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The usage of 360-degree videos has prevailed in various sectors such as education, real estate, medical, entertainment

and more. However, various challenges are faced to provide real-time streaming due to the nature of high-resolution 360-

degree videos such as high bandwidth requirement, high computing power and low delay tolerance. To overcome these

challenges, streaming methods such as dynamic adaptive streaming over HTTP (DASH), tiling, viewport-adaptive and

machine learning (ML) are discussed.

Keywords: Virtual Reality (VR) ; 360-degree video ; bandwidth reduction ; metaverse ; DASH ; tiling ; viewport-adaptive

1. Introduction

A 360-degree video is a video filmed in all directions by an omnidirectional camera or numerous cameras simultaneously,

encompassing a whole 360-degree 3D sphere view, hence creating a Virtual Reality (VR) environment. When played back

on a 2D flat screen (mobile or computer), viewers may alter the viewing direction and view the film from whichever angle

they like, similar to a panorama. It can also be played on a display like a head-mounted display or projectors organized in

the shape of a sphere or a portion of a sphere. The potential of 360-degree video and VR is enormous. The development

of VR, AR and 360-degree video could be seen in education, real estate, medical, economics, and more.

The superiorities of 360-degree video can be concluded as: (a) Boost interest and creativity in education; (b) Generate

various business and job opportunities in Metaverse; (c) Providing a virtual communication platform highly similar to face-

to-face interaction; (d) Enabling a supreme experience in entertainment: games, concerts, etc.

Although lots of benefits can be listed on 360-degree video, there are a few problems such as lack of tools and network

barriers. Due to the extremely high bandwidth demands, providing a great Quality of Experience (QoE) to viewers while

streaming 360 videos over the Internet is particularly difficult. Both academics and businesses are currently looking for

more effective ways to bridge the gap between the user experience of VR apps and the VR networking issues such as

high bandwidth requirements. 

Four categories of solutions proposed by various research are Dynamic adaptive HTTP streaming (DASH), tiling,

viewport-adaptive, and Machine learning (ML), as illustrated in Figure 1.

Figure 1. Bandwidth reduction techniques.

2. Dynamic Adaptive HTTP Streaming (DASH) Framework

Dynamic adaptive HTTP streaming (DASH) is an MPEG standard that provides a multimedia style and specification for

sending material over HTTP using an adjustable bitrate method . DASH is extremely compatible with the existing

internet infrastructure due to its minimal processing burden and transparency to middleboxes, and the ability to apply
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alternative adaption methods makes it adaptable to diverse network conditions standard is generally extensively utilized

for two-dimensional video streaming over the world wide web recently. DASH streaming works by splitting videos into

short segments, each segment on the DASH server maintains a number of video streams with varying bitrates . By

requesting the proper HTTP resource, based on the view on the streaming client, the main viewpoint segment stream with

higher resolution and the other viewpoint segment stream with lower resolution. A video player can switch from one quality

level to another in the middle of the video playback without interruption. Table 1 demonstrates the major steps in the

DASH streaming process:

Table 1. Major steps in the DASH streaming process.

Step Process

Stitching

Stitch videos collected by many cameras/an omnidirectional camera onto diverse planar models such as
cubic and affine transformation models match up the various camera images, merging and distorting the
views to a sphere’s surface . For successful coding and transmission, the 360-degree sphere is
projected to a 2D planar format such as Cubic Mapping Projection (CMP) and Equirectangular Projection
(ERP).

Encoding and
segmentation

The video file is segmented into smaller parts of a few seconds in length by the origin server. Each
section is encoded in numerous bitrate or quality level variants.

Delivery The encoded video segments are sent out to client devices over a content delivery network (CDN).

Decoding,
rendering and

play

Decodes the streamed data. With adaptive bitrate streaming, it plays the video and automatically adjusts
the quality of the picture according to the network condition/user’s views at the client device.

Another extension of DASH or other streaming systems is the Omnidirectional Media Format (OMAF) standard specifying

the spatial information of video segments . For the DASH OMAF scheme, storage space is sacrificed to increase the

bandwidth of the VR video streaming . Figure 2 shows the technical framework of the DASH OMAF architecture

network. Furthermore, OMAF specifies several requirements for users, bringing the standard specification for

omnidirectional streaming one step closer to completion. Players based on OMAF have already been implemented and

demonstrated .

Figure 2. DASH-OMAF architecture network.

OMAF also defines tile-based streaming and Viewport-Based Streaming approaches where the Field of View (FoV) is

downloaded at the highest quality possible, along with the lower quality of the other viewable region. This enables the

client to download a collection of tiles with varying encoding qualities or resolutions, with the visible region prioritized to

improve the quality of experience (QoE) while consuming less bandwidth.

Next, OMAF also specifies video profiles based on the High-Efficiency Video Coding (HEVC) coding standard, as well as

HEVC-based or older Advanced Video Coding (AVC), AVC-based viewport-dependent profiles that support

Equirectangular Projection (ERP), Cubic Mapping Projection (CMP), and tile-based streaming . The comparison of ERP

and CMP is shown in Figure 3.
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Figure 3. Equirectangular projection (EMP) and cube map projection (CMP) comparison.

Clients can stream omnidirectional video from a DASH SRD or OMAF compliant server. The server will deliver segments

with different viewport-dependent projections or independent tiles based on the choices of the client. The client then

downloads the appropriate segments, potentially discarding low viewing probability segments or downloads with lower

quality to save bandwidth. Next, the features of HEVC of fast Field of View (FoV) switching allow the client to request the

segments based on users’ head movements in high quality , users can even zoom into the region of interest within the

360-degree video , providing a smooth user experience with minimal server-side changes.

In recent years, some researchers have enhanced the Quality of Experience (QoE) of 360 videos streaming with the

DASH architecture . At any one point in a VR 360-degree movie, the user can at most see a portion of the 360-degree

film. As a result, sending the entire picture wastes bandwidth and processing power. With the DASH-based viewpoint of

adaptive transmission, these problems may be resolved. The client must pre-download the video material to ensure

seamless playing, which needs the client predicting the user’s future viewpoint.

Based on HTTP 2.0, a real-time video streaming technology with low latency has been developed by Huang, Ding .

The MPEG DASH prototype implements HTTP 2.0 server push functionality to actively deliver live video from the server to

the client with low latency whereas Nguyen, Tran  suggested an efficient adaptive VR video stream approach based on

the DASH transport architecture via HTTP/2 that implements stream prioritization and stream termination.

3. Tiling

Tiling is one of the typical solutions proposed by various researchers in order to overcome the bandwidth issues of 360-

degree videos by projecting and splitting video frames into numerous sections known as tiles. In general, this technique

divides a frame into several sections known as tiles, focusing on the quality of the Region of interest (RoI)/Quality

Emphasis Region (QER)/Field of View (FoV) while reducing the others to overcome the bandwidth issue. Most of the

solutions are based on the DASH framework as discussed earlier.

Figure 4 illustrates the small region of FoV in an equirectangular mapped 2K picture. Following that, the most popular

HMDs have a small FoV. For example, Google Cardboard  and Samsung Gear VR  have an FoV of 100 degrees

whereas Oculus Rift and HTC Vive  have wider 110 degrees of FoV as demonstrated in Figure 5.
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Figure 4. FoV in a full 360-degree video frame.

Figure 5. FoV associated with the human eye.

Figure 6 shows the methods using the tiling technique whereas Table 2 summarizes and compared the characteristics of

each tiling scheme.

Figure 6. Methods using the tiling technique.

3.1. ClusTile

Research as Zhou, Xiao  proposed ClusTile, a tiling approach that schemes each tile represents a DASH segment

covering a portion of the 360-degree view with typically fixed time intervals, formulated by solving the set of integer linear

programs (ILPs). Although this work mentions a decrease of such a high percentage in bandwidth reduction (76%), it does

not allow varying the solution of representations but only their bitrate. The increasing number of tiles in the process is not

sufficient for the segments downloaded and uploaded.
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3.2. PANO

Guan, Zheng  propose a quality model named Pano for 360° videos that capture the factors that affect the QoE of 360°

video including difference in depth-of-field (DoF), relative viewpoint-moving speed and change in scene luminance. The

proposed tiling scheme with variable-sized tiles aims to find the tradeoff between the video quality and efficiency of video

encoding. Pano achieves 41–46% less bandwidth consumption than Zhou, Xiao  with the same Peak Signal-to-

Perceptible-Noise Ratio (PSPNR) .

3.3. MiniView Layout

To reduce the bandwidth requirement of 360-degree video streaming, Xiao, Wang  proposed the MiniView Layout

which has saved up to 16% of the encoded video without downgrading the visual qualities. In this method, the video was

projected into equalized tiles with each MiniView independently encoded into segments. It increases the number of

segments and higher in the number of requests parallelly to the streaming client. Plus, Ref.  showed improvements in

projection efficiency as it created a set of views with the rectilinear projection referred to as “miniview”, which has smaller

FOVs than cube faces, hence able to save encoded 360-degree videos’ storage size without quality loss. Each miniview

has its parameters which include FOV, orientation and pixel density .

3.4. Viewport Adaptive Streaming

In , The adaption algorithm initially chooses the video’s Quality Emphasized Region (QER) based on the viewport

center and the Quality Emphasis Center (QEC) of the available QERs. Each QER-based video is composed of a pre-

processed collection of tile representations that are then encoded at various quality levels. This allows for faster server

maintenance (fewer files, resulting in a smaller media presentation description (MPD) file), a simpler selection procedure

for the client (through a distance computation), and no need to reconstruct the video prior to viewport extraction. However,

improved adaption algorithms are required to predict head movement, as well as a new video encoding approach to do

quality-differentiated encoding for high-resolution videos.

3.5. Divide and Conquer

Research by Hosseini and Swaminathan  proposed a divide and conquer approach to increase the bandwidth

efficiency of the 360 VR video streaming system. The hierarchical resolution degrading enables a seamless video quality-

switching process hence providing a better user experience. Compared to the other method which uses equirectangular

projection , implements hexaface sphere projection as illustrated in (  Figure 4), and significantly saved 72%

bandwidth compared to other tiling approaches without viewport awareness. To improve the performance of this

approach, an adaptive rate allocation method for tile streaming based on available bandwidth is needed.

3.6. Multicast Virtual Reality (MVR)

In , the Multicast Virtual Reality (MVR) streaming technique, which is a basic rate adaptation mechanism, serves all

members in a multicast group with the same data rate to ensure that all members can receive the video. The data rate is

selected based on the member with the poorest network conditions. However, a better tile weighting technique with data-

driven probabilistic and an improved rate adaption algorithm is required to improve the user experience.

3.7. Sidelink-Aided Multiquality Tiled

Dai, Yue  adapt sidelink is a modification of the basic LTE standard that enables device-to-device (D2D) communication

in 360-degree streaming without the use of a base station. Allocate tile weight based on long-term weight (how often the

tile was visited) and short-term weight (tile distance from the FOV). To find suboptimal solutions with minimal

computational cost, a two-stage optimization technique is used to pick sidelink Receivers and Senders in stage 1 and

allocate bandwidth and select tile quality level in stage 2.

3.8. OpCASH

In , a tiling scheme with variable-sized tiles is proposed. To deliver optimal cached tile coverage to user viewports (VP),

Mobile Edge Computing (MEC) cache usage is used. Next, an ILP-based technique is used to determine the best cache

tile configuration to decrease the redundancy of stored variable tiles at a MEC server while limiting queries to faraway

servers, lowering delivery delay, and increasing cache utilization. OpCASH successfully reduces data fetched from

content servers by 85% and overall content delivery time by 74% with MEC.

Table 2. Comparison of existing tiling approaches.
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Source Technique Result Limitation

Dynamic adaptive HTTP

streaming (DASH).

Integer linear programs

(ILPs).

Artificial Neural Networks

(ANN).

Saved 76% bandwidth in

comparison to the non-tiling

scheme.

Saved 52% downloaded volume

in comparison to fixed tiling

schemes.

A fixed tiling scheme requires tile
selection algorithms.

Dynamic adaptive HTTP

streaming (DASH).

An adaptation algorithm first

chooses the Quality

Emphasized Region (QER)

of the viewport’s video-based

left and the Quality

Emphasis Center (QEC) of

the available QERs.

Enable High-quality service with

high interactivity with HMD with

low management required from

VR providers.

Improved adaption algorithms are
required to predict head movement,
as well as a new video encoding
approach to do quality-differentiated
encoding for high-resolution videos.

Dynamic adaptive HTTP

streaming (DASH).

Heuristic algorithm: Multicast

Virtual Reality streaming

algorithm (MVR).

Increased video bitrates (≤46%)

for video tiles in users’

viewports.

Require a better tile weighting
approach with data-driven
probabilistic as well as an improved
rate adaption algorithm.

MPEG-DASH SRD.

hierarchical resolution

degrading

hexaface sphere projection.

72% bandwidth savings.

Improve performance with an
adaptive rate allocation method for
tile streaming based on available
bandwidth.

Variable-sized tiling scheme.

A new quality model for 360°

videos captures the factors

that affect the QoE of 360°

video including Difference in

depth-of-field (DoF), Relative

viewpoint-moving speed and

Change in scene luminance.

The same PSPNR was obtained with
41–46 percent reduced bandwidth
consumption than .

The 360JND model is based on the
results of a survey in which the
values of 360° video-specific
characteristics were varied
individually.
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Source Technique Result Limitation

Higher sphere-to-2D

projection efficiency.

The ffmpeg360 program

transcodes 360-degree

videos and assesses the

quality of 360-degree videos

based on user head

movement patterns.

Created collection of views

with the rectilinear projection

referred to as “miniview”,

which have smaller FOVs

than cube faces, hence able

to save encoded 360-degree

videos’ storage size while

maintaining the quality.

Saved up to 16% encoded video size
without much quality loss.

Fixed tiles, each miniview might well
be encoded into segments
individually, and the streaming client
could request these segments as
needed.

Adapt sidelink.

Weighted tile allocation.

Two-stage optimization

technique.

Dai, Yue  formulated optimization
problems based on the interaction
between tile quality level selection,
sidelink sender selection, and
bandwidth allocation to optimize the
overall utility of all users.

When the number of groups is
increased from 10 to 50, the tile
quality degrades because less
bandwidth can be provided to each
group as the number of groups
grows.

Variable-sized tiling scheme.

Adapt MEC cache usage.

ILP-based technique for

determining the best cache

tile configuration on the MEC

server.

OpCASH obtained more than 95
percent VP coverage from cache after
only 24 views of the video. When
compared to a baseline that
illustrates standard tile-based
caching, OpCASH reduces data
fetched from content servers by 85%
and overall content delivery time by
74%.

Improve real-time tile encoding
features on content servers by
including tile quality selection in the
ILP formulation and increasing the
variable quality level tiles streaming
in. Next, in a lab scenario, interact
with many edge nodes using real-
world user testing to achieve the
biggest benefit at the edge layer.

4. Viewport-Based Streaming

In the case of 360-degree video, it would be a waste of network resources to transmit the entire panoramic content as the

users typically only see the scenes in the viewport. The bandwidth requirement can be decreased, and transmission

efficiency could be improved by identifying and transmitting the current viewport content and the predicted viewport

corresponding to the head movement of users. Similar to the tiling technique in the previous section, the server contains a

number of video representations that range not just in bitrate but also in the quality of various scene areas. Then, the

region of the viewport is dynamically selected and streams in the best quality while the other regions are in lower quality

or not being delivered at all to reduce the bandwidth transmission. In other words, the highest bitrate is assigned to tiles in

users’ viewports, while some other tiles possess bitrates that are proportionate to the likelihood that users may switch

viewports, which is also similar to DASH. However, the number of adaption variants of the same content increases

dramatically to smooth the viewport-switching due to the sudden head movements. As a result, storage is sacrificed, and

the transmission rate increases.

Ribezzo, De Cicco  proposed a DASH 360° Immersive Video Streaming Control System which consists of control logic

with two cooperating components: quality selection algorithm (QSA) and view selection algorithm (VSA) to dynamically

select the demanded video segment. The QSA functions similarly to traditional DASH adaptive video streaming algorithms

whereas VSA aims to identify the proper view representation based on the current head position of the users. Ref. 

reduced segments bitrate around 20% with improved visual quality. In , the adaptation algorithm first selects the Quality

Emphasized Region (QER) of the video based on the viewport center and the Quality Emphasis Center (QEC) of the
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available QERs, hence providing high interactive service to head-mounted device (HMD) users with low management.

However, improved adaption algorithms are required to predict head movement, as well as a new video encoding

approach to do quality-differentiated encoding for high-resolution videos.

High responsiveness and processing power are required to adapt to rapid changes in viewports and viewport prediction to

ensure smooth viewport switching with accurate prediction. Many viewport prediction approaches have been developed to

cover the demands, such as historical data-driven probabilistic, popularity-based, deep content analysis, and so on as

summarized in Table 3.

Table 3. Viewport prediction scheme of the viewport adaptive streaming approach.

Source
Viewport
Prediction
Scheme

Descriptions

Historical
viewport

movement

Prediction with Linear Regression (LR) and Ridge Regression (RR) using viewing data
collected from 130 users.

Cross-user
similarity

Cross-Users Behaviors (named CUB360) based on k-NN and LR take into account both the
user’s specific information and cross-user behavior information to forecast future viewports.

Popularity-based
model

Predict based on the popularity of the tiles where they are visited with a higher frequency at a
certain time, might be due to the nature of the video like interesting content along with the
evaluation of the rate-distortion curve for each tile.

Popularity-based
model

Similar to  and provide the popularity of each shown viewport (heatmap) and rate-distortion
function for each tile-representation for the interested segments periodically to clients during
each downloading.

Content Analysis
+ Popularity

Sensor- and content-based predictive mechanisms, similar to  with linear regression (LR).
When a transition due to insufficient bandwidth occurs, the tile popularity is solely used to
determine the tile quality levels.

k-Nearest
Neighbors (k-NN)

Improve the accuracy of traditional linear regression (LR) with cross-users watching behaviors
that take advantage of prior users’ data by identifying common scan paths and allocating a
higher chance to future FoVs from those users.

Deep content
analysis

Concurrently leverage sensor characteristics (HMD orientations) and content-related
information (image saliency maps and motion maps) with LSTM to predict the viewer fixation
in the future. The estimated viewing probability for each equirectangular tile may then be used
in the quality optimization based on probability.

3D-CNN
(convolutional

neural networks)

3D-CNN to extract the Spatio-temporal features (saliency, motion, and FoV info) from the
videos, has better performance than .

Content Analysis
+ Cross-user

similarity

PARIMA, which is a hybrid of Passive Aggressive (PA) Regression and Auto-Regressive
Integrated Moving Average (ARIMA) times series models to predict viewports based on users’
behavior and the YOLOv3 algorithm on the stitched image to recognize the objects and
retrieve their bounding box coordinates in each frame.

Content Analysis
+ Cross-user

similarity

2 dynamic viewport selection (DVS) which changes the streaming areas depending on content
complexity and user head movements to assure viewport accessibility and non-delay visual
views for virtual reality users. To achieve higher accuracy, DVS1 focuses on the adjusted
prediction distance between two prediction mechanisms whereas DVS2 selects the tiles for
the following segment based on the modified prediction difference between actual and
predicted perspectives based on content complexity variations.

5. Machine Learning

Machine learning (ML) is used to predict bandwidth and views as well as increase video streaming bitrate to improve the

Quality of Experience (QoE) . Table 4 summarizes the many papers that use machine learning to increase QoE in

video streaming applications. The proposed scheme in  significantly reduces bandwidth consumption by 45% with less

than a 0.1% failure ratio while minimizing performance degradation with Naïve linear regression (LR) and neural networks

(NN). Next, Dasari, Bhattacharya  developed a system called PARSEC (PAnoRamicStrEaming with neural Coding) to

reduce bandwidth requirements while improving video quality based on super-resolution, where the video is significantly

compressed at the server and the client runs a deep learning model to enhance the video quality. As for this, although

Dasari, Bhattacharya  successfully reduce the bandwidth requirement and enhance the quality of the video, deep

learning is large in models. It also results in the slowest inference rate. Furthermore, Yu, Tillo  present a method for

adapting to changing video streams with the combination of the Markov Decision Process and Deep Learning (MDP-DL).
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In Filho, Luizelli , a strategy for adapting to fluctuating video streams (the Reinforcement Learning (RL) model) is

researched. Next, a Recurrent Neural Network-Long Short-Term Memory(RNN-LSTM) and Logistic Regression-Ridge

Regression(LR-RR)) to predict bandwidth and viewpoint is researched by Qian, Han  and Zhang, Guan . To increase

QoE, Vega, Mocanu  suggested a Q-learning technique for adaptive streaming systems. In , the deep reinforcement

learning (DRL) model uses eye and head movement data to assess the quality of 360-degree videos.

Table 4. Machine learning (ML)-based approaches.

Source Technique Scope

Naïve linear regression (LR).

Neural networks (NN).
Motion detection and prediction.

Deep neural networks (DNN).

Neural-aware adaptive bitrate (ABR) algorithm (§IV).
Reduce bandwidth requirement and Improve
video quality.

Markov Decision Process-Deep Learning (MDP-DL).
Improve Variable bitrate (VBR).

Reinforcement Learning (RL) model. Improve Adaptive VR Streaming.

Logistic Regression-Ridge Regression (LR-RR).
Viewpoint prediction and Bandwidth prediction.

Recurrent Neural Network-Long Short-Term Memory

(RNN-LSTM). Viewpoint prediction and Bandwidth prediction.

Q-Learning Reinforcement Learning (RL).
Improve constant bitrate (CBR).

Markov decision process (MDP).

Deep reinforcement learning (DRL)-based algorithm.
Viewpoint prediction and Optimal bitrate
allocation.

Encoder-Decoder Based LSTM Model.

Model Predictive Control (MPC)-based rate adaptation.
Viewpoint prediction and Rate adaptation.

Markov Decision Process (MDP).

Deep-Q-Network (DQN).
Reactive caching and Viewport prediction.

Kan, Zou  deploys RAPT360, a reinforcement learning-based Rate Adaptation with adaptable prediction and tiling for

360-degree video streaming, addresses the needs for precise viewport prediction and efficient bitrate allocation for tiles.

Younus, Shafi  presents an Encoder-Decoder based Long-Short Term Memory (LSTM) model that transforms data

instead of receiving direct input to more correctly capture the non-linear relationship between past and future viewport

locations to predict future user movement. To ensure that the 360 films sent to end-users are of the highest possible

quality, Maniotis and Thomos  propose a reactive caching scheme that uses the Markov Decision Process (MDP to

determine the content placement of 360 ◦  videos in edge cache networks and then using the Deep Q-Network (DQN)

algorithm, a variant of Q-learning to determine the optimal caching placement and cache the most popular 360◦ videos at

base quality along with a virtual viewport in high quality.
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6. Comparison between Techniques

Firstly, the DASH framework, tiling and viewport-adaptive techniques are correlated to each other as most of the tiling and

viewport-adaptive techniques are using the DASH framework. Some of the tiling techniques  and the viewport-

adaptive approach  are all using DASH to stream the areas covered by users’ FOV in high quality while some

other tiles are streamed in lower quality. The differences between these techniques are the mapping projection, encoding,

tiling scheme and tile selection algorithm.

However, there are several limitations to the tiling and viewport-adaptive method. Firstly, more bandwidth is required to

stream a screen-size movie at viewport devices as compared to a typical 2D laptop screen at the same quality. As

illustrated in Figure 4, streaming a viewport region with a width of 110 degrees is still significantly wider than a normal

laptop screen with a width of 48 degrees roughly . Furthermore, most tiling solutions employ the viewport-driven

technique, in which only the viewport that is the viewed area of the viewer is streamed in high resolution, yet it may also

suffer from a significant delay due to the switching of the viewport, which might be due to the video content from the other

viewports are not being delivered at the moment. So, when the user abruptly switches his/her viewport during the display

time of the current video segment, a delay occurs. Next, as human eyes have a low delay and error tolerance, any

viewport prediction errors can cause rebuffering or quality degradation and result in a break of immersion and poor user

Quality of Experience (QoE). Furthermore, to accommodate users’ random head movements, causing the need to

increase the number of tiles of the video has and thus the video size increases significantly. Therefore, the implications of

smooth viewport switching, minimized delays, with lessened video size and bandwidth should be addressed during 360-

degree video delivery.

DASH, tiling and viewport-adaptive are focused on improving the streaming efficiency of the 360-degree video with lower

bandwidth by streaming the demanded region of the 360-degree video with higher quality. On the other hand, Machine

Learning (ML) techniques not only focus on lowering the bandwidth but also focusing on the improvement of QoE of the

streaming. The proposed scheme ML also improves video quality, improves bitrate and predicts viewpoint in real-time

which as is also effectively reduces bandwidth consumption while minimizing performance degradation. Some of the tiling

and viewport-adaptive methods also use some algorithms such as Artificial Neural Network , Heuristic algorithm  and

adaptive algorithm  to optimize tile selection and predict the users’ viewpoint.
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