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Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be

applied in cancer immunotherapy without in-depth knowledge of tumor antigens.

oncolytic virus tumor microenvironment antitumor immune response delivery

genetic modification

| 1. Introduction

The first hints of the possible anticancer effects of viruses occurred during the early 20th century, with evidence of
tumor regression in patients with simultaneous viral infections L. Such reports persisted until the 1950s, when the
primary clinical studies on the tumor-killing ability of viruses that form the cornerstone of today’s achievements
were carried-out [, Since then, various preclinical and clinical studies have attempted to optimize the viruses for
increasing specificity, efficiency, and reducing adverse events (AEs), which led to the introduction of oncolytic
virotherapy (OVT) as emerging immunotherapy of cancers . Oncolytic virus (OVs) or cancer-killing viruses are
defined as natural or genetically modified viruses that are able to selectively proliferate in tumor cells without
damaging normal cells . This natural tropism of some viruses to tumors is due to an increase in some receptors
(such as CD54) on the surfaces of tumor cells or defects of tumor cells to induce innate immunity against viruses
(8. So far, various DNA and RNA OVs have been used to treat cancer 8. The majority of DNA viruses are double-
stranded, while RNA viruses are predominantly single-stranded. The advantages of double-stranded DNA viruses
are their large genomes which enable them to carry large eukaryotic transgenes and high fidelity DNA polymerase,
maintaining the virus genome integrity during replication . Regarding their relatively small size, RNA viruses
cannot encode large transgenes. However, they are better candidates in the delivery system due to less induction
of immune responses [, Several RNA viruses and DNA viruses, including reovirus (RV), Seneca Valley virus
(SVV), poliovirus (PoV), parvovirus (PV), vaccinia virus (VACV), and herpes simplex virus (HSV) have the ability to
cross the blood-brain barrier (BBB) enabling their use in brain tumors EIZQILLI2L3I14]  OVT started with wild-type
viruses such as Newcastle disease virus (NDV), myxoma virus (MYXV), SVV, PV, coxsackievirus (CV), and RV [,
However, genetic modification was a revolutionary achievement in the OVT providing greater specificity and
efficacy against tumors with higher safety for healthy cells 22, Genetically modified OVs (GMOVs) mainly include
PoV, measles virus (MeV), adenovirus (AdV), VACV, HSV, and vesicular stomatitis virus (VSV) Bl. The first GMOV
was HSV-1, introduced in 1991 18, So far, three OV-based drugs have been approved for cancer treatment, the
first of which was an unmodified ECHO-7 virus called Rigavirus which was approved in 2004 in Lativa under the

brand name Rigvir for melanoma 2. However, the approval was withdrawn in 2019 due to its low efficacy. The two
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other approved OVs are GMOVs include Oncorine (H101 adenovirus), which obtained approval for head and neck
cancer in China in 2005 B, and T-VEC or Imlygic (HSV-1), which was approved in 2015 in the United States and
Europe for non-surgical melanoma (8. The efficacy of OVs on many cancers, such as melanoma, glioblastoma,
triple-negative breast cancer (TNBC), head and neck cancers, and colorectal cancers has been elucidated 121120
[21[22123] and a large number of clinical trials are currently evaluating the wild-type and GMOVs efficiency and
safety in various cancers which are listed in Table 1. Along with the therapeutic approaches, GMOVs expressing
reporter genes can be applied in the diagnosis of various cancers by positron emission tomography or single-

photon emission computed tomography [24],

Table 1. Oncolytic viruses that reached the clinical phase.

anolytlc Modification Sl Cancer Type (Clinical Trial Phase) Ref.
Virus Therapy
[25]
ICIs (anti-PD1, [26]
anti-CTLA4 Melanoma (I, 1), Sarcoma (I, I1) -
Virulence gene ICP34.5

and ICP47 are deleted and 28]
LU ?nl\geiidp gene1s Breast cancer (l), Head and neck [29]
- cancer (I, I/ll), Gastrointestinal cancers EY
(1), Melanoma (1, 11, 1) 31]
[32]
HSV-1 _ Oral SCC (1), Pediatric extracranial [33]
. . cancers (1) [34]

Virulence gene ICP34.5 is
deleted Chemothera Chemo-resistant metastatic colon [35]
Py cancer (1, I/11) [26]

Virulence gene ICP34.5 is
deleted and ICP6 gene is Radiotherapy Glioblastoma (1) 37]

inactivated
Naturally mutated - Pancreatic cancer (l) [38]
Autologous tumor lysate 39]
and IL-2 is added - Stage Il of Melanoma (1)

NDV Naturally attenuated - Advanced solid tumors (1) [49]
One-cycle replicating . [41]
cytopathogenic NDV Glioblastoma (I/11)

ICls (anti-PD1) NSCLC (Ib), Bladder cancer (Ib) [42]
CvAzl i i Bladder cancer (Il), Advanced [43]
melanoma (I1) [44]
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Oncolytic e . Combination - .
Virus Modification Therapy Cancer Type (Clinical Trial Phase) Ref.
[ﬁ]
Advanced solid tumors (1), Recurrent [46]
i glioma (l), Extracranial solid tumors (1), [47]
Melanoma (1), Pancreatic 48]
adenocarcinoma (I1) [49]
RV i Advanced solid Fumors (), Ovarian 50]
cancer (llb), Peritoneal cancer (lIb), [51]
Melanoma (Il), Metastatic breast 52]
Sl cancer (1), Advanced head and neck 53]
cancer (I/Il) Pancreatic [54]
adenocarcinoma (I1)
Radiotherapy Advanced solid tumors (I) [55]
Recombinant oral PoV
Sabin-1:
the internal ribosome entry . [56]
PoV site (IRES) is replaced with Recurrent glioblastoma (1)
the IRES from human
rhinovirus-2: nonpathogenic
AdV Ovarian Cancer (I), Gynecologic [57]
AdV3 fiber knob is inserted : . . Gy a (58]
. - malignancies (I), Advanced solid
into the backbone of AdV5, [59]
. tumors (1)
A 24-base pair in the E1
gene is deleted: CRAd e .
GM-CSF gene is inserted Chemotherapy Chemo-resistant advanced solid [57]
tumors (1)
RGD motif is inserted into
thg AdVS flber_ knob: Chemo-resistant advanced solid [60]
Integrin targeted instead of - tumors (1)
CAR dependence
GM-CSF gene is inserted
S Sl Radiothera Metastatic prostate cancer (1) (611
(PSA)-selective Py P
Conditionally replicating i Bladder Cancer (I, II), Head and neck [62]
GM-CSF expressing AdV cancers (1) [63]
Human telomerase reverse
_transcrlr?tase (hTERT) is . Advanced solid tumors (1) [64]
inserted: tumor selective
replication
E1B-deleted AdV: selective Chemotherapy Advanced solid tumors (), Malignant [65]
replication in P53-deficient glioma (I), Recurrent head and neck [66]

cells

cancer (I, 1), Gastrointestinal cancers
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Oncolytic e . Combination - .
Virus Modification Therapy Cancer Type (Clinical Trial Phase) Ref.

(), Colorectal cancer (1), Advanced o7]
sarcoma (I/Il), (68]

Chimeric AdV:

Ad11p/Ad3, [69]
AdVS- cytosine RCC (I), NSCLC (), Colorectal cancer [70]

deaminase/HSV-1 - (), Urothelial cancer (l),Prostate cancer (73]

thymidine kinase: suicide (1,10, Glioma (1) 2l
gene for safety
[73]
GM-CSF gene is inserted Metastatic melanoma (1), HCC (I, Il), [74]
Thymidine kinase gene is Chemotherapy Colorectal cancer (I), Ewing sarcoma [75]
deleted (), neuroblastoma (1), [76]
FCUL transgene is inserted:
metabolize 5-FC to 5-FU- Chemotherapy Chemo-resistant liver tumors (1) 7]
VACV monophosphate
Thymidine kinase gene and
hemagglutinin gene and Chemotherapy Head and neck cancer (1), Colorectal (28]
F14.5 gene are deleted [79]
Luciferase gene, beta I a0
; 2 ' . [80]
galactosidase, and beta- radiotherapy Advanced solid tumors (1)
glucuronidase are inserted
Genetically modified to
MeV express carcinoembryonic - Ovarian cancer (I) [81]
antigen timulating
SV Neuroblstoma (), rhabdomyosarcoma 82] nphocyte-
_ - . . . [83]
(1), Neuroendocrine malignancies (1) Jirus A21:
Genetically modified 1ditionally
expressing costimulatory oy tor; RCC.
Poxvirus and adhesion molecules - Colorectal cancer (1), Melanoma (1) (64] _
such as B7-1, LFA-3, ICAM- ; >-FC. 5-
1 function-
PV - - Glioblastoma (I/11) (65]

OVs can Kkill the tumor cells in the following main ways: 1. OVs infect and replicate specifically in tumor cells
leading to direct lysis of tumor cells. Malignant cells have defects in antiviral responses allowing OVs to replicate
and lyse malignant cells [7]; 2. OVs can induce different types of immunogenic cell death (ICD), including necrosis,
necroptosis, immunologic apoptosis, pyroptosis, and autophagy. Tumor cell death or lysis causes the release of
tumor-associated antigens (TAA) and neoantigens (TAN) and damage-associated molecular patterns (DAMPS),
which increase inflammation and improve the efficacy of immunotherapy [25,26]; 3. OVs, especially GMOVSs, can
enhance tumor antigen presentation and prime the immune response in the tumor microenvironment (TME) by

induction of antiviral responses, inflammation, cytokine production, and expression of costimulatory molecules 8]
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[71: 4. The infection of vascular endothelial cells (vECs) by OVs destroys tumor vasculature, resulting in tumor

necrosis and the infiltration of immune cells into the TME 881,

Accordingly, a considerable part of OVT effects on tumors is achieved by changing the TME from an
immunosuppressive to the immunostimulatory microenvironment and affecting the tumor vasculature and matrix.

Moreover, the success of OVT in solid tumors largely depends on the OV access to the tumor.

| 2. Oncolytic Virus Effects on TME

The long-term effects of immunotherapy in solid tumors are mostly unsatisfactory, partly due to the
immunosuppressive condition of TME and low infiltration of immune cells. TME consists of tumor cells, tumor-
associated fibroblasts (TAF), VEC, mesenchymal cells, myeloid-derived suppressor cells (MDSCs), and tumor-
infiltrating leukocytes (TILs), such as T cells, B cells, dendritic cells (DCs), natural killer (NK) cells, macrophages,
and neutrophils 2. The presence of exhausted cytotoxic T lymphocytes (CTLs), helper T-cells (THs), and NK cells,
as well as a large number of regulatory T-cells (Tregs), tolerogenic DCs, MDSC, and M2-macrophages, induce
immunosuppressive milieu in the TME through inhibitory ligands and secretion of inhibitory cytokines such as
interleukin (IL)-10, tumor growth factor (TGF)-B, IL-35, and IL-27 9. OVs can change the paradigm in the TME

and convert cold tumors to hot ones by various mechanisms.

2.1. OV-Mediated Lysis of Tumor

Direct oncolysis activity of OVs is the first stimulus of the immune response in the TME [, Overexpression of
surface receptors such as CD46, CD54, CD155, CD55, and integrins enhances OVs' preferable entry to tumor
cells [22I[931R41951%6] |n normal cells, viral components known as pathogen-associated molecular patterns (PAMPs)
are sensed by pattern recognition receptors (PRRs) and induce the production of interferon (IFN)-1 through the
Janus kinase signal transducer and activator of transcription (JAK-STAT) and Nuclear Factor (NF)-kB signaling
pathways. IFN-I activates the protein kinase RNA-activated (PKR) signaling pathway leading to protein synthesis
blockade and viral clearance 2. Tumor cells have defects in antiviral pathways such as IFN-I, PKR, and JAK-
STAT, resulting in the survival and proliferation of OVs, specifically in tumor cells 28119911001 | ysis of OV-infected
cells releases a very diverse TAAs that prime immune cells to induce a local and systemic vaccination against the
released TAAs 21, While many cancer immunotherapies depend on identifying and targeting TAAs (one or several
limited TAAs), OVT can vaccinate patients against the entire TAA and TAN treasure of cancer through a
phenomenon called antigen/epitope spreading. Hence, OVT could be considered a kind of personalized
immunotherapy. Interestingly enough, recent studies have reported the increase of TAA- and TAN-specific T cells in
the blood of patients with melanoma and ovarian cancer treated with OVs, suggesting that the in situ OV injection
might enhance the systemic antitumor response [L0L[102I103] Thjs finding raises hopes for the anti-metastatic
effects of OVT. TANs are assumed to be derived from high mutational burden of tumor cells 104105 These
immunogenic TANs are capable of eliciting tumor-specific immune responses and serve as ideal targets in
immunotherapy [1941[105]1106] However, TAN-specific T cells are not activated enough in cancer patients due to the

poor presentation of TANs, lack of costimulatory signals, and abundance of inhibitory immune checkpoints in the
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TME 1981 Ovs, especially armed OVs, have been shown to activate the TANs-specific T cells by increasing the
access of APCs to the TANs (epitope spreading), enhancing the TANs processing and presentation by APCs, and
providing costimulatory signals [L08II2071108] - Accordingly, Wang et al. demonstrated that VACV armed with PD-L1
inhibitor and GM-CSF enhanced TANs presentation and activated systemic T cell responses against dominant and
subdominant (cryptic) neoantigens 19, so OVT could potentiate the antitumor immune responses by activating the

TANSs-specific T cells.

2.2. Induction of Immunologic Cell Death

Apart from the direct lysis of cancer cells, OVs can induce various ICDs in virus-infected cells through induction of
endoplasmic reticulum (ER) stress 199, |nfection of tumor cells with AdV, CV-B3, MeV, VACV, HSV, and H1-PV has
been shown to induce ICD and autophagy in cancer cells B9 |CD is characterized by the expression and
release of DAMPs such as ATP, uric acid, heat shock proteins, ecto-calreticulin, and HMGB1, as well as
extracellular proinflammatory cytokines (112, Extracellular ATP acts as a danger signal which attracts and activates
DCs 118 HMGB1 and calreticulin can activate DCs via toll-like receptor (TLR)-4 signaling 114, In addition,
calreticulin neutralizes CD47 receptors on the tumor cell surface, and thereby, increases the tumor cell engulfment
by macrophages (131, OV-mediated ICD, along with other ICD-inducing methods such as chemotherapy and
radiotherapy, break immune tolerance against the tumor and increase lymphocyte and neutrophil infiltration,

leading to antitumor response and more survival in preclinical models 119,

2.3. Stimulation of Antitumor Immune Response

Besides the release of DAMPs, cancer cell death also causes the release of viral PAMPs in the TME. These
PAMPs mainly include DNA, ssRNA, dsRNA, proteins, and capsid contents that activate innate immune cells
through stimulating PRRs such as retinoic acid-inducible gene (RIG)-1, cyclic GMP-AMP synthase (cGAS), and
stimulator of interferon genes (STING) 112l DCs, as a bridge between the innate and adaptive immune systems,
play a critical role in generating the antitumor response. DCs elicit a specific response against TAA-expressing
tumor cells by engulfing OV-infected cells and cross-presentation of TAAs to CD8+ T and CD4+ T cells 228l On the
other hand, the OVs-derived PAMPs cause maturation of myeloid and plasmacytoid DCs, leading to the production
of proinflammatory cytokines such as IFN-q, IFN-y, IL-12, IL-1B, IL-6, IL-8, and tumor necrosis factor (TNF)-a 2
[L17][118] These functional DCs, mainly CD103+ and BATF3+, prime CD8+ T cells against tumors 222 |nnate
immune signaling, such as the cGAS-STING pathway, plays a pivotal role in the recruitment of lymphocytes to the
TME through the expression of CXCL9 and CXCL10 129 parallel to DCs, innate lymphoid cells (ILCs) also
respond to the released PAMPs leading to higher inflammation and antitumor responses 8. As an example,
arenavirus-infected melanoma cells produce a high level of CCL5, leading to recruitment of NK cells and
melanoma regression 12 Interestingly, in situ antitumor responses following OVT are mainly mediated by IFN-I,
whereas OVT-mediated systemic antitumor responses appear to be mediated by IFN-II excreted from TILs 22, |n
general, the innate immune response to OVs increases lymphocyte infiltration, antigen presentation, and activation
of the antitumor adaptive immune response through an IFN-mediated mechanism 8. T cell activation requires at

least three consecutive signals (peptide-MHC, CD28-B7, and stimulatory cytokines), all of which are defected in
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TME to escape adaptive immune responses. OVs, as potent immunogens, induce all three signals needed to
activate T cells (18, OVT increases the expression of B7-1/2 and CD40 on the surface of DCs and induces the
expression of MHC-peptide on the surface of tumor cells leading to optimal activation of T cells 123, Conversion of
the TME phenotype from immunologically inert to immunologically active status can augment the effectiveness of

the immunotherapeutic modalities.
2.4. Effect of OV on Tumor Vasculature

Some OVs, such as HSVs and VACVs, can target tumor stromal cells, such as TAFs, VECs, and pericytes, thereby
destroy the tumor’s complex structure 8, TGF-B secreted by tumor cells makes TAFs susceptible to OV infection
(224 Ovs also reduce the fibrosis in the TME. VSV has been shown to infect hepatic stellate cells (HSCs), leading
to tumor fibrosis reduction 231, OVs affect the tumors vasculature by replicating in the tumor VECs. Vascular
endothelial growth factor (VEGF) secreted from tumor VECs suppresses the antiviral response and allows the
replication of OVs in endothelial cells through ERK1/2 and STAT3 pathways 128 Following infection and
replication, the OVs reduce VEGF production from the infected cell resulting in angiogenesis prevention in the
tumor. OVs’ antiangiogenic properties further limit tumor growth by decreasing the oxygen and nutrition supplies &,
VACV is shown to replicate in the tumor VEC and cause vascular destruction and ischemia 8. Neutrophil
infiltration into the TME seems essential for OVT-mediated ischemia through the induction of thrombosis in small
tumor vessels B8l |t has been shown that the administration of JX-594 in hepatocellular carcinoma destroyed
tumor vasculature without affecting patients’ normal vessels B8l Thus, targeting of stromal cells by OVs increases
the infiltration of immune cells into the TME, and converts immuno-deserted or immune-excluded tumors (with low
TILs) into immune-infiltrated tumors 8. OVT-mediated changes in the TME, including lymphocyte infiltration into
the tumor, enhancement of TAAS/TANs presentation, and heating the TME can improve other immunotherapies

such as adoptive cell therapy (ACT) and immune checkpoint inhibitors (ICls) 2,
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