **7**, 189.

52. Liu, T.; Liu, H.; Fu, C.; Li, L.; Chen, D.; Zhang, Y.; Tang, F. Silica nanorattle with enhanced protein loading: A potential vaccine adjuvant. *J. Colloid Interface Sci.* 2013, **400**, 168–174.

53. Choi, E.W.; Shin, I.S.; Chae, Y.J.; Koo, H.C.; Lee, J.H.; Chung, T.H.; Park, Y.H.; Kim, D.Y.; Hwang, C.Y.; Lee, C.W.; et al. Effects of GM-CSF gene transfer using silica-nanoparticles as a vehicle on white blood cell production in dogs. *Exp. Hematol.* 2008, **36**, 807–815.

54. Gavilán, H.; Avugadda, S.K.; Fernández-Cabada, T.; Soni, N.; Cassani, M.; Mai, B.T.; Chantrell, R.; Pellegrino, T. Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer. *Chem. Soc. Rev.* 2021, **50**, 11614–11667.

55. Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. *Chem. Soc. Rev.* 2009, **38**, 1759–1782.

56. Rescignano, N.; Kenny, J.M. 8-Stimuli-responsive core-shell nanoparticles. In *Core-Shell Nanostructures for Drug Delivery and Theranostics*; Focarete, M.L., Tampieri, A., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 245–258.

57. Zhao, J.; Friedrich, B. Synthesis of Gold Nanoparticles via Chemical Reduction Method. In *Proceedings of the Nanocon*, Brno, Czech Republic, 6–14 October 2015.

58. Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. *Nano Lett.* 2006, **6**, 662–668.

59. Curnis, F.; Sacchi, A.; Longhi, R.; Colombo, B.; Gasparri, A.; Corti, A. IsoDGR-tagged albumin: A new alphavbeta3 selective carrier for nanodrug delivery to tumors. *Small* 2013, **9**, 673–678.

60. Gasparri, A.M.; Sacchi, A.; Basso, V.; Cortesi, F.; Freschi, M.; Rrapaj, E.; Bellone, M.; Casorati, G.; Dellabona, P.; Mondino, A.; et al. Boosting Interleukin-12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGR-Tagged Nanogold. *Small* 2019, **15**, e1903462.

61. Donatan, S.; Yashchenok, A.; Khan, N.; Parakhonskiy, B.; Cocquyt, M.; Pinchasik, B.E.; Khalenkov, D.; Möhwald, H.; Konrad, M.; Skirtach, A. Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles. *ACS Appl. Mater. Interfaces* 2016, **8**, 14284–14292.

62. Peng, Y.; Sun, H.Y.; Wang, Z.C.; Xu, X.D.; Song, J.C.; Gong, Z.J. Fabrication of Alginate/Calcium Carbonate Hybrid Microparticles for Synergistic Drug Delivery. *Chemotherapy* 2016, **61**, 32–40.

63. Chen, Q.; Wang, C.; Zhang, X.; Chen, G.; Hu, Q.; Li, H.; Wang, J.; Wen, D.; Zhang, Y.; Lu, Y.; et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. *Nat. Nanotechnol.* 2019, **14**, 89–97.

64. Zhang, L.; Wu, S.; Qin, Y.; Fan, F.; Zhang, Z.; Huang, C.; Ji, W.; Lu, L.; Wang, C.; Sun, H.; et al. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. *Nano Lett.* 2019, 19, 4237–4249.

65. Gao, Y.; Ouyang, Z.; Yang, C.; Song, C.; Jiang, C.; Song, S.; Shen, M.; Shi, X. Overcoming T Cell Exhaustion via Immune Checkpoint Modulation with a Dendrimer-Based Hybrid Nanocomplex. *Adv. Heal. Mater.* 2021, 10, e2100833.

66. Hou, L.; Tian, C.; Yan, Y.; Zhang, L.; Zhang, H.; Zhang, Z. Manganese-Based Nanoactivator Optimizes Cancer Immunotherapy via Enhancing Innate Immunity. *ACS Nano* 2020, 14, 3927–3940.

67. Hu, C.M.; Fang, R.H.; Luk, B.T.; Chen, K.N.; Carpenter, C.; Gao, W.; Zhang, K.; Zhang, L. ‘Marker-of-self’ functionalization of nanoscale particles through a top-down cellular membrane coating approach. *Nanoscale* 2013, 5, 2664–2668.

68. Fang, R.H.; Hu, C.M.; Luk, B.T.; Gao, W.; Copp, J.A.; Tai, Y.; O’Connor, D.E.; Zhang, L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. *Nano Lett.* 2014, 14, 2181–2188.

69. Xia, Q.; Zhang, Y.; Li, Z.; Hou, X.; Feng, N. Red blood cell membrane-camouflaged nanoparticles: A novel drug delivery system for antitumor application. *Acta Pharm. Sin. B* 2019, 9, 675–689.

70. He, Z.; Zhang, Y.; Feng, N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2020, 106, 110298.

71. Chen, Z.; Zhao, P.; Luo, Z.; Zheng, M.; Tian, H.; Gong, P.; Gao, G.; Pan, H.; Liu, L.; Ma, A.; et al. Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. *ACS Nano* 2016, 10, 10049–10057.

72. Kunde, S.S.; Waikar, S. Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy. *Int J Pharm* 2021, 598, 120395.

73. Chu, D.; Dong, X.; Shi, X.; Zhang, C.; Wang, Z. Neutrophil-Based Drug Delivery Systems. *Adv. Mater.* 2018, 30, e1706245.

74. Han, X.; Wang, C.; Liu, Z. Red Blood Cells as Smart Delivery Systems. *Bioconjug. Chem.* 2018, 29, 852–860.

75. Ortiz-Otero, N.; Mohamed, Z.; King, M.R. Platelet-Based Drug Delivery for Cancer Applications. *Adv. Exp. Med. Biol.* 2018, 1092, 235–251.

76. Maeding, N.; Verwanger, T.; Krammer, B. Boosting tumor-specific immunity using PDT. *Cancers* 2016, 8, 91.

77. Kabingu, E.; Vaughan, L.; Owczarczak, B.; Ramsey, K.; Gollnick, S. CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and

dependent on natural killer cells. *Br. J. Cancer* 2007, **96**, 1839–1848.

78. Yu, X.; Gao, D.; Gao, L.; Lai, J.; Zhang, C.; Zhao, Y.; Zhong, L.; Jia, B.; Wang, F.; Chen, X. Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographenes. *ACS Nano* 2017, **11**, 10147–10158.

79. Facciabene, A.; Peng, X.; Hagemann, I.S.; Balint, K.; Barchetti, A.; Wang, L.-P.; Gimotty, P.A.; Gilks, C.B.; Lal, P.; Zhang, L. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. *Nature* 2011, **475**, 226–230.

80. Yang, G.; Xu, L.; Chao, Y.; Xu, J.; Sun, X.; Wu, Y.; Peng, R.; Liu, Z. Hollow MnO₂ as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. *Nat. Commun.* 2017, **8**, 1–13.

Retrieved from <https://encyclopedia.pub/entry/history/show/85624>