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Oncolytic virotherapy (OVT) is a promising approach in cancer immunotherapy. Oncolytic viruses (OVs) could be

applied in cancer immunotherapy without in-depth knowledge of tumor antigens.

oncolytic virus  tumor microenvironment  antitumor immune response  delivery

genetic modification

1. Introduction

The first hints of the possible anticancer effects of viruses occurred during the early 20th century, with evidence of

tumor regression in patients with simultaneous viral infections . Such reports persisted until the 1950s, when the

primary clinical studies on the tumor-killing ability of viruses that form the cornerstone of today’s achievements

were carried-out . Since then, various preclinical and clinical studies have attempted to optimize the viruses for

increasing specificity, efficiency, and reducing adverse events (AEs), which led to the introduction of oncolytic

virotherapy (OVT) as emerging immunotherapy of cancers . Oncolytic virus (OVs) or cancer-killing viruses are

defined as natural or genetically modified viruses that are able to selectively proliferate in tumor cells without

damaging normal cells . This natural tropism of some viruses to tumors is due to an increase in some receptors

(such as CD54) on the surfaces of tumor cells or defects of tumor cells to induce innate immunity against viruses

. So far, various DNA and RNA OVs have been used to treat cancer . The majority of DNA viruses are double-

stranded, while RNA viruses are predominantly single-stranded. The advantages of double-stranded DNA viruses

are their large genomes which enable them to carry large eukaryotic transgenes and high fidelity DNA polymerase,

maintaining the virus genome integrity during replication . Regarding their relatively small size, RNA viruses

cannot encode large transgenes. However, they are better candidates in the delivery system due to less induction

of immune responses . Several RNA viruses and DNA viruses, including reovirus (RV), Seneca Valley virus

(SVV), poliovirus (PoV), parvovirus (PV), vaccinia virus (VACV), and herpes simplex virus (HSV) have the ability to

cross the blood-brain barrier (BBB) enabling their use in brain tumors . OVT started with wild-type

viruses such as Newcastle disease virus (NDV), myxoma virus (MYXV), SVV, PV, coxsackievirus (CV), and RV .

However, genetic modification was a revolutionary achievement in the OVT providing greater specificity and

efficacy against tumors with higher safety for healthy cells . Genetically modified OVs (GMOVs) mainly include

PoV, measles virus (MeV), adenovirus (AdV), VACV, HSV, and vesicular stomatitis virus (VSV) . The first GMOV

was HSV-1, introduced in 1991 . So far, three OV-based drugs have been approved for cancer treatment, the

first of which was an unmodified ECHO-7 virus called Rigavirus which was approved in 2004 in Lativa under the

brand name Rigvir for melanoma . However, the approval was withdrawn in 2019 due to its low efficacy. The two
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other approved OVs are GMOVs include Oncorine (H101 adenovirus), which obtained approval for head and neck

cancer in China in 2005 , and T-VEC or Imlygic (HSV-1), which was approved in 2015 in the United States and

Europe for non-surgical melanoma . The efficacy of OVs on many cancers, such as melanoma, glioblastoma,

triple-negative breast cancer (TNBC), head and neck cancers, and colorectal cancers has been elucidated 

, and a large number of clinical trials are currently evaluating the wild-type and GMOVs efficiency and

safety in various cancers which are listed in Table 1. Along with the therapeutic approaches, GMOVs expressing

reporter genes can be applied in the diagnosis of various cancers by positron emission tomography or single-

photon emission computed tomography .

Table 1. Oncolytic viruses that reached the clinical phase.
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Oncolytic
Virus Modification Combination

Therapy Cancer Type (Clinical Trial Phase) Ref.

HSV-1

Virulence gene ICP34.5
and ICP47 are deleted and

human GM-CSF gene is
inserted

ICIs (anti-PD1,
anti-CTLA4

Melanoma (I, II), Sarcoma (I, II)

-
Breast cancer (I), Head and neck

cancer (I, I/II), Gastrointestinal cancers
(I), Melanoma (I, II, III)

Virulence gene ICP34.5 is
deleted

-
Oral SCC (I), Pediatric extracranial

cancers (I)

Chemotherapy
Chemo-resistant metastatic colon

cancer (I, I/II)

Virulence gene ICP34.5 is
deleted and ICP6 gene is

inactivated
Radiotherapy Glioblastoma (I)

Naturally mutated - Pancreatic cancer (I)

NDV

Autologous tumor lysate
and IL-2 is added

- Stage III of Melanoma (I)

Naturally attenuated - Advanced solid tumors (I)

One-cycle replicating
cytopathogenic NDV

- Glioblastoma (I/II)

CVA21 -

ICIs (anti-PD1) NSCLC (Ib), Bladder cancer (Ib)

-
Bladder cancer (II), Advanced

melanoma (II)
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Oncolytic
Virus Modification Combination

Therapy Cancer Type (Clinical Trial Phase) Ref.

RV -

-

Advanced solid tumors (I), Recurrent
glioma (I), Extracranial solid tumors (I),

Melanoma (II), Pancreatic
adenocarcinoma (II)

Chemotherapy

Advanced solid tumors (I), Ovarian
cancer (IIb), Peritoneal cancer (IIb),

Melanoma (II), Metastatic breast
cancer (II), Advanced head and neck

cancer (I/II) Pancreatic
adenocarcinoma (II)

Radiotherapy Advanced solid tumors (I)

PoV

Recombinant oral PoV
Sabin-1:

the internal ribosome entry
site (IRES) is replaced with

the IRES from human
rhinovirus-2: nonpathogenic

- Recurrent glioblastoma (I)

AdV
AdV3 fiber knob is inserted
into the backbone of AdV5,

A 24-base pair in the E1
gene is deleted: CRAd

GM-CSF gene is inserted

-
Ovarian Cancer (I), Gynecologic
malignancies (I), Advanced solid

tumors (I)

Chemotherapy
Chemo-resistant advanced solid

tumors (I)

RGD motif is inserted into
the AdV5 fiber knob:

Integrin targeted instead of
CAR dependence

GM-CSF gene is inserted

-
Chemo-resistant advanced solid

tumors (I)

Prostate-specific antigen
(PSA)-selective

Radiotherapy Metastatic prostate cancer (I)

Conditionally replicating
GM-CSF expressing AdV

-
Bladder Cancer (I, II), Head and neck

cancers (I)

Human telomerase reverse
transcriptase (hTERT) is
inserted: tumor selective

replication

- Advanced solid tumors (I)

E1B-deleted AdV: selective
replication in P53-deficient

cells

Chemotherapy Advanced solid tumors (I), Malignant
glioma (I), Recurrent head and neck

cancer (I, II), Gastrointestinal cancers
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HSV-1. Herpes simplex virus-1; ICP. Infected cell protein; GM-CSF. Granulocyte-macrophage colony-stimulating

factor; ICI. Immune-checkpoint inhibitor; PD1. Programmed cell death protein 1; CTLA4. cytotoxic T-lymphocyte-

associated protein 4; SCC. Squamous cell carcinoma; NDV. Newcastle disease virus; CVA21. Coxsackievirus A21;

NSCLC. Nonsmall-cell lung carcinoma; RV. Reovirus; PoV. Poliovirus; AdV. Adenovirus; CRAd. Conditionally

replicative adenoviruses; RGD. Arginine-Glycine-Aspartate; CAR. Coxsackievirus and adenovirus receptor; RCC.

Renal cell carcinoma; VACV. Vaccinia virus; HCC. Hepatocellular carcinoma; FCU1. Fusion suicide gene; 5-FC. 5-

fluorocytosine; 5-FU.5-Fluorouracil; MeV. Measles virus; SVV. Seneca Valley virus; LFA-3. Lymphocyte function-

associated antigen-3; ICAM-1. Intercellular adhesion molecule-1; PV. Parvovirus.

OVs can kill the tumor cells in the following main ways: 1. OVs infect and replicate specifically in tumor cells

leading to direct lysis of tumor cells. Malignant cells have defects in antiviral responses allowing OVs to replicate

and lyse malignant cells [7]; 2. OVs can induce different types of immunogenic cell death (ICD), including necrosis,

necroptosis, immunologic apoptosis, pyroptosis, and autophagy. Tumor cell death or lysis causes the release of

tumor-associated antigens (TAA) and neoantigens (TAN) and damage-associated molecular patterns (DAMPs),

which increase inflammation and improve the efficacy of immunotherapy [25,26]; 3. OVs, especially GMOVs, can

enhance tumor antigen presentation and prime the immune response in the tumor microenvironment (TME) by

induction of antiviral responses, inflammation, cytokine production, and expression of costimulatory molecules 

Oncolytic
Virus Modification Combination

Therapy Cancer Type (Clinical Trial Phase) Ref.

(II), Colorectal cancer (II), Advanced
sarcoma (I/II),

Chimeric AdV:
Ad11p/Ad3,

AdV5- cytosine
deaminase/HSV-1

thymidine kinase: suicide
gene for safety

-
RCC (I), NSCLC (I), Colorectal cancer

(I), Urothelial cancer (I),Prostate cancer
(I, II), Glioma (II)

VACV

GM-CSF gene is inserted
Thymidine kinase gene is

deleted
Chemotherapy

Metastatic melanoma (I), HCC (I, II),
Colorectal cancer (I), Ewing sarcoma

(I), neuroblastoma (I),

FCU1 transgene is inserted:
metabolize 5-FC to 5-FU-

monophosphate
Chemotherapy Chemo-resistant liver tumors (I)

Thymidine kinase gene and
hemagglutinin gene and
F14.5 gene are deleted
Luciferase gene, beta-

galactosidase, and beta-
glucuronidase are inserted

Chemotherapy
and

radiotherapy

Head and neck cancer (I), Colorectal
cancer (I)

Advanced solid tumors (I)

MeV
Genetically modified to

express carcinoembryonic
antigen

- Ovarian cancer (I)

SVV - -
Neuroblstoma (I), rhabdomyosarcoma
(I), Neuroendocrine malignancies (I)

Poxvirus

Genetically modified
expressing costimulatory
and adhesion molecules

such as B7-1, LFA-3, ICAM-
1

- Colorectal cancer (I), Melanoma (I)

PV - - Glioblastoma (I/II)
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; 4. The infection of vascular endothelial cells (vECs) by OVs destroys tumor vasculature, resulting in tumor

necrosis and the infiltration of immune cells into the TME .

Accordingly, a considerable part of OVT effects on tumors is achieved by changing the TME from an

immunosuppressive to the immunostimulatory microenvironment and affecting the tumor vasculature and matrix.

Moreover, the success of OVT in solid tumors largely depends on the OV access to the tumor.

2. Oncolytic Virus Effects on TME

The long-term effects of immunotherapy in solid tumors are mostly unsatisfactory, partly due to the

immunosuppressive condition of TME and low infiltration of immune cells. TME consists of tumor cells, tumor-

associated fibroblasts (TAF), vEC, mesenchymal cells, myeloid-derived suppressor cells (MDSCs), and tumor-

infiltrating leukocytes (TILs), such as T cells, B cells, dendritic cells (DCs), natural killer (NK) cells, macrophages,

and neutrophils . The presence of exhausted cytotoxic T lymphocytes (CTLs), helper T-cells (THs), and NK cells,

as well as a large number of regulatory T-cells (Tregs), tolerogenic DCs, MDSC, and M2-macrophages, induce

immunosuppressive milieu in the TME through inhibitory ligands and secretion of inhibitory cytokines such as

interleukin (IL)-10, tumor growth factor (TGF)-β, IL-35, and IL-27 . OVs can change the paradigm in the TME

and convert cold tumors to hot ones by various mechanisms.

2.1. OV-Mediated Lysis of Tumor

Direct oncolysis activity of OVs is the first stimulus of the immune response in the TME . Overexpression of

surface receptors such as CD46, CD54, CD155, CD55, and integrins enhances OVs’ preferable entry to tumor

cells . In normal cells, viral components known as pathogen-associated molecular patterns (PAMPs)

are sensed by pattern recognition receptors (PRRs) and induce the production of interferon (IFN)-I through the

Janus kinase signal transducer and activator of transcription (JAK-STAT) and Nuclear Factor (NF)-kB signaling

pathways. IFN-I activates the protein kinase RNA-activated (PKR) signaling pathway leading to protein synthesis

blockade and viral clearance . Tumor cells have defects in antiviral pathways such as IFN-I, PKR, and JAK-

STAT, resulting in the survival and proliferation of OVs, specifically in tumor cells . Lysis of OV-infected

cells releases a very diverse TAAs that prime immune cells to induce a local and systemic vaccination against the

released TAAs . While many cancer immunotherapies depend on identifying and targeting TAAs (one or several

limited TAAs), OVT can vaccinate patients against the entire TAA and TAN treasure of cancer through a

phenomenon called antigen/epitope spreading. Hence, OVT could be considered a kind of personalized

immunotherapy. Interestingly enough, recent studies have reported the increase of TAA- and TAN-specific T cells in

the blood of patients with melanoma and ovarian cancer treated with OVs, suggesting that the in situ OV injection

might enhance the systemic antitumor response . This finding raises hopes for the anti-metastatic

effects of OVT. TANs are assumed to be derived from high mutational burden of tumor cells . These

immunogenic TANs are capable of eliciting tumor-specific immune responses and serve as ideal targets in

immunotherapy . However, TAN-specific T cells are not activated enough in cancer patients due to the

poor presentation of TANs, lack of costimulatory signals, and abundance of inhibitory immune checkpoints in the
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TME . OVs, especially armed OVs, have been shown to activate the TANs-specific T cells by increasing the

access of APCs to the TANs (epitope spreading), enhancing the TANs processing and presentation by APCs, and

providing costimulatory signals . Accordingly, Wang et al. demonstrated that VACV armed with PD-L1

inhibitor and GM-CSF enhanced TANs presentation and activated systemic T cell responses against dominant and

subdominant (cryptic) neoantigens , so OVT could potentiate the antitumor immune responses by activating the

TANs-specific T cells.

2.2. Induction of Immunologic Cell Death

Apart from the direct lysis of cancer cells, OVs can induce various ICDs in virus-infected cells through induction of

endoplasmic reticulum (ER) stress . Infection of tumor cells with AdV, CV-B3, MeV, VACV, HSV, and H1-PV has

been shown to induce ICD and autophagy in cancer cells . ICD is characterized by the expression and

release of DAMPs such as ATP, uric acid, heat shock proteins, ecto-calreticulin, and HMGB1, as well as

extracellular proinflammatory cytokines . Extracellular ATP acts as a danger signal which attracts and activates

DCs . HMGB1 and calreticulin can activate DCs via toll-like receptor (TLR)-4 signaling . In addition,

calreticulin neutralizes CD47 receptors on the tumor cell surface, and thereby, increases the tumor cell engulfment

by macrophages . OV-mediated ICD, along with other ICD-inducing methods such as chemotherapy and

radiotherapy, break immune tolerance against the tumor and increase lymphocyte and neutrophil infiltration,

leading to antitumor response and more survival in preclinical models .

2.3. Stimulation of Antitumor Immune Response

Besides the release of DAMPs, cancer cell death also causes the release of viral PAMPs in the TME. These

PAMPs mainly include DNA, ssRNA, dsRNA, proteins, and capsid contents that activate innate immune cells

through stimulating PRRs such as retinoic acid-inducible gene (RIG)-1, cyclic GMP-AMP synthase (cGAS), and

stimulator of interferon genes (STING) . DCs, as a bridge between the innate and adaptive immune systems,

play a critical role in generating the antitumor response. DCs elicit a specific response against TAA-expressing

tumor cells by engulfing OV-infected cells and cross-presentation of TAAs to CD8+ T and CD4+ T cells . On the

other hand, the OVs-derived PAMPs cause maturation of myeloid and plasmacytoid DCs, leading to the production

of proinflammatory cytokines such as IFN-α, IFN-γ, IL-12, IL-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α 

. These functional DCs, mainly CD103+ and BATF3+, prime CD8+ T cells against tumors . Innate

immune signaling, such as the cGAS-STING pathway, plays a pivotal role in the recruitment of lymphocytes to the

TME through the expression of CXCL9 and CXCL10 . Parallel to DCs, innate lymphoid cells (ILCs) also

respond to the released PAMPs leading to higher inflammation and antitumor responses . As an example,

arenavirus-infected melanoma cells produce a high level of CCL5, leading to recruitment of NK cells and

melanoma regression . Interestingly, in situ antitumor responses following OVT are mainly mediated by IFN-I,

whereas OVT-mediated systemic antitumor responses appear to be mediated by IFN-II excreted from TILs . In

general, the innate immune response to OVs increases lymphocyte infiltration, antigen presentation, and activation

of the antitumor adaptive immune response through an IFN-mediated mechanism . T cell activation requires at

least three consecutive signals (peptide-MHC, CD28-B7, and stimulatory cytokines), all of which are defected in
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TME to escape adaptive immune responses. OVs, as potent immunogens, induce all three signals needed to

activate T cells . OVT increases the expression of B7-1/2 and CD40 on the surface of DCs and induces the

expression of MHC-peptide on the surface of tumor cells leading to optimal activation of T cells . Conversion of

the TME phenotype from immunologically inert to immunologically active status can augment the effectiveness of

the immunotherapeutic modalities.

2.4. Effect of OV on Tumor Vasculature

Some OVs, such as HSVs and VACVs, can target tumor stromal cells, such as TAFs, vECs, and pericytes, thereby

destroy the tumor’s complex structure . TGF-β secreted by tumor cells makes TAFs susceptible to OV infection

. OVs also reduce the fibrosis in the TME. VSV has been shown to infect hepatic stellate cells (HSCs), leading

to tumor fibrosis reduction . OVs affect the tumors vasculature by replicating in the tumor vECs. Vascular

endothelial growth factor (VEGF) secreted from tumor vECs suppresses the antiviral response and allows the

replication of OVs in endothelial cells through ERK1/2 and STAT3 pathways . Following infection and

replication, the OVs reduce VEGF production from the infected cell resulting in angiogenesis prevention in the

tumor. OVs’ antiangiogenic properties further limit tumor growth by decreasing the oxygen and nutrition supplies .

VACV is shown to replicate in the tumor vEC and cause vascular destruction and ischemia . Neutrophil

infiltration into the TME seems essential for OVT-mediated ischemia through the induction of thrombosis in small

tumor vessels . It has been shown that the administration of JX-594 in hepatocellular carcinoma destroyed

tumor vasculature without affecting patients’ normal vessels . Thus, targeting of stromal cells by OVs increases

the infiltration of immune cells into the TME, and converts immuno-deserted or immune-excluded tumors (with low

TILs) into immune-infiltrated tumors . OVT-mediated changes in the TME, including lymphocyte infiltration into

the tumor, enhancement of TAAs/TANs presentation, and heating the TME can improve other immunotherapies

such as adoptive cell therapy (ACT) and immune checkpoint inhibitors (ICIs) .
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