
Dystrophin Node | Encyclopedia.pub

https://encyclopedia.pub/entry/7330 1/12

Dystrophin Node
Subjects: Biochemistry & Molecular Biology

Contributor: Kay Ohlendieck

Dystrophin isoform Dp427-M is tightly associated with a variety of glycoproteins at the muscle sarcolemma

membrane. The core dystrophin-glycoprotein complex forms a variety of links to components of the extracellular

matrix and the intracellular cytoskeleton. The wider dystrophin complexome plays a crucial functional role as an

integrative node of the skeletal muscle periphery. The sarcolemmal dystrophin node is involved in the maintenance

of fiber stability, the provision of cellular signaling cascades, organizer of cytoskeletal networks and costameric

anchor for lateral force transmission.

dystrophin  dystrophin–glycoprotein complex  dystroglycan

1.The Core Dystrophin Complex in Skeletal Muscle

The full-length dystrophin isoform Dp427-M belongs to the class of giant muscle proteins  and consists of several

distinct molecular domains as illustrated in the upper panel of Figure 1. This includes amino-terminal and central

actin-binding domains, proline-rich hinge regions, spectrin-like rod domains and crucial carboxy-terminal binding

sites for interactions with plasmalemmal and cytosolic components . Dystrophin closely interacts with the

integral proteins beta-dystroglycan, alpha/beta/gamma/delta-sarcoglyan and sarcospan of the sarcolemma, the

extracellular receptor alpha-dystroglycan and laminin-211, the cytosolic components alpha/beta-dystrobrevin and

alpha/beta-syntrophin, and the cortical actin cytoskeleton , as shown in the lower panel of Figure 1.
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Figure 1.  Overview of the domain structure of dystrophin and the diverse interactions of the dystrophin–

glycoprotein complex in skeletal muscle tissues. The upper panel shows a diagrammatic presentation of the main

molecular domains of dystrophin isoform Dp427-M, including actin-binding sites at the N-terminus and central rod

domain, proline-rich hinge regions (H1 to H4), spectrin-like rod (SLR) domains 1–3, 4–19 and 20–24, a cysteine-

rich domain with binding sites for integral beta-dystroglycan (DG), the cysteine-rich domain (CR) and the C-

terminus with binding sites for dystrobrevin (DYB) and syntrophin (SYN). The lower panel shows a model of the

spatial configuration of the dystrophin complexome in skeletal muscle fibers. Shown is the dystrophin core complex

consisting of the dystrophin isoform Dp427-M, dystroglycans (DG), sarcoglycans (SG), sarcospan (SSPN),

syntrophins (SYN) and dystrobrevins (DYB), as well as the wider dystrophin-associated network that forms

associations with the extracellular matrix, the sarcolemma, the cytoskeleton and the sarcomere.

Sedimentation analysis of the isolated dystrophin complex suggests a monomeric structure with an apparent

molecular mass of 1.2 MDa . In Duchenne muscular dystrophy, alterations in the expression of members of the

dystrophin network are closely related to key pathophysiological features in dystrophin-deficient muscles, including

degeneration-regeneration cycles, reactive myo-fibrosis, fat substitution and sterile inflammation. Detailed reviews

have been published on the composition of the core dystrophin complex , as well as the role of

dystrophin and its associated glycoprotein complex in the multisystemic complications of dystrophinopathy and

pathophysiological crosstalk throughout the body . Here we refer to specific aspects of dystrophin

interactions that are crucial for our general understanding of the wider functional role of the dystrophin complexome

in normal skeletal muscle tissue.
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2. The Dystrophin Node in Skeletal Muscle

A model of the spatial configuration of the core dystrophin complex and its association with the extracellular matrix

on the one hand and the intracellular cytoskeletal network of contractile fibers on the other hand is presented in the

lower panel of above Figure 1. The cell biological concept that the dystrophin–glycoprotein complex occupies a

central position at the fiber periphery is summarized in Figure 2. The diagram shows that the dystrophin-associated

surface complex forms an organizing node that is majorly involved in (i) the provision of sarcolemmal membrane

integrity via a stabilizing linkage between the intracellular actin cytoskeleton and the extracellular matrix protein

laminin , (ii) the establishment of a molecular scaffold and anchoring system for ion channels and enzymes to

mediate cellular signaling processes  (iii) the organization of actin filament attachment and its associated

cytoskeletal network , and (iv) the mediation of lateral force transmission from sarcomeric contraction to the

endomysium and its connected layers of the extracellular matrix .

Figure 2. Outline of the main functions of the dystrophin node and its associated protein complex as integrators of

fiber stability, cellular signaling, cytoskeletal organization and lateral force transmission. The upper panels

summarize the main functions of the trans-sarcolemmal axis formed by the intracellular actin cytoskeleton, the

dystrophin–dystroglycan complex, the basal lamina component laminin and the extracellular matrix. The lower

panel illustrates the physiological concept of force transmission in skeletal muscles, which can be divided into a

laterally and a longitudinally acting system. In conjunction with other costameric proteins, the dystrophin–

glycoprotein complex (DGC) is majorly involved in lateral force transmission to the extracellular matrix.
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3. The Sarcolemmal Dystrophin Complex and Lateral Force
Transmission

The peripheral structure of skeletal muscle fibers functions as an essential physical barrier with its protective basal

lamina. The underlying sarcolemma membrane provides the physiological structure for the efficient exchange of

ions, metabolites and signaling molecules within the contractile system . The plasmalemma is connected to the

terminal cisternae region of the sarcoplasmic reticulum at the triad junctions via its invaginations, the transverse

tubules. This intricate membrane assembly and its associated Ca -handling apparatus is involved in the fine

regulation of excitation–contraction coupling, muscle relaxation and ion homeostasis, and encounters enormous

physical strain during contraction–relaxation cycles . The dystrophin-associated complex is implicated to act as a

biomolecular shock absorber by linking the basal lamina to the actin cytoskeleton and thus preventing rupturing of

this muscle membrane system .

At specialized costamere regions, which play both a mechanical and a signaling role, the dystrophin complex forms

in conjunction with the integrin–vinculin–talin axis a link to the contractile sarcomere units . This bridging

structure is postulated to provide an indirect means of lateral force transmission to the collagen-rich muscle

exterior, in addition to longitudinal forces that are transmitted directly from the contractile apparatus through the

cytosol to the myotendinous junction . In skeletal muscle fibers, the characteristic longitudinal pattern of A

bands and I bands reflect the organization of myosin-containing thick filaments and actin-containing thin filaments

with their contractile sarcomeric units, which are positioned between Z discs. Following the energy-dependent

crossbridge coupling between myosin heads and actin filaments, thin filaments slide past thick filaments. The force

generated by this sarcomeric shortening event is partially transmitted by a lateral direct force between Z-disk

structures and the M-line regions of neighboring myofibrils. Costamere structures at the fiber periphery play a

central role as sensors of the relative mechanical load and support force transduction across the muscle plasma

membrane. Contractile force is then further transmitted to the complex layers of the extracellular matrix, consisting

of endomysium, perimysium and epimysium, towards the tendon and bone structure . The second type of

force transmission mechanism works by longitudinal means through internal muscle structures embedded in the

cytosol. Both lateral and longitudinal coupling mechanisms act in parallel and ultimately transmit the force

generated by the actomyosin apparatus in the sarcomere to the tendon and anchoring structures such as bone, as

diagrammatically summarized in the lower panel of Figure 2. The dystrophin-associated dystroglycan subcomplex

was shown to play a critical role in the sarcomeric cytoskeleton by limiting contraction-induced injury to skeletal

muscle fibers .

The elucidation of the multifaceted functions of the dystrophin–glycoprotein complex in maintaining membrane

stability during excitation–contraction–relaxation cycles, assisting lateral force transmission through costameres

and providing a scaffold for anchoring surface receptors and maintaining cellular signaling mechanisms was

carried out by multidisciplinary approaches. This included molecular genetics, biochemical purification strategies,

structural/biophysical analysis, mass spectrometric proteomics analysis, bioinformatics, chemical crosslinking, cell

biological characterization and comparative biomedical studies.
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4. Muscle Dystrophin Dp427-M and Its Associated
Glycoprotein Complex

The large muscle isoform of dystrophin is a rod-shaped protein  with considerable homology to the actinin

superfamily of actin crosslinking components, which also includes utrophin and spectrin . Both, dystrophin

isoform Dp427-M of the sarcolemma and its autosomal homologue, utrophin isoform Up395-M of the

neuromuscular junction, exhibit typical biochemical properties of cytoskeletal components, such as insolubility in

non-ionic detergent and efficient extraction by alkaline treatment . Compared to the main components of the

contractile actomyosin apparatus and its regulatory sarcomeric elements, dystrophin represents a relatively minor

component of the skeletal muscle fiber proteome. However, dystrophin isoform Dp427-M constitutes a

considerable fraction of the subsarcolemmal cytoskeleton in contractile tissue . This makes full-length dystrophin

an important structural and functional component of the sarcolemmal lattice and costamere structures . Besides

being present in contractile fibers, dystrophin isoforms also exist in many non-muscle cells . The various

dystrophins are encoded by the 79 exon-spanning DMD gene, whereby seven different promoters drive the tissue-

specific expression of the full-length isoforms Dp427-B in brain, Dp427-M in muscle and Dp427-P in Purkinje

cells , as well as the shorter isoforms Dp260-R in retina , Dp140-B/K in brain and kidney , Dp116-S in

Schwann cells  and Dp71-G in the brain  and a variety of other tissues including the spleen . The promoter

for Dp71 also produces the shortest known dystrophin isoform named Dp45, which is located in the central nervous

system . Of note, the central nervous system displays one of the greatest varieties of dystrophin isoforms, which

are involved in synaptic modulation, neuronal excitability and signal integration. Brain Dp427-B is present in

neurons of the cerebral cortex and in cerebellar Purkinje cells, Dp140-B is highly expressed during brain

development and Dp71-G is located in both neurons and glia cells in the dentate gyrus . Cognitive impairments

and emotional disturbances in Duchenne patients are probably linked to altered dystrophin expression in the

central nervous system and this is reflected by structural brain abnormalities . The formation of dystrophin

complexes and their involvement in dystrophinopathy-associated brain defects has been reviewed by Waite et al.

.

The composition of the dystrophin–glycoprotein complex has been extensively investigated using a combination of

digitonin-based solubilization, wheat germ agglutinin lectin chromatography, ion exchange chromatography and

density gradient ultracentrifugation , as well as various chemical crosslinking and immunoprecipitation

approaches . Differential detergent extraction procedures , two-dimensional gel

electrophoresis  or alkaline dissociation  can be used to isolate individual dystrophin subcomplexes or separate

the dystrophin-associated glycoprotein complex from homogeneous dystrophin molecules. Based on these

analyses, the core members of the dystrophin-associated complex can be divided into (i) cytosolic components

alpha/beta-dystrobrevin  and alpha/beta-syntrophin  that interact with the cysteine-rich domain of

dystrophin; (ii) integral glycoproteins, including the alpha/beta/gamma/delta-sarcoglyan subcomplex , the

highly hydrophobic protein sarcospan  and the main carboxy-terminal dystrophin-binding partner beta-

dystroglycan ; (iii) laminin-211  and its extracellular receptor alpha-dystroglycan , which is a proteolytic

cleavage product of the pre-dystroglycan molecule ; and (iv) the intracellular actin cytoskeleton that links to an

amino-terminal and a rod domain site of full-length dystrophin .
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The sarcoglycan subcomplex is initially assembled by the formation of a core between beta-sarcoglycan and delta-

sarcoglycan, which subsequently recruits the other two sarcoglycans . Through interactions with sarcospan and

additional dystrophin-associated proteins, the sarcoglycan complex secures the formation and mechanical

maintenance of the sarcolemmal dystrophin complex. Besides its integrating role in membrane stabilization, the

sarcoglycan subcomplex can be chemically modified during fiber contraction, which provides the transduction of

information on relative contractile force into cellular signaling . Interestingly, both components of the dystroglycan

subcomplex are products of the same gene,  DAG1, which encodes a pre-pro-protein version of alpha/beta-

dystroglycan that includes a signaling peptide and both subunits . The precursor protein is extensively

modified by N- and O-glycosylation and undergoes proteolytic processing that generates the integral glycoprotein

beta-dystroglycan and the extracellular laminin-binding receptor alpha-dystroglycan . Thus, the two

dystroglycans form the backbone of the trans-sarcolemmal linkage between the basal lamina component laminin-

211 and the dystrophin-associated actin cytoskeleton in the subsarcolemmal region of skeletal muscle . The

phosphorylation of beta-dystroglycan, especially intracellular tyrosine residues , is a crucial step during

interactions with signaling proteins . The phosphorylation of the cysteine-rich region in the carboxy-terminal

domain of dystrophin also plays a key role in strengthening the interaction with beta-dystroglycan. Thus, post-

translational modifications are important modulators of dynamic associations within the dystrophin–dystroglycan

axis.

5. The Dystrophin Complex as a Cellular Signaling Node in
Skeletal Muscle

Besides providing the above-described stabilizing linkage between the basal lamina and the membrane

cytoskeleton and thereby functioning as a molecular shock absorber, the dystrophin complex also acts as a critical

hub for cellular signaling at the muscle plasma membrane . The dystrophin complexome has been implicated to

be involved in the modulation of hypertrophy, major kinase signaling cascades, the organization of caveolae

structures, the regulation of skeletal muscle size, the mitogen-activated protein kinase pathway, the regulation of

ion homeostasis, cytoskeletal organization, G-protein signaling and neuromuscular transmission in conjunction with

its autosomal homologue utrophin, as well as mechano-sensing and cytoskeletal remodeling in association with the

laminin-collagen bridge and the sarcolemmal integrin complex .
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