
Assessment Automation of Complex Student Programming Assignments | Encyclopedia.pub

https://encyclopedia.pub/entry/53819 1/5

Assessment Automation of Complex Student
Programming Assignments
Subjects: Computer Science, Information Systems | Education & Educational Research

Contributor: Matija Novak , Dragutin Kermek

Grading student programming assignments is not an easy task. This task is even more challenging when talking

about complex programming assignments at university graduate level. By complex assignments, researchers

mean assignments where students have to program a complete application from scratch. For example, building a

complete web application with a client and server side, whereby the application uses multiple threads that gather

data from some external service (like the REST service, IoT sensors, etc.), processes these data and store them in

some storage (e.g., a database), implements a custom protocol over a socket or something similar, implements

their own REST/SOAP/GraphQL service, then sends or receives JMS/MQTT/WebSocket messages, etc. Such

assignments give students an inside view of building real Internet applications. On the other hand, assignments like

these take a long time to be tested and graded manually, e.g., up to 1 h per student. To speed up the assessment

process, there are different automation possibilities that can check for the correctness of some application parts

without endangering the grading quality.

automation  grading  assessment  programming  education  student

1. Introduction

Assessment is an important part of a teacher’s job that must be done correctly and on time. However, grading

student assignments, especially those of a complex nature, presents a formidable challenge for educators. This is

even more noticeable when the number of students increases to 50 students or more and teachers want to publish

grading results within a reasonable time (i.e., not later than two weeks). Researchers focused on the assessment

of student programming assignments, which can be divided into basic (introductory) assignments usually

completed by freshmen in introductory programming courses and advanced (complex) assignments completed by

more advanced students in the later years of their information technology (IT) study program. The assessment of

advanced programming assignments at university undergraduate and graduate levels are focused on.

Advanced assignments require the students to architect entire applications from the ground up. To be more

precise, this means to program complete Internet/web applications with client and server components. These

applications can include the following: implementations of multi-thread logic, building custom socket-based

protocols, reading and storing data within designated repositories, facilitating data collection from diverse external

sources, implementing new web services, bidirectional messaging, deployment on different servers, creating and

running containers, etc.



Assessment Automation of Complex Student Programming Assignments | Encyclopedia.pub

https://encyclopedia.pub/entry/53819 2/5

Such complex assignments teach the students the process of developing real-world web applications, thereby

providing invaluable insights into the application development life cycle. Grading such assignments is a substantial

time investment, which is required for manual assessment, for the teacher. It is not unusual that grading such

assignments manually takes up to an hour per student submission. In response to this challenge, various

possibilities of automation have emerged to speed up the assessment process while keeping the integrity of

grading standards. The implementation of this process draws upon methods such as unit testing, bash scripting,

using specific software like Apache JMeter, and other such approaches. 

2. Assessment Automation of Complex Student
Programming Assignments

The automation of programming assignment assessments is not a new concept, as shown in . With the

increasing number of massive open online courses (MOOCs), the research into assessment automation has

become even more interesting. The research has not been limited to functional testing ; it has also focused on

providing automated personalized feedback, as in . If readers are interested in feedback automation, a good start

would be ’s survey.

Researchers have developed many pre-built tools to automate the assessment of programming assignments. For

reference, read the survey of  for an overview of the tools developed between 2006–2010. Another more recent

survey  was published in 2016 and includes a nice comparison of 30 tools in a detailed feature table. Beyond the

tools mentioned in such surveys, there are other articles where a new tool was developed. The most recent

systematic review on the topic “Automated Grading and Feedback Tools for Programming Education” can be found

in .

For example, one study that dealt with the assessment automation of C++ programs with different levels of

complexity using static code analysis was presented in . An assessment source-code library was, at the moment

of writing the paper, available for free (https://ucase.uca.es/cac/, accessed on 20 September 2023). Another

interesting paper was , where the authors built a tool called the Flexible Dynamic Analyzer (FDA), which uses

semantic analysis techniques to assess results. Similarly, in , a tool called AutoGrader was built that relies on

program semantics. AutoGrader automatically decides the correctness of student programming assignments

according to a reference implementation. Another tool, called DGRADER , uses a complex multi file program

analysis that can be an advantage to handling complex programming and scaled projects that require more than

one file for the program.

Although many tools are mentioned in articles, many of them are not available to the public. Note that finding the

tools is not a problem. For example, on GitHub one can find many tools. The problem is that there are similar

names for various tools, and it is not always clear which is the one the user is searching for. For example, with

AutoGrader, there is one from coursera (https://github.com/coursera/coursera_autograder, accessed on 20

September 2023) and there is one from University of Michigan (https://github.com/eecs-autograder, accessed on

[1]

[2]

[3]

[4]

[5][6]

[2]

[7]

[8]

[9]

[10]

[11]



Assessment Automation of Complex Student Programming Assignments | Encyclopedia.pub

https://encyclopedia.pub/entry/53819 3/5

20 September 2023), but it is not clear if the AutoGrader from  is a yet another different tool with the same

name.

With so many tools available one just has to choose one to use, but there is a problem with pre-built assessment

automation tools. As nicely stated in  the problem is that: “many of the present assessment tools are developed

for a local use and only for a certain type of assignments. Hence, they are often not available for a wider use and

would be difficult to adapt to another university, anyway”.

Another issue with tools, which is shown in , is that they are built for specific programming languages. Although

“some of the systems are language independent. Especially if the assessment is based on output comparison” ,

what is most noticeable is that these tools can be divided into two categories, according to : first, automatic

assessment systems for programming competitions and second, automatic assessment systems for (introductory)

programming education. Here, researchers want to put the emphasis on the word “introductory”. Even though

many tools and papers exist  on how to automate the assessment of programming assignments, their

focus has been on simple introductory programming assignments.

The researchers focused on more complex (advanced) programming assignments that are usually present in

courses in later years of one study program. This leaves us with very few options; basically, tools like AutoGrader

or DGRADER would be the available options in this case. One might think that using an existing tool is easier than

doing the work manually, but there are some issues to think about before deciding.

First, these tools have a certain logic that needs to be studied and understood. Second, often the tools require a

teacher to define tests to be used in grading or build a reference implementation that will be used to compare the

solution against and decide if the solution is correct. Building reference implementation is a special issue. When it

comes to complex assignments, implementing the whole solution can take up to several days of work. Third, the

tool is written in a certain programming language, which the teacher might not be familiar with, so learning the

language takes time. Next, these tools have limits, and it might be that they are unable to grade everything the

teacher needs the tool for, or the tool might accomplish the task in a different way than the teacher expects or

wants. Modifying the tool to fit the teachers’ needs might be difficult or even impossible in existing tools.

Considering all these issues, sometimes using existing pre-built tools is more difficult and unnecessary. Especially

with complex assignments where things can be done in different ways, it might be easier to build custom

assessment scripts.

References

1. Pieterse, V. Automated Assessment of Programming Assignments. In Proceedings of the 3rd
Computer Science Education Research Conference on Computer Science Education Research,
Heerlen, The Netherlands, 4–5 April 2013; pp. 45–56.

[10]

[12]

[2][5]

[5]

[5]

[13][14][15]



Assessment Automation of Complex Student Programming Assignments | Encyclopedia.pub

https://encyclopedia.pub/entry/53819 4/5

2. Souza, D.M.; Felizardo, K.R.; Barbosa, E.F. A Systematic Literature Review of Assessment Tools
for Programming Assignments. In Proceedings of the 2016 IEEE 29th International Conference on
Software Engineering Education and Training (CSEET), Dallas, TX, USA, 6–8 April 2016; pp.
147–156.

3. Marin, V.J.; Pereira, T.; Sridharan, S.; Rivero, C.R. Automated Personalized Feedback in
Introductory Java Programming MOOCs. In Proceedings of the 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; pp. 1259–1270.

4. Keuning, H.; Jeuring, J.; Heeren, B. Towards a Systematic Review of Automated Feedback
Generation for Programming Exercises. In Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education, New York, NY, USA, 11–13 July
2016; pp. 41–46.

5. Ihantola, P.; Ahoniemi, T.; Karavirta, V.; Seppälä, O. Review of Recent Systems for Automatic
Assessment of Programming Assignments. In Proceedings of the 10th Koli Calling International
Conference on Computing Education Research, New York, NY, USA, 28–31 October 2010; pp.
86–93.

6. Caiza, J.; Del Alamo, J. Programming assignments automatic grading: Review of tools and
implementations. In Proceedings of the 7th International Technology, Education and Development
Conference, Valencia, Spain, 4–5 March 2013; pp. 5691–5700.

7. Messer, M.; Brown, N.C.C.; Kölling, M.; Shi, M. Automated Grading and Feedback Tools for
Programming Education: A Systematic Review. ACM Trans. Comput. Educ. 2023.

8. Delgado-Pérez, P.; Medina-Bulo, I. Customizable and scalable automated assessment of C/C++
programming assignments. Comput. Appl. Eng. Educ. 2020, 28, 1449–1466.

9. Fonte, D.; da Cruz, D.; Gançarski, A.L.; Henriques, P.R. A Flexible Dynamic System for Automatic
Grading of Programming Exercises. In Proceedings of the 2nd Symposium on Languages,
Applications and Technologies, Porto, Portugal, 20–21 June 2013; Leal, J.P., Rocha, R., Simões,
A., Eds.; OpenAccess Series in Informatics (OASIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik: Dagstuhl, Germany, 2013; Volume 29, pp. 129–144.

10. Liu, X.; Wang, S.; Wang, P.; Wu, D. Automatic Grading of Programming Assignments: An
Approach Based on Formal Semantics. In Proceedings of the 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET), Montreal, QC, Canada, 25–31 May 2019; pp. 126–137.

11. Wang, T.; Santoso, D.B.; Wang, K.; Su, X.; Lv, Z. Automatic Grading for Complex Multifile
Programs. Complex 2020, 1–15.

12. Ala-Mutka, K.M. A Survey of Automated Assessment Approaches for Programming Assignments.
Comput. Sci. Educ. 2005, 15, 83–102.



Assessment Automation of Complex Student Programming Assignments | Encyclopedia.pub

https://encyclopedia.pub/entry/53819 5/5

13. Singh, R.; Gulwani, S.; Solar-Lezama, A. Automated Feedback Generation for Introductory
Programming Assignments. SIGPLAN Not. 2013, 48, 15–26.

14. Staubitz, T.; Klement, H.; Renz, J.; Teusner, R.; Meinel, C. Towards practical programming
exercises and automated assessment in Massive Open Online Courses. In Proceedings of the
2015 IEEE International Conference on Teaching, Assessment, and Learning for Engineering
(TALE), Zuhai, China, 10–12 December 2015; pp. 23–30.

15. Parihar, S.; Dadachanji, Z.; Singh, P.K.; Das, R.; Karkare, A.; Bhattacharya, A. Automatic Grading
and Feedback Using Program Repair for Introductory Programming Courses. In Proceedings of
the 2017 ACM Conference on Innovation and Technology in Computer Science Education,
Bologna, Italy, 3–5 July 2017; pp. 92–97.

Retrieved from https://encyclopedia.pub/entry/history/show/121897


