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Neurodegenerative Proteinopathies, also known as protein conformational diseases or amyloidosis, are a group of

diseases associated with the deposition of misaggregated proteins in the nervous system.
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1. Introduction

Most of the common neurodegenerative disorders—Alzheimer’s disease (AD), Parkinson’s disease (PD), Creutzfeldt–

Jacob disease (CJD), Dementia with Lewy bodies (DLB), Huntington disease (HD), and Amyloid Lateral Sclerosis (ALS)

—are proteinopathies. Together, these diseases affect millions of lives around the world and have devastating economic

implications. AD, the most frequently diagnosed among these listed diseases, affects almost one-tenth of the population

above 65 years of age . The number of people suffering from these diseases is increasing rapidly with an increase in life

expectancy and it is predicted that by 2050, 135.46 million people will be living with various types of neurodegenerative

dementias . Despite the attention of the scientific community, these disorders are far from resolved. The patients can be

treated to alleviate the symptoms, but the lack of a cure still means that such a diagnosis can seal their fate.

2. Amyloid

Although proteinopathies present similarities in their pathological mechanisms, the psychological and physiological

symptoms of all these disorders vary and depend on the region of the brain affected. A summary of age at onset, primary

sites of pathology, and common symptoms of major neurodegenerative proteinopathies is presented in Table 1. These

variations, in turn, are dictated by the proteins that are involved in amyloid formation (Table 2).

Table 1. Age at onset, affected brain regions, and common symptoms of major neurodegenerative proteinopathies. Age at

onset represents a range, rather than mean, due to multiple clinical variants of each of these disorders. * sporadic CJD.

Proteinopathy Age at Onset (Years) Primary Region Common Symptoms

AD
40–65

(early and late-onset
variants)

Hippocampus and entorhinal
cortex.

Memory and language impairment and
visuospatial deficits. 

PD 40–50 Substantia nigra (midbrain). Rigidity, resting tremor and bradykinesia. 

sCJD *
44–70

(depends on
subtype)

Cerebral cortex and
cerebellum.

Cognitive impairment and myoclonus. 

DLB 50–80 Midbrain and neocortex. Parkinsonian syndrome, autonomic and sleep
fluctuations and hallucinations. 

HD 20–49 Caudate nucleus and putamen
(basal ganglia).

Choreiform movements, emotional and behavioral
alterations, bradykinesia. 

ALS 45–55 Motor neurons. Focal muscle wasting, spasticity and flexor
spasms. 

 

Table 2. A summary of the structure and variants of major amyloidogenic proteins associated with neurodegenerative

proteinopathies.
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Amyloids Precursor Protein Associated Diseases Proteoforms or
Other Variants

Aβ

Amyloid beta A4
protein: Intrinsically
disordered protein
with 770 residues

AD, Cerebral amyloid angiopathy (CAA) .

26 differentially
truncated and

post
translationally

modified
proteoforms 

α-
Synuclein

Alpha Synuclein:
Intrinsically

disordered protein
with 140 residues

PD and DLB 

11 differentially
truncated and

post
translationally

modified
proteoforms 

PrPSc

Major prion protein:
Intrinsically

disordered protein
with 253 amino acids

CJD, Fatal Familial Insomnia (FFI), Gerstmann-Straussler-
Scheinker disease (GSS), Huntington disease-like type 1 (HDL1),

Kuru and Spongiform encephalopathy 

2 Proteoforms
based on

Proteinase-K
resistance

Genetic variants
(codon 129

polymorphism).

ASOD

Superoxide
dismutase:
Intrinsically

disordered protein
with 154 amino acids

ALS—TDP-43 amyloids also involved. 
Genetic variants.
No proteoforms
reported yet. 

ATau

Microtubule-
associated protein

tau: Intrinsically
disordered protein

with 758 amino acids

Frontotemporal dementia (FTD), AD, Progressive Supranuclear
Palsy (PSP), Corticobasal degeneration (CBD), Pick’s disease,

Argyrophilic grain disease, Dementia with Lewy bodies and
Parkinsonism linked to chromosome 17. 

Six isoforms.
Differentially post

translationally
modified

proteoforms. 

ATTR
Transthyretin: Mostly

β-sheet with 147
amino acids

Familial Amyloid polyneuropathy, Leptomeningeal amyloidosis.
Differentially

oxidized
proteoforms. 

AHtt

Huntington:
Intrinsically

disordered protein
with 3142 residues

Huntington disease. 

Differentially post
translationally

modified
proteoforms. 

 

In addition to similarities in the mechanism of propagation, prion-like proteins have also adapted another interesting

aspect of PrPSc biology. PrPSc can give rise to several clinical variants of prion diseases. This heterogeneity has been

attributed to the existence of distinct PrP strains. Strains are defined as conformers of a specific amyloidogenic protein, in

this case PrPSc, that differ with respect to their transmission, brain-lesion profiles, incubation periods, and disease

phenotypes along with certain biochemical characteristics like Post-translational modifications, sensitivity to proteinase-K,

and electrophoretic mobility. The distinct conformational characteristics of each PrP strain are transmitted into the host

where it propagates and causes distinct phenotypes . Codon 129 polymorphism gives rise to at least three known

strains of PrP in humans .

Strain theory is now applicable to most prion-like proteins (Figure 2) . α-Synuclein, for example, has been known to

be the culprit behind characteristically distinct pathologies, i.e., PD, DLB, and multiple system atrophy, while microtubule-

associated protein tau is involved in multiple different tauopathies either as the primary cause or as a co-pathology .

In the case of Aβ, it has been known for several years that different proteoforms vary in their capability to form amyloids,

seeding proficiencies, three-dimensional conformations, transport mechanisms and toxicities . Each proteoform can

adopt and propagate in multiple conformations . These conformers do not only possess distinct biochemical signatures

but also have different stabilities, distribution and morphology in the brain . Moreover, accumulating evidence shows

that many neurodegenerative proteinopathies can exist as rapidly progressive and other clinically distinct variants even

though the underlying prion-like proteins and mechanisms are the same . The capability of one protein to give rise to

clinically distinct disorders and alter the progression of a disease has further complicated the characterization of

neurodegenerative proteinopathies.
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Figure 2. Involvement of known prion-like proteins in multiple neurodegenerative disorders. The figure depicts the

overlapping pathological profile of PrP (green circle), α-Synuclein (red circle), Aβ (blue circle), Tau (yellow circle), and

TDP-43 (black circle). Each of the stated disorders have further clinical variants (as shown in the case of AD), thereby

complicating the role of prion-like proteins in bringing about the observed pathology. PDD—Parkinson’s disease with

dementia; DS—Down’s syndrome; FTD-T—frontotemporal dementia with tau pathology; fAD—familial AD; sAD—sporadic

AD; rpAD—rapidly-progressive AD; PCA-AD—posterior cortical atrophy–AD; PPA-AD—primary progressive aphasia with

AD.

The study of prion-like proteins now encompasses the study of all variants/proteoforms rather than focusing on one parent

entity. The existence of proteins as different functional variants is a known fact. These functional variants dictate the

localization, uptake, recycling, and biological functions of a protein. In the case of prion-like proteins, the presence of

distinct variants involved in neurodegenerative proteinopathies has been verified by several groups over the past two

decades . Although several different terms have been previously used in the literature to classify these variations,

any prion-like protein can have:

Genetic variants (based on mutations).

Isoforms (based on differences in post-transcriptional modifications).

Proteoforms (based on differences in post-translation processing and three-dimensional conformation).

Strains (based on differences in infectivity and incubation periods).

With the acceptance of the notion that different isoforms, proteoforms, or strains of prion-like proteins may differ with

respect to their molecular insult mechanisms and dictate the prognosis of associated pathology, the availability of high-

resolution data about the sequence and structure has become the key in characterizing, diagnosing, and treating

neurodegenerative proteinopathies . It is therefore mandatory to establish tools that can provide insight

into minor changes within the sequence, post-translational processing, and structure of a protein in its undigested form or

native conformations.
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