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Protein oxidation, a phenomenon that was not well recognized previously but now better under-stood, is a complex

chemical process occurring ubiquitously in food systems and can be induced by processing treatments as well. While

early research concentrated on muscle protein oxidation, later investigations included plant, milk, and egg proteins. The

process of protein oxidation involves both radicals and nonradicals, and amino acid side chain groups are usually the site

of initial oxidant attack which generates protein carbonyls, disulfide, dityrosine, and protein radicals. The ensuing

alteration of protein conformational structures and formation of protein polymers and aggregates can result in significant

changes in solubility and functionality, such as gelation, emulsification, foaming, and water-holding. Oxidant dose-

dependent effects have been widely reported, i.e., mild-to-moderate oxidation may enhance the functionality while strong

oxidation leads to insolubilization and functionality losses. Therefore, controlling the extent of protein oxidation in both

animal and plant protein foods through oxidative and antioxidative strategies has been of wide interest in model system as

well in in situ studies.
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1. Introduction

Protein oxidation is a common occurring yet largely neglected phenomenon. Unlike lipid oxidation, which is readily

detected by consumers due to volatile off-flavor compounds generated , protein oxidation usually occurs unnoticed.

Nevertheless, through discovery research in the later part of the 20th century, mostly conducted in the field of health

sciences, it has become clear that, similar to lipids, proteins are rather susceptible to reactive oxygen species (ROS).

Previous studies at both the cellular and molecular levels had concentrated on the deleterious consequences of protein

autooxidation in human health and age progression. Oxidation of cellular enzymes and structural proteins has been linked

to Alzheimer’s disease (formation of amyloid plaques), chronical aging, Parkinson’s disease, cataracts, muscle dystrophy,

and atherosclerosis . In fact, one of the principal theories for human aging has been derived from free radical oxidation

of cellular proteins and other substances . Accumulated evidence in diet-related pathological research suggests that

protein oxidation in food systems and the consumption of extensively oxidized meat could have a significant negative

impact on the health of humans .

Several early investigations have shown that, as is in living tissues, ROS can cause food proteins to polymerize, degrade,

and interact with other food components to produce complexes . Subsequent research, including recent studies,

has produced ample new evidence that ROS-induced physicochemical modifications could significantly alter the

functionality (i.e., gelation, emulsification, foaming, film formation, and water-binding) of muscle , egg

, dairy , legume , and cereal  proteins. Table 1 lists the proteins from different

commodity food groups that have been widely subjected to oxidative studies. With the advent of sophisticated separation

techniques combined with robust analytical instruments, for example, ultra HPLC, electron spin resonance, and advanced

mass spectrometry, food scientists are now able to acquire new insights into the mechanism and understand many of the

molecular processes involved in protein oxidation in food systems . Continuing investigations around this topic

have led to the further understanding that many of the oxidative processes may be controllable and manipulatable through

antioxidative processing, packaging, and ingredient strategies . Conversely, where protein oxidation is desirable

for food product texture formation, appropriate oxidizing agents or processing conditions may be introduced to improve

food product quality .

Table 1. Examples of proteins from different sources that have been subjected to oxidation studies.

Food Source Protein Studied Functionality

[1]

[2]

[3]

[4]

[5][6][7][8]
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Meat (pork, beef, rabbit,

chicken, turkey)
Myofibrillar protein; myosin; gelatin

Gelation; emulsification; water-

holding

Fish
Surimi (crude myofibrillar protein); gelatin

 
Gelation; film-forming

Milk
Whey protein; α-lactalbumin; β-lactoglobulin;

lactoferrin; bovine serum albumin; caseins
Gelation; emulsification; film-forming

Egg Egg white protein; ovalbumin; egg yolk protein
Foaming; gelation; water-holding;

emulsification

Legume (soy, pea) Protein isolate; β-conglycinin
Gelation; emulsification; water-

holding

Cereal (wheat, rice)

Gluten; gliadin; glutenin; high-molecular-weight

glutenin subunits; low-molecular-weight gluten

subunits; oryzenin 

Gluten network elasticity; water-

holding; film-forming; emulsification

References are found within the body of the text.

In food systems, protein oxidation can occur unprovoked (in situ autooxidation) or initiated by processing treatments, such

as ultraviolet and ionizing radiations, photosensitization, and catalysis with exogenous redox enzymes. Oxidation typically

involves free radical-induced modification of amino acid side chain groups (e.g., sulfhydryls and amines), peptide bonds,

and intramolecular forces that maintain the spatial conformational structure of proteins . Other oxygen species, such as

secondary products of lipid peroxidation, can also induce protein oxidation by binding with reactive side chain groups .

Aggregation (or, conversely, fragmentation) occurs as a result of oxidative structural disruption which either impairs or

improves the texture-forming and other functional properties of proteins in food . To regulate protein oxidation for

desirable food product attributes and palatability, antioxidants are increasingly utilized to produce optimum gelling,

emulsifying, film-forming, and water-holding capacities.

In this paper, we aim to present a brief review of protein oxidation occurring in food systems and discuss the impact on the

functionality and quality attributes of food products in the context of diverse food commodities, i.e., meat, milk, egg,

legumes, and cereals. The specific conditions under which protein oxidation is investigated are highlighted, and potential

antioxidative strategies for controlling and modulating protein oxidation are suggested. Hence, differing from previous

reviews, the present review provides an inclusive coverage of collective food groups through generalized analysis as well

as individualized accounts for protein oxidation and antioxidant strategies, making it scientifically and practically relevant

in the field. It should be noted that, the potential impact of oxidation on nutritional quality of proteins and proteinaceous

foods (which is generally indicated by altered protein digestibility and loss of essential amino acids) , will not be a focus

in the present review. As well, pathological consequences of regularly consuming oxidized proteins will not be included in

the present work as such information has been comprehensively described in a previous seminal paper.

2. Mechanisms of Protein Oxidation and Assessment

Protein oxidation in biological systems, including food, is rather complex and remains not well characterized. The process

requires activated oxygen. The oxygen activation may be initiated by redox enzymes, photosensitizers, ultraviolet and

ionizing radiations, or metal-catalyzed one-electron reductions to generate a wide range of ROS, including superoxide

anion (O ), hydrogen peroxide (H O ), and hydroxyl radical ( OH) . Enzyme-catalyzed protein oxidation involves at

least two steps: the catalytic production of specific ROS followed by their attack of proteins. Examples of oxidative

enzymes of food relevance are glucose oxidase that produces H O  from glucose , laccases that generates phenolic

radicals , lipoxygenase that catalyzes oxidative formation of hydroperoxides from unsaturated lipids , and

lactoperoxidase that produces peroxyl radicals .
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Photochemical oxidation occurs via the singlet oxygen ( O ) pathway in which molecular oxygen in the stable triplet state

is activated by photosensitizers, such as riboflavin, protoporphyrin, and chlorophyll . The radical intermediates of O

are reactive with many amino acid side chain groups to initiate protein oxidation. Direct oxidative reactions of proteins can

be caused by UV radiations due to the absorption of tryptophan and tyrosine in the wavelength range of 280–325 (UVB)

or 315–400 nm (UVA) . This leads to electron transfer and hydrogen abstraction from proteins. On the other hand,

when proteins are under ionizing radiations, such as γ-irradiation, radicals generated by the radiation, including OH and

O , will cause damage and modify the molecular properties of proteins .

Metal-catalyzed protein oxidation, which has been most extensively studied due to its wide occurrences, has its unique

mechanism. During oxygen activation, the sequential reduction of O  to O  by Fe  (or vice versa, oxidation of O to O

by Fe ) to produce OH is exemplified by Haber–Weiss reaction (O + H O   OH + OH + O ). Alternatively, Fe can

directly react with H O  to produce OH through Fenton reaction (Fe + H O   Fe + OH + OH). Protein oxidation

proceeds with the initial modification of amino acid side chain groups by the ROS generated and the conversion to

carbonyl and other derivatives. Stadtman and Levine  proposed a site-specific metal-catalyzed protein oxidation model

in which loosely-bound transition metal ions, such as Fe  and Cu , react with H O  to form OH that subsequently attacks

amino acid side chains (Figure 1). According to this mechanism, the complex formed by the binding of Fe to ε-amine

group in lysine can react with H O  to produce OH through a Fenton-like pathway leading to ultimate production of

carbonyls and other products. Other amino acid residues that can bind with Fe  to generate OH and ferryl ion include

proline, histidine, arginine, and cysteine . Protein radicals, which have a long half-life, could form via a similar radical-

transfer mechanism.

Figure 1. Proposed site-specific metal-catalyzed oxidation of protein amino acid residues. The illustration shows iron-

catalyzed radical formation and carbonyl generation from oxidized lysine residues. A modified drawing from [51]. P:

protein; ROOH: peroxide; Red: reducing compound.

In describing ROS-induced amino acid side chain modification, Statdman and Berlett  presented the relative reactivity

of different amino acids. Virtually all amino acid residues are prone to ROS attack, but the most susceptible ones are

sulfur-containing (cysteine and methionine) and amine-containing (arginine, lysine, and histidine) residues and those with

bulky side chain groups, such as tryptophan, leucine, and phenylalanine (Table 2). Of special note is the oxidative

conversion of cysteine to cystine (protein cross-linker), sulfanic acid, sulfinic acid, and sulfonic acid . α-Aminoadipyl

semialdehyde (from arginine and proline), γ-glutamyl semialdehyde (from lysine), and methionyl sulfoxide (from

methionine) are examples of protein oxidation products that have been detected. In addition to side chain modification,

ROS can attack protein peptide bonds producing protein fragments. Such cleavage is initiated by α-hydrogen abstraction

to form a carbon-centered radical which subsequently reacts with O  to produce the peroxyl radical adduct. The ensuing

reaction with other ROS leads to the formation of alkyl peroxide and ultimately, alkoxy radical, setting the stage for peptide

bond cleavage .

Table 2. Oxidation of protein amino acid residue side chains and exemplary products.

Amino acid Products

Arginine Glutamyl semialdehyde
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Cysteine Cystine; sulfenic acid; sulfinic acid; sulfonic acid

Glutamic acid Oxalic acid

Histidine 2-oxohistidine; 4-hydroxyglutamate; aspartic acid

Leucine 3-, 4-, and 5-hydroxyleucine

Lysine α-aminoadipyl semialdehyde

Methionine Methionine sulfoxide; methione sulfone

Phenylalanine 2-, 3-, and 4-hydroxyphenylalanine; 2,3-dihydroxyphenylalanine

Proline γ-glutamyl semialdehyde; 2-pyrrolidone; 4- and 5-hydroxyproline

Threonine 2-amino-3-ketobutyric acid

Tryptophan
2-, 4-, 5-, 6-, and 7-hydroxytryptophan; di-hydroxytryptophan, nitrotryptophan; 3-

hydroxykynurenine, formalkynurenine

Tyrosine Dityrosine; trityrosine; 3,4-dihydroxyphenylalanine

Ref: Butterfield and Stadtman ; Shacter; Stadtman and Levine. 

The formation of carbonyls (aldehydes and ketone) is a common consequence of protein oxidation. Protein carbonyls can

form via direct modification of amino acid side chains by ROS, peptide bond cleavage, or through the adduction of non-

protein carbonyl units. For example, ROS could directly attack lysine, arginine, proline, and threonine to generate

carbonyls. Amino acids with nucleophilic groups, such as histidine, cysteine, and lysine, can also be indirectly

carbonylated by covalent binding with non-protein reactive carbonyl species, such as 4-hydroxy-2-nonenal (4HNE) and

malondialdehyde (MDA), through Michael addition [56,57]. In addition, reducing sugars and Strecker degradation

aldehydes can form complexes with proteins to generate protein-bound carbonyls . Hence, by binding to proteins,

these lipid- and carbohydrate-derived carbonyls contribute to the total carbonyl content in oxidized proteins.

As carbonylation occurs in almost all oxidized proteins, carbonyl is considered to be a reliable marker for protein

oxidation. Carbonyl analysis, therefore, has become a common approach to estimating the extent of oxidative modification

. The method, initially developed by Brady and Elsmie  for aldehyde and ketone analysis, involves the derivatization

of protein carbonyls with 2,4-dinitrophenylhydrazine (DNPH) to form the dinitrophenylhydrazone complex (Reaction (1)),

which can be detected directly by spectrophotometry, HPLC, and mass spectrometry . To improve the test

sensitivity, immunoblotting or ELISA with an antibody against 2,4-dinitrophenyl can be used .

(1)

 

 

 

For proteins that have a significant number of cysteine or lysine residues (which are susceptible to oxidants), sulfhydryl

and amine content analysis proves to be a valuable means to assess protein oxidation. The two functional groups can be

quantified by the reaction with, respectively, Ellman’s reagent 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and 2,4,6-
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trinitrobenzene sulfonic acid (TNBS). The reaction of DTNB with free sulfhydryls produces a yellow chromophore (5-thio-

2-nitrobenzoate, TNB) that absorbs strongly at 412 nm (Reaction (2)), while the reaction of TNBS with primary amines

yields an orange-colored chromogenic product that can be readily measured at 335 nm (Reaction (3)).

(2)

 (3)
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