Mining Equipment Management

Subjects: Engineering, Industrial | Mining & Mineral Processing | Computer Science, Interdisciplinary Applications Contributor: Shi Qiang Liu , Zhaoyun Lin , Debiao Li , Xiangong Li , Erhan Kozan , Mahmoud Masoud

Mining sector is an economic foundation and the main source of national wealth for many countries. Modern mining operations are ever more reliant on efficient usage of costly large-scale mining equipment (e.g., trucks, shovels/excavators/loaders, conveyors and crushers). Thus, mining equipment management is becoming crucial for the mining industry. To be viable and sustainable, mining enterprises need to operate different types of mining equipment units at various stages with the objective of minimizing the total cost or maximizing the whole productivity.

open-pit mining

mining equipment management

shovel-truck

1. Introduction

Nowadays, with the rapid development of modern mining technology, semi-automated or automated machinery and equipment have been widely applied in a variety of mine sites around the world. A contemporary mine site typically lasts from many years to several decades, continually providing metallic ores that are important raw materials for the manufacturing industry or non-metallic ores that are also vital to other industries such as construction, agriculture and chemical industries. For mineral-rich countries (e.g., Australia, Canada, Russia, Chile, Iran), the mining sector creates millions of jobs and substantial export earnings which are sources of national wealth to drive the development of other economic sectors such as education, transportation and commerce. On the other hand, mining exploration and exploitation require a large capital investment and involve huge annual cash flows. Therefore, many researchers have studied different kinds of mining optimisation problems from different perspectives to maximize the value of the whole mining process under constraints such as resource capacity, precedence, extraction, haulage, crushing, grade control, stockpiling, railing, shipment, environmental protection and economic issues. Among these studies in mining optimisation, some were devoted to modelling the ultimate mine design and long-term strategic planning problems over the life of a mine (with the time horizon of 10-30 years, typically); the majority of works focused on open-pit mine block sequencing problems at the tactical level (with the time horizons measured in months); some focus on short-term mine equipment planning and scheduling problems (with time windows measured in weeks) at the operational level.

2. Shovel–Truck (ST) System

In open-pit mining, shovels (excavators) and trucks are the most widely used equipment, because material handling (mainly excavation with haulage) is the most important mining operation. According to previous studies, material handling accounts for nearly 50% of the total operating cost in most open-pit mines. In addition,

excavation and haulage operations are highly interdependent and inter-reliant. Usually, a fleet of mining trucks is compatibly matched with a large shovel; and the productivity (e.g., reducing the total idle time) of one shovel must rely on the truck fleet management (e.g., optimising the cyclic queuing times of a truck fleet). For better understanding, the main components and operation processes of the ST system are illustrated in **Figure 1**.

Figure 1. Illustration of main components and operation process of the ST system.

Table 1 summarises the main characteristics of recent papers on the ST system in terms of the scholars, publication year, journals, country of the first author, problem types and solution techniques. As shown in **Table 1**, some findings are given as follows. First, most research considered the mixture of shovels and trucks, e.g., determining the best matching factor; selection with sizing of trucks and shovels; dispatching a fleet of trucks to one shovel. In comparison, investigation of individual shovel or truck management system is rare relatively. Second, most of studies on the ST system belong to a kind of the planning-type optimisation problems such as the ST allocation/dispatching/assignment/matching problem. In contrast, few studies focused on more complicated scheduling-type problem based on the application of classical machine scheduling theory. Note that planning deals with the optimisation problems of resource capacity, facility design, equipment allocation and personnel deployment without considering timing factors. Scheduling is concerned with the efficient allocation of equipment units to jobs (operations) and sequencing the operations on each equipment unit with timing factors. For example, the parallel-machine scheduling with sequence-dependent set-up times was recently applied to a real-world mine

excavators timetabling case ^[1]. Indeed, the dynamic vehicle routing problem could be applied to the routing optimisation of open-pit truck fleets ^{[2][3]}. Third, most solution techniques for the ST problems are mainly based on the formulation of MIP models with the use of exact MIP solvers. More efficient solution approaches, such as metaheuristic algorithms, which can efficiently solve large-scale instances, are relatively occasional. Finally, for scheduling (dispatching and sequencing) a fleet of trucks associated with a shovel, most existing mathematical programming models are relatively basic. To be more applicable in practice, the ST scheduling models should be extended by considering more actual requirements, such as the best matching factor, the selection of trucks/shovels, the layout of haulage roads, the queuing (e.g., waiting/idle times) of trucks in the scheduling process, and maintenance/failure of mining equipment, etc.

 Table 1. Characteristics analysis of publications on the shovel-truck (ST) system [1][4][5][6][7][8][9][10][11][12][13][14][15][16]

 [17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32]

Authors	Year	Country	Problem Types	Solution Techniques
Young and Rogers	2022	USA	Mine haul truck dumping process simulation	A high-fidelity modelling method
Liu et al.	2022	China	Mine excavators timetabling	Mixed integer programming and metaheuristics
de Carvalho and Dimitrakopoulos	2021	Canada	Integrated truck-dispatching and production	Reinforcement learning
Upadhyay et al.	2021	Canada	Production scheduling with shovel allocation	Mixed integer programming
Aguayo et al.	2021	Chile	Productivity and safety of shovel–truck system	Interaction analysis
Elijah et al.	2021	Kenya	Shovel–truck haulage optimisation	Queuing theory
Wang et al.	2021	China	Mine truck fuel consumption analysis	Regression analysis
Bakhtavar and Mahmoudi	2020	Iran	Shovel-truck allocation	Scenario-based robust optimisation
Basiri et al.	2020	Iran	Reliability assessment of shovel–truck system	Statistical methods
Zhang et al.	2020	China	Multi-objective unmanned truck scheduling	Improved genetic algorithms (NSGA-II)
Kansake and Frimpong	2020	USA	Estimate tire dynamic forces on haul roads	An analytical model

Authors	Year	Country	Problem Types	Solution Techniques
Shah and Rehman	2020	Pakistan	Shovel–truck allocation problem	Mixed integer programming
Ozdemir and Kumral	2019	Canada	A two-stage shove-truck dispatching system	A simulation-based optimisation approach
Dabbagh and Bagherpour	2019	Iran	Matching factor of shovel– truck system	Ant colony optimisation
Liu and Chai	2019	China	Routing optimisation of open-pit trucks	Mixed integer programming
Moniri-Morad et al.	2019	Iran	Capacity analysis of shovel– truck system	Discrete event simulation
Sun et al.	2018	China	Prediction of travel times of trucks	Machine learning techniques
Baek and Choi	2017	Korea	Design of a haul road for an open-pit mine	Douglas–Peucker algorithm
Dindarloo and Siami- Irdemoosa	2017	USA	Classification and clustering of shovels failures	Data mining techniques
Patterson, Kozan and Hyland	2017	Australia	Energy efficient shovel–truck scheduling	Mixed integer programming and metaheuristics
Bajany et al.	2017	South Africa	Shove-truck dispatching	Mixed integer programming
Burt et al.	2016	Australia	Mining equipment selection	Mixed integer programming
Chang et al.	2015	China	Open-pit truck scheduling	Mixed integer programming
Dindarloo et al.	2015	USA	Truck and shovel selection and sizing	Stochastic simulation
Rodrigo et al.	2013	France	Dynamic open-pit mine truck allocation	Simulation-and-optimisation framework
Choi and Nieto	2011	Korea	Haulage routing optimisation of mining trucks	Least-cost path algorithm with Google Earth
Souza et al.	2010	Brazil	Dynamic truck allocation in open-pit mining	Hybrid metaheuristic algorithms
Topal and Ramazan	2010	Australia	Mine equipment maintenance scheduling	Mixed integer programming
Choi et al.	2009	Korea	Haulage routing optimisation	Multi-criteria least-cost path

1. Liu, S.Q.; Kozan, E.; Corry, P.; Masoud, M.; Luo, K. A Real-World Mine Excavators Timetabling Methodology in Open-Pit Mining. Optim. Eng. 2022, in press.

Authors	Year	Country	Problem Types	Solution Techniques	Base
			of mining trucks	analysis	
Ercelebi and Bascetin	2009	Türkiye	Shovel–truck dispatching	Linear programming and queuing theory	mi-
	ing and	сопусутву	องอเลกอ พนา เกล กายก-กา	Igie Conveyor, winning 20	,21, 1

59-79.

4.3 olng, Rit Grushing To Conveying in (IRGC) is visteral Truck Dumping Process.

Mining 2022, 2, 86–102. The in-pit crushing and conveying (IPCC) systems are attracting more and more attention from researchers and practationary allowed and more attention from researchers and practationary allowed and the provide researchers and systems are attracting more and more attention from researchers and systems is a practice of the provide researchers and the provide researchers and the provide researchers and systems are attracting more and more attention from researchers and systems is a practice of the provide researchers and the provide res

to grind large ore blocks and then the ground ore blocks are delivered to the surface through the belt conveyor. ^{With} the shope mining place to be mining place. An overhead view of an IPCC system in an open pit is drawn in **Figure 2**. 7. Aguayo, I.A.O.; Nehring, M.; Ullah, G.M.W. Optimising Productivity and Safety of the Open Pit

Loading and Haulage System with a Surge Loader. Mining 2021, 1, 167–179.

- 8. Elijah, K.; Joseph, G.; Samuel, M.; Mauti, D. Optimisation of Shovel-Truck Haulage System in an Open Pit Using Queuing Approach. Arab. J. Geosci. 2021, 14, 973.
- 9. Wang, Q.; Zhang, R.; Lv, S.; Wang, Y. Open-Pit Mine Truck Fuel Consumption Pattern and Application Based on Multi-Dimensional Features and XGBoost. Sustain. Energy Technol. Assess. 2021, 43, 100977.
- 10. Bakhtavar, E.; Mahmoudi, H. Development of a Scenario-Based Robust Model for the Optimal Truck-Shovel Allocation in Open-Pit Mining. Comput. Oper. Res. 2020, 115, 100977.
- 11. Basiri, M.H.; Sharifi, M.R.; Ostadi, B. Reliability and Risk Assessment of Electric Cable Shovel at Chadormalu Iron Ore Mine in Iran. Int. J. Eng. Trans. A Basics 2020, 33, 170–177.
- Zhang, S.; Lu, C.; Jiang, S.; Shan, L.; Xiong, N.N. An Unmanned Intelligent Transportation Scheduling System for Open-Pit Mine Vehicles Based on 5G and Big Data. IEEE Access 2020, 8, 135524–135539.
- 13. Kansake, B.A.; Frimpong, S. Analytical Modelling of Dump Truck Tire Dynamic Response to Haul Road Surface Excitations. Int. J. Min. Reclam. Environ. 2020, 34, 1–18.
- 14. Shah, K.S.; Rehman, S.U. Modeling and Optimization of Truck-Shovel Allocation to Mining Faces in Cement Quarry. J. Min. Environ. 2020, 11, 21–30.
- 15. Ozdemir, B.; Kumral, M. Simulation-Based Optimization of Truck-Shovel Material Handling Systems in Multi-Pit Surface Mines. Simul. Model. Pract. Theory 2019, 95, 36–48.
- 16. Dabbagh, A.; Bagherpour, R. Development of a Match Factor and Comparison of Its Applicability with Ant-Colony Algorithm in a Heterogeneous Transportation Fleet in an Open-Pit Mine. J. Min.

Sci. 2019, 55, 45–56.

- 17. Liu, G.; Chai, S. Optimizing Open-Pit Truck Route Based on Minimization of Time-Varying Transport Energy Consumption, Math. Probl. Eng. 2019, 2019, 6987108.
- 18. Moniri-Morad, A.; Pourgol-Mohammad, M.; Aghababaei, H**ÇORAFAYQJ.** Capacity-Based Performance Measurements for Loading Equipment in Oper Pit Mines. J. Cent. S. Univ. 2019, 26, 1672–1686.
- 19. Sun, X.; Zhang, H.; Tian, F.; Yang, L. The Use of a Machine Learning Method to Predict the Real-Time Link Travel Time of Open-Pit Trucks. Math. Probl. Eng. 2018, 2018, 4368045.
- 20. Patterson, S.R.; Kozan, E.; Hyland Genergy Efficient Scheduling of Open-Pit Coal Mine Trucks. Eur. J. Oper. Res. 2017, 262, 759–770.
- 21. Bajany, D.M.; Xia, X.; Zhang, L. A MILP Model for Truck-Shovel Scheduling to Minimize Fuel Consumption. Energy Procedia 2017, 105, 2789–2745.
- 22. Baek, J.; Choi, Y. A New Method for Haul Road Designin Open-Pit Mines to Support Efficient Truck Haulage Operations. Appl. Sci. 2017, 7, 747.
- 23. Dindarloo, S.R.; Siami-Irdemoosa, E. Data Mining in Mining Engineering: Results of Classification and Clustering of Shovels Failures Data. Int. J. Min. Reclam. Environ. 2017, 31, 105–118.
- Burt, C.; Caccetta, L.; Fouché, L.; Weisama, P. An MILP Approach to Multi-Location, Multi-Period Equipment Selection for Surface Mono with Case Studies. J. Ind. Manag. Optim. 2016, 12, 403– 430.
- 25. Chang, Y.; Ren, H.; Wang, S. Modelling and Optimizing an Open-Pit Truck Scheduling Problem. Discret. Dyn. Nat. Soc. 2015, 2015, 745378.
- 26. Dindarloo, S.R.; Osanloo, M.; Frimpong, S. A Stochastic Simulation Framework for Truck and Shovel Selection and Sizing in Open Pit Mines J. S. Afr. Inst. Min. Metall. 2015, 115, 209–219 Figure 2. An overhead view of a sample IPCC system in an open pit in Which there are one conveyor and three

27. Rodrigo, M.; Enrico, Z.; Fredy, K.; Adolfo, A. Adolfo, Adol

30atFepadtical; RaynaazaingSTAeNevelb/HReModenfor MinierEquiptioneapSolaeduslingcbysMinimizinign heuristics and Maintenance DissicsEor of the Resp. 201201,2007,10065614.0074 a promising research direction.

31. Choi, Y.; Park, H.D.; Sunwoo, C.: Clarke, K.C. Multi-Criteria Evaluation and Least-Cost Path **Table 2.** Characteristics analysis of publications on the in-pit crushing–conveying (IPCC) system [213][33][34][35][36][37] Analysis for Optimal Haulage Routing of Dump Trucks in Large Scale Open-Pit Mines. Int. J. Geogr. Inf. Sci. 2009, 23, 1541–1567.

Authors	Year	Country	Problem Types	Solution Techniques	Δfr
Gu et al.	2021	China	Layout optimisation of IPCC	Particle swarm optimisation algorithms	ΔΠ.
Liu and Pourrahimian	2021	Canada	IPCC production scheduling	Mixed integer programming	nd Min.
Shamsi and Nehring	2021	Australia	Optimal transition point between IPCC and ST	Analysis of cumulative discounted costs	ng a
Wachira et al.	2021	Kenya	Performance analysis of SMIPCC	Mine productivity index	VAVir
Paricheh and Osanloo	2020	Iran	IPCC planning with OPMPS	Mixed integer programming	veyn
Samavati et al.	2020	Australia	IPCC production planning and scheduling	Integer non-linear programming	Minir
Hay et al.	2020	Australia	Ultimate pit limit determination for SMIPCC	Block model and network flow algorithm	ile Ir 98–5
Yakovlev et al.	2020	Russia	Flow diagrams of IPCC	Cyclical-and-continuous method	al-a:
Abbaspour et al.	2019	Germany	Optimum location and relocation of SMIPCC	Transportation problem and scenarios analysis	788.) Pla
Paricheh et al.	2018	Iran	IPCC location and timing problem	A heuristic approach	
Paricheh et al.	2017	Iran	IPCC location problem	Mixed integer programming	
Yarmuch et al.	2017	Chile	IPCC location evaluation	Markov chains	lam.
Schools	2015	USA	Condition monitoring of IPCC	Condition monitoring technology analysis)n
Roumpos et al.	2014	Greece	Optimal location and distribution point of IPCC	Simulation modelling	211

42. Yarmuch, J.; Epstein, R.; Cancino, R.; Peña, J.C. Evaluating Crusher System Location in an Open Pit Mine Using Markov Chains. Int. J. Min. Reclam. Environ. 2017, 31, 24–37.

43. Schools, T. Condition Monitoring of Critical Mining Conveyors. Eng. Min. J. 2015, 216, 50.

4. **A PROFINE TO STONEST**, **System**tis, Z.; Makantasis, K.; Vlachou, A. The Optimal Location of the Distribution Point of the Belt Conveyor System in Continuous Surface Mining Operations.

Despine uhe Viside Itrenastin Tusie gryh 2014 C457 steen, 20 me mining companies are still hesitating to use IPCC in their

mining operations due to reliability and flexibility concerns. To improve mining reliability and reduce unexpected 45. Shamsi, M.; Pourrahimian, Y.; Rahmanpour, M. Optimisation of Open-Pit Mine Production risks, a more flexible framework is needed to make proper transition decisions between IPCC and ST systems to Scheduling Considering Optimum Transportation System between Truck Haulage and Semisatisfy the location and relocation of the semi-mobile crusher Mobile in-Pit Crushing and Conveying. Int. J. Min. Reclam. Environ. 2022, 36, 142–158.

46abReuthaonadlades Ene Baghenporacteristiculdesplaciels. Contrayn Cod SUPOPtion by Stepen Mitchinding ins various minOperationenRepringsochRectured, Energy/Ecoasanorptionatios, Haukages, Jaimy druskier Crashen Systemable 3, Scherviergbitdut Antister dampresteetblet Fiestandes, 2002 Erstadetive 2910 b&BNy044.56&Butation factors involved

on the hybrid IPCC-ST system focused on the evaluation criteria with the consideration of environmental, social, 47. Bernardi, L.; Kumral, M.; Renaud, M. Comparison of Fixed and Mobile In-Pit Crushing and economic, reliability and safety factors. Environmental factors include greenhouse, gas, harmful gas, particular Conveying and Truck-Shovel Systems Used in Mineral Industries through Discrete-Event substance, and waste dumps. Efficiency factors mainly concern fuel consumption of each equipment and energy Simulation. Simul. Model. Pract. Theory 2020, 103, 102100. efficiency of the whole mining system. Social factors contain employment rates and salary levels. Economic factors 48e Kawalag, Mateuro for the start of prehends. Beganne attracted and provide sales from the truck-Based eliability, failure nates of equipmental the economic value, production efficiency and environmental protection of the 49. Pred type of the same begin of the start of reliability for the sale of the same sale of the same sale of the economic value, production efficiency and environmental protection of the 49. Pred type of the same start of the economic value, production efficiency and environmental protection of the and social provide the economic value, production efficiency and environmental protection of the social protocal of the same sector of the the economic value production efficiency of the provide the provide the economic value production efficiency and environmental protection of the social protocal factors of the provide the economic value production efficiency of the provide the sectors and social protocal factors of the provide the pr

50. Krysa, Z.; Bodziony, P.; Patyk, M. Discrete Simulations in Analyzing the Effectiveness of Raw

TabWester tealson and the second se

157158159160161162163164165166167168169170 51. Kazmierczak, U., Gorniak-Zimroz, J. Accessibility of Selected Key Non-Metallic Mineral Deposits

	Authors	Year	Country	Problem Types	Solution Techniques	
5	Patyk and Bodziony	2022	Poland	Equipment selection in a surface mine	Multi-criteria decision- making methods	ethod
5	Chinnasamy et al.	2022	India	Introduction of ELECTRE for MCDM	fuzzy DS-ELECTRE	thod for
	Shamsi et al.	2022	Canada	Production scheduling optimisation of hybrid IPCC-ST	Mixed integer programming	ounty
5	Krysa, Bodziony and Patyk	2021	Poland	Raw materials transportation	Discrete simulation	yor Bel tional
	Kaźmierczak and Górniak-Zimr	2021	Poland	Accessibility of non-metallic mineral deposits	Evaluation and classification	nal
5	Purhamadani et al.	2021	Iran	Energy consumption of IPCC-ST	Data analysis	ine
5	Bernardi et al.	2020	Canada	Comparison of fixed and mobile IPCCs and ST	Discrete event simulation	to

Assess the Benefits of a Semi-Mobile in-Pit Crushing and Conveying Alternative during the Early Stages of a Mining Project. REM Int. Eng. J. 2019, 72, 285–291.

5	Authors	Year	Country	Problem Types	Solution Techniques	n the
	Kawalec et al.	2020	Poland	Transition and replacement between IPCC and ST	Data analysis	nes.
5	Almeida et al.	2019	Brazil	ST system versus IPCC system	Environmental and economic comparison	
	Ghasvareh et al.	2019	Iran	Haulage system selection in open-pit mining	Multi-criteria decision- making methods	1.
5	Nunes et al.	2019	Canada	Comparison analysis of SMIPCC and ST	Multi-criteria decision- making methods	Pit Mine 502–
6	Abbaspour et al.	2018	Germany	Selection analysis of ST and IPCC	Evaluation of safety and social indexes	<u>'</u> Y
6	Nehring et al.	2018	Australia	Strategic mine planning for ST and IPCC	Mine planning and evaluation	,
C	Özfirat et al.	2018	Türkiye	Selection of coal transportation mode	Fuzzy analytic hierarchy process	ng.
6	Rahimdel and Bagherpour	2018	Iran	Selection analysis of ST and IPCC	Multi-criteria decision- making methods	Mining:
	de Werk et al.	2018	Canada	Cost analysis of material handling systems	A Monte Carlo simulation	y. J.
6	Braun et al.	2017	Germany	Sustainable technology diffusion of ST and IPCC	Data analysis	roving
6	Patterson, Kozan and Hyland	2016	Australia	Integrated open-pit coal mining system	Mixed integer programming	12 100
6	Yakovlev et al.	2016	Russia	Conveyor-and-truck haulage system evaluation	A cyclical-and-continuous method	12-109.
	Liu et al.	2015	China	Energy consumption and carbon emissions of IPCC-ST	Power consumption calculation model	Technol.
6	Rahmanpour et al.	2014	Iran	Comparison analysis of IPCC and ST	Analytic hierarchy process	ו in Pit
6	Norgate and Haque	2013	Australia	Greenhouse gas impact of IPCC and ore-sorting	A life-cycle assessment method	es.
6	Vujić et al.	2013	Serbia	Equipment Selection of Excavator–Conveyors–Spreader	Multi-criteria decision- making methods	g the
6	Abedi et al.	2012	Iran	Analysis of mineral prospectivity mapping	ELECTRE III method	10. for

Open Pit Mines Equipment Selection. Asia-Pac. J. Oper. Res. 2011, 28, 279–300.

70. Owusu-Mensah, F.; Musingwini, C. Evaluation of Ore Transport Options from Kwesi Mensah Shaft to the Mill at the Obuasi Mine. Int. J. Min. Reclam. Environ. 2011, 25, 109–125.

Authors	Year	Country	Problem Types	Solution Techniques
Bazzazi et al.	2011	Iran	Equipment selection of IPCC-ST	Fuzzy multiple-attribute decision making
Owusu-Mensah and Musingwini	2011	Ghana	Evaluation of ore transport options	Multi-criteria decision- making methods