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Immunotherapy has gradually become an emerging treatment modality for tumors after surgery, radiotherapy, and
chemotherapy. Cytokine therapy is a promising treatment for cancer immunotherapy. There are many preclinical
theoretical bases to support this treatment strategy and a variety of cytokines in clinical trials. When cytokines were
applied to tumor immunotherapy, it was found that the efficacy was not satisfactory. As research on tumor immunity

has deepened, the role of cytokines in the tumor microenvironment has been further explored.

immunotherapy drug delivery systems cytokine therapy nanomaterial

combination therapy of cancer

| 1. Introduction

So far, cancer is still the most severe disease. The treatment methods usually include surgery, chemotherapy, and
radiotherapy. Tumor immunotherapy, which inhibits tumor development by activating the immune system, has been
considered the fourth most popular tumor therapy W2, The immune escape strategy of tumor cells is regarded as
a significant obstacle to immunotherapy for all cancers and provides favorable conditions for tumor progression
and immune tolerance. In cancer immunotherapy, drugs activate the immune system against tumor progression

and metastasis through enhanced immune responses [El[4],

The earliest records of immunotherapy for cancer can be traced back to ancient Egypt, when some tumors
subsided naturally after inflammation [l The first to study cancer treatment through the immune system were two
German doctors, Fehleisen and Busch, who found that the tumor disappeared after the patient was infected with
erysipelas 84, The subsequent considerable development comes from William Coley, who first attempted to use
the immune system to treat tumors in 1891 I8 He found some cases of natural remission in cancer patients after
an erysipelas infection. He studied in depth the records left by his predecessors and found as many as 47 cases of
cancer patients who could not be cured in theory and reported natural remission after acute bacterial infection &
(201 However, because the proposed “Coley’s toxins” did not have a precise mechanism of action at that time and
because of the risk of using highly pathogenic bacteria to infect cancer patients, the research results of Coley were
shelved by academic circles until 1967, when Jacques Miller discovered the existence of T cells, he described their

functions in Nature. People began to pay attention to the immune system 111,
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Meanwhile, people also began to figure out how to use immunotherapy to treat cancer. IFN-a was approved for
cancer immunotherapy in 1986 12, High-dose recombinant IL-2 was approved for metastatic renal cell carcinoma

treatment in 1992 and then approved for metastatic melanoma in 1998.

In recent years, some cytokines have been used in various animal cancer models for research [18l. Cytokines are
soluble proteins that respond to immune cells by transmitting inflammatory or anti-inflammatory signals, with dual
and conflicting signals 4. Once the cytokine meets the membrane receptor on the target cell, the intracellular
signal pathway will be triggered, thus inducing different cells’ survival, activation, and differentiation in the tumor

microenvironment (TME). Various cytokines play their roles in the location of the tumor.

Most of the cytokines used in tumor therapy are “pro-inflammatory” factors that enhance the immune system
response by stimulating immune cells to modulate the immune microenvironment of tumors. The immune system
relies on APC cells to present antigens to immunological effector cells, which act as antitumor agents by secreting
antibodies or by direct killing. Due to the immune escape mechanism, adding cytokines to therapy can enhance
this antitumor pathway. For example, IL-2 can promote T cell responses, NK and CD4+ cell proliferation, and
antibody production by B cells [22I18: |EN-y primarily regulates CD8+ and CD4+ T cell immune responses 17,
These properties allow the delivery of cytokines into the tumor microenvironment using drug delivery systems to

enhance tumor immunotherapy.

On the one hand, some cytokines, such as IL-4 and IL-8, accelerate the progression of tumors and inhibit
immunity. On the other hand, other cytokines have also played a vital role in enhancing the antitumor immune
response. Cytokines used in cancer immunotherapy can be divided into the following categories: @ IL-2 Family: IL-
2,7,15,21; @ IFN-a; @ IFN-y; @ IL-12; ® TNF; ® colony-stimulating factor (CSF) Family: GM-CSF, Granulocyte
(G)-CSF, erythropoietin (EPO), IL-3; @ IL-1 Family: IL-1,18 [18],

In recent years, the involvement of various nanomaterials in tumor immunomodulation therapy has been shown to
effectively target tumor tissues, which helps reduce the dose of administered drugs and mitigate adverse effects 12
(20 The application of nanomaterials can avoid degradation of the drug before reaching the tumor and achieve

enrichment at the tumor site through enhanced permeability and retention (EPR) effects or active targeting 24,

| 2. Organic Nanomaterials

After years of exploration, researchers have discovered a variety of organic nanomaterials that can be used to
deliver cytokines to target cells. Using these materials to transport cytokines is more efficient than using free drugs.
At the same time, because organic materials are easier to modify and process, researchers can change the
materials according to different needs to make the materials have other functions. These efforts make cytokines
more and more important in cancer immunotherapy. This entry summarizes the existing organic nanomaterials into
the following six categories: poly (lactic-co-glycolic acid)-based nanomaterials, poly-y-glutamic acid-based
nanomaterials, [-cyclodextrin-based nanomaterials, chitosan-based nanomaterials, polyethyleneimine-based

nanomaterials, and liposome-based nanomaterials (Table 1).
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Table 1. Classification of nanomaterials and cytokines involved in the regulation.

Nanomaterials Cytokines References
PLGA-based nanomaterials TNF-q, IL-6, IFN-a,GM-CSF (22)123)[24]
IL-10, IL-12, IL-6,TNF-a, IFN-
Poly-y-glutamic acid-based nanomaterials [25][26]
Y
[27][28][29]
B-Cyclodextrin-based nanomaterials VEGF, IL-10, IL-12 130]
Organic
Chitosan-based nanomaterials IL-2, IL-12, IL-15, IL-21 (21]32]
Polyethyleneimine-based nanomaterials IL-6, TNF-a, IL-12, IFN-y [33][24]
Liposomes-based nanomaterials IL-2, TGF-B (25](36]
Silica nanoparticles IL-2, IFN-y, IL-12 [37](38]
Magnetic nanoparticles IFN-y, TNF-0, IFN- [39][40][41]
Inorganic
Gold nanoparticles TNF-a, IFN-y [39[42]{43]
Calcium carbonate/Calcium phosphate
prosp IL-2, IL-4, M-CSF [42]44]45]

nanoparticles

Rételaorgmanic Nanomaterials

Withr i Yafld d¥aNGn fen(drefydaic RithoRat&ridisZ rdJEANGIF SHAE BRI A AMABNNG FRRFARORYEnomaterials
carM%’Kﬁgﬁjg%thJ h‘%f&coMiﬂEﬁfc@Q}(%k%e%gggﬁ%more, inorganic nanomaterials’ physical and chemical

PIORFHNAP ERNSYRRHAES (. CanBeeHTBNECREIaPWGIRhSIRTAS, THfeMAadibPearfiietrebhigaity nanoparticles
Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13,
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can208u&i0to enhance immunotherapy. This entry mainly introduces silica nanoparticles, magnetic nanopatrticles,
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