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Lung cancer remains the first cause of cancer worldwide. The main reason for this high rate of death from lung
cancer is dissemination of the disease at the time of presentation to hospital due to late diagnosis. There is an
urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of

lung cancer for improved patient management.
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1. DNA Methylation in Sputum and Plasma for Early LC
Detection

As epigenetic changes in LC are common, this offers several targets that can concurrently be probed . LC
genome analysis reports global hypomethylation that results in the destabilisation of DNA with the exception of
CpG dense regions &4 |n NSCLC, epigenetic changes are associated with cigarette smoking and aggressive
tumour behaviour, and as such these changes can be used for risk stratification and histological and molecular
characterisation RIBIABIEILOLLLZ  Non-invasive, sputum-based epigenetic testing for the detection of epigenetic
changes/promoter DNA hypermethylation at early stages of tumorigenesis is well documented. Palmisano et al.
showed that in sputum samples, collected 3 years prior to clinically detectable lung cancer, the hypermethylation of
MGMT and/or CDKN2A genes could be effectively detected, indicating that epigenetic markers can indeed play a
role in early cancer diagnosis 3. This was validated in other studies as well 2413161 Moreover, in a study of five
participants, RASSF1A methylation, detected in sputum samples, correlated with the development of LCs within 12
to 14 months from the sputum test in three patients 17, Similarly, a prospective study on 92 high risk individuals
and a matched control group identified promoter methylation of 14 genes in the sputum that can be used for risk
stratification. It was found that 6 of 14 genes correlated with a >50% increased LC risk. Furthermore, simultaneous
methylation of three or more of these six genes correlated with 6.5-fold increased risk of LC 18, These detected
genes are involved in many important biological functions, such as cell cycle regulation (p16 and PAX5 f),
apoptosis (DAPK and RASSF1A), signal transduction (GATA5), and DNA repair (MGMT) 18]119][20][21]{22]

The detection of DNA methylation in plasma, as a tool for screening and diagnostic purposes in LC, has also
shown promise. Bearzatto et al. reported an increased frequency in p16'NK4 methylation in plasma samples of

early-stage adenocarcinoma 23, Similarly, methylations of RASSF1A and CDKN2A detected in blood samples
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were frequently identified in early-stage LC with a reported sensitivity of 22 to 66% and specificity of 57—100% (23]
(241251 Another study on 70 participants showed significant differences in the methylation pattern between LC and
benign lung lesions. The participants who developed lung cancer showed methylation changes in four tumour
suppressor genes, i.e., Kifla, DCC, RARB, and NISCH. The differences were correlated with LC diagnosis, and it
was observed that participants who were finally diagnosed with LC exhibited significant differences in methylation
pattern (28, Another, larger study on 360 participants showed similar results. The methylation status of PTGER4
and SHOX2 genes detected in the plasma of patients with indeterminate pulmonary nodules was distinct as
compared to participants with benign lung nodules [Z. Therefore, integrating DNA methylation expression patterns
(in plasma/sputum) as a screening tool in national LC screening programs is now needed to progress to novel
algorithms for early LC detection. In lieu of this, Kang et al. developed a probabilistic method called Cancer
Locator, based on cfDNA detected in blood samples. The study utilized data from a genome-wide DNA methylation
profile and DNA methylation microarrays of solid tumour samples to train the model. The model was able to identify
the histological type and the site of the tumour together with cancer load in NSCLC [28]. The study could not offer
firm conclusions because of small sample numbers; however, the authors foresaw that when more paired samples
(tumour sample and the matched adjacent non-tumour sample) become available, Cancer Locator could identify
not just the existence but also the location of the tumour 28],

| 2. The Role of microRNAs in LC Detection

mMiRNAs are small non-coding RNAs of 18-25 nucleotides in length which are involved in the post-transcriptional
regulation of gene expression 2229, They are found to be aberrantly expressed in many pathological conditions,
including cancer, and can be detected in bodily fluids including urine, sputum, and blood, making them exciting
biomarkers for cancer detection B[22l |n 2002, their role in LC pathogenesis (proliferation of LC cells, invasion of
basement membrane, and metastasis) was reported by Calin et al. 33, Interestingly, based on the cellular context,
miRNAs can act as tumour suppressors or oncogenes and even both B4, Moreover, miRNAs preserve their
stability throughout cancer progression from initiation to metastasis, because they are too small to degrade, and
some miRNAs are further protected in exosomes. Hence, miRNAs are considered an appealing biomarker for
cancer diagnosis and monitoring [2€l.

Another non-coding RNA type, circRNAs, which have a stable covalently closed circular structure and show a
specific expression pattern in different tissues and cells, have also been implicated in LC growth and progression
87 However, the exact mechanisms remain poorly understood and require more in-depth studies 8. Using
technologies such as RNA-seq and Ribo-Zero, thousands of circRNAs have been discovered (B2, and it is
predicted that valid circRNA biomarkers for diagnosis, prognosis, and therapy in LC will increasingly be found. A
better understanding of the exact role of circRNAs in the pathogenesis of LC will likely also lead to improvement of
the detection of “clinically significant” circRNAs and understanding of the temporal relationship between such

circRNAs and the development of preinvasive or early LC.

| 3. The Role of Circulating Tumour DNA (ctDNA) in LC
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ctDNA (circulating tumour DNA) includes both encapsulated (in circulating vesicles) and non-encapsulated free
DNA in the blood or other body fluids 2. ctDNA escapes cancer cells via several mechanisms, namely apoptosis,
necrosis, and secretion from extracellular vesicles as well as from CTCs 2941l Therefore, analysing ctDNA is a
promising approach that could accelerate efforts for body fluid-based LC detection and overcome some of the

challenges posed by invasive tissue biopsy, as summarised in Table 1.

Table 1. Important differences between LB (analysis of ctDNA) and tissue biopsy.

Accessibility and
convenience

Factors affecting SN and
SP

The effect of tumour type
on the detection of ctDNA
in blood and other body
fluids

Cost effectiveness

Histological diagnosis

Monitoring disease
progression and response
to treatment

As a screening biomarker

Detection of minimal
residual disease (MRD)

The effect of the location
of metastasis on the
accuracy of the result

Analysis of ctDNA

Blood (and other body fluids)-based tests.
This makes it more accessible for sample
collection and acceptable by patients.

ctDNA levels are also influenced by
disease burden and many other factors
such as tumour location, vascularity, and
cellular turnover 421431,

Tumours in the central nervous system or
those with mucinous features (such as
prostate and thyroid) frequently show low
or undetectable ctDNA levels #4145],

More cost-effective and time-efficient than
tissue biopsy 481,

Provides no information regarding
histology.

Has an established role in treatment

response monitoring or the early detection
of relapse [47148],

Can be used for population-based
screening (42,

The role in detecting MRD after curative
treatment is growing.

The SN of analysis of ctDNA to detect
EGFR mutation in the setting of NSCLC is
greater in intrathoracic compared to extra-
thoracic located tumours 9.

Tissue Biopsy

Invasive and often requires
exposure to radiation.

Accessibility of the tumour,
patient’s fithess and personal
preference, tumour
heterogeneity.

Not applicable.

The cost could soar, especially if
biopsy from difficult location
requires operation, e.g., surgical
brain biopsy.

Is required to make a histological
diagnosis.

Not always possible or practical
due to its invasive nature.

Not possible or practical due to
its invasive nature.

Not applicable.

Not applicable.

An important feature of ctDNA is that it can be found in blood prior to clinical diagnosis 1. Advances in
technologies of DNA sequencing made it possible to detect cDNA before clinically evident LC 52, However, a

major challenge in using ctDNA is that most patients have ctDNA levels of less than 0.1% 53134l Nonetheless, new
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techniques have continuously been developed and tested to improve the detection of ctDNA in low concentrations
in plasma. There is also evidence of a positive correlation between disease burden and the plasma concentration
of ctDNA B2, A study by Jacob et al. B used deep sequencing (CAPP-Seq) and improved protocol for the
extraction of unique cfDNA fragments and the segment of cfDNA duplexes for sequencing of both strands B, The
authors genotyped tumour tissue, analysed pre-treatment cfDNA in plasma and leukocyte DNA from 85 subjects
diagnosed with stage I-Ill NSCLC using targeted deep sequencing of 255 frequently mutated genes in NSCLC,
and reported that most somatic mutations in the cfDNA of LC patients and of risk-matched cohorts replicate clonal
haematopoiesis and are not recurring. In contrast with mutation driving carcinogens, clonal haematopoiesis
mutations are present on longer cfDNA fragments and do not show mutational marks that correlate with tobacco
smoking. Incorporating these results with other tumour characteristics such as cell proliferation and lymphovascular
invasion, the authors applied and prospectively validated a machine-learning-based method called “LC likelihood in
plasma” (Lung-CLiP) B2l Three control groups were used as a validation cohort: a low-risk group of 42 adult blood
donors, a matched risk control group of 56 age, sex, and smoking status matched adults who had negative low-
dose CT (LDCT) screening scans, and a third group comprising 48 risk-matched participants receiving LDCT

screening recruited prospectively at a different centre.

One of the key shortcomings of molecular analysis by studying ctDNA is that it provides no information on
histology; therefore, invasive biopsy will be required to make a histological diagnosis of LC. False-negative results
from analysing ctDNA is a further important issue in the context of low tumour load or low rate of shedding of
ctDNA to the systemic circulation 23, Moreover, the precision of the data acquired by analysing ctDNA is affected
by the location of the metastatic disease. A pooled analysis of EGFR-mutated NSCLC revealed that the detection
rate of ctDNA EGFR mutation was considerably higher in patients with extrathoracic compared to intrathoracic
lesions Y. Furthermore, the false-positive results can be acquired using ctDNA as mentioned above (molecular
alterations originated by clonal haematopoiesis rather than the tumour) 58, |dentification of unintended germline
mutations during ctDNA evaluation that are not linked to the pathogenesis of LC is not an infrequent occurrence
that mandates disclosure to the patient and referral for genetic counselling clinics B4, For example, in the
molecular analysis using ctDNA of 10,888 unselected patients with metastatic cancer (41% were lung
malignancies), 1.4% were discovered to have possible hereditary cancer mutations in 11 genes BZ. Finally,
technical aspects in relation to ctDNA specimen acquisition and handling can affect the quality of the data. Despite
the many advantages of LBs compared to tissue biopsies, the SN and SP of detecting specific molecular changes
in NSCLC from LB remain affected by technology, clinical trial methodologies, and logistics, which in turn affect the
safe and effective integration of LB into clinical practice 28], In a first published systematic review of 34 studies
involving 1141 patients with NSCLC by Esagian et al., the positive percent agreement (PPA) in detecting common
mutations using targeted NGS between LB and tissue biopsy was provided B2. The authors stated that they used
PPA rather than SN, SP, and PPV and NPV because NGS was not validated in all the studies they reviewed, and
hence PPA was deemed more appropriate. The calculated PPA rates were 53.6% (45/84) for ALK, 53.9% (14/26)
for BRAF, 56.5% (13/23) for ERBB2, 67.8% (428/631) for EGFR, 64.2% (122/190) for KRAS, 58.6% (17/29) for
MET, 54.6% (12/22) for RET, and 53.3% (8/15) for ROS1. The above findings are consistent with other publications
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that concluded that the detection of specific mutations via NGS from LB is less sensitive compared to tissue biopsy
[60](61]

| 4. Urine Cell-Free DNA (ucfDNA) in the Diagnosis of LC

Improvements in the knowledge and the technologies for the isolation and analysis of biomarkers from urine
provide novel opportunities for the clinical applications of cancer urine biomarkers. The presence of biomarkers
such as exfoliated bladder cancer cells, ctDNA, proteins, miRNAs, and exosomes in the urine have been
investigated in the context of different primary cancers such as bladder, prostate, pancreas, and lung; the cost-
effectiveness and convenience of use make urine biomarkers attractive choices for patients and physicians alike
(62](63][641[65]  ysing urine biomarkers for assessing treatment efficacy and resistance is a major advantage when
compared to tissue biopsies and radiological imaging [€8l. Furthermore, another advantage of urine biomarker
analysis is that cfDNA extraction is technologically easier 686768l \when compared with plasma, as urine contains
a lower concentration of interfering proteins 2. The evidence for the reliability and sensitivity of the detection of
gene mutations and DNA methylation in the urine is growing, especially as the technologies used are consistently

undergoing refinement ZAZ72],

Methods associated with the extraction and classification of urinary constituents are multifarious and diverse and
can vary from methods for protein and genomic profiling to microfluidic techniques X8l In recent years, the
detection of EGFR mutation and the subsequent mutation profile in patients with metastatic NSCLC who might be
eligible to receive first and second lines of anti-EGFR tyrosine kinase inhibitors (TKIs) has grown rapidly. A study by
Reckamp et al. showed that EGFR mutations (T790M, L858R, and exon 19 deletions) were successfully identified
in the urine of NSCLC patients and the results were congruent with the EGFR mutation state identified through
tissue biopsy 4. A comparative study was reported by Ren et al., who measured the concentration of ucfDNA,
using qPCR, in 55 LC patients and a cohort of 35 healthy participants /2. The study reported that the
concentration of ucfDNA is consistently higher in LC patients, especially with lymph node involvement, compared to
the healthy cohort, suggesting that ucfDNA could potentially play a role in the early diagnosis of LC [Z3]. Another
study compared the urine cell-free DNA (ucfDNA) of 55 NSCLC patients of different disease stages with 35 healthy
volunteers by means of quantitative real-time PCR (qPCR) 8. The study showed that concentrations of urinary
cell-free DNA (ucfDNA) were considerably greater in individuals with stage IlI/IV than in those with stage I/l and
the disease-free cohort. The receiver operating characteristic curves (ROCs) for distinguishing participants with
stage IllI/IV from disease-free volunteers showed areas under the curve (AUCs) of 0.84 and 0.88, respectively. In
another study 2!, ucfDNA concentration and integrity indexes were explored as biomarkers for early LC detection.
The cohort included 55 LC patients and 35 healthy participants. The study found that concentration and integrity
indexes of ucfDNA were considerably higher in LC patients compared to the healthy individuals. Moreover, the
ucfDNA integrity indexes in patients with metastasis to lymph nodes were significantly higher compared with
patients without lymph node involvement, suggesting that ucfDNA could potentially play a role in the early
diagnosis of LC 2],
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| 5. RNA Airway and Nasal Signature

The approach of analysis of RNA acquired from airway samples centres on gene expression profiles of cancer-
associated processes affecting the tracheobronchial tree Z4. A study identified a 23-gene biomarker panel from
endobronchial brushings of patient who received bronchoscopy to investigate LC Z8. Consequently, two separate
prospective cohorts showed an SN of 88% to 89% and an SP of 48% for such a gene-expression classifier. As
biomarkers, these 23 genes were especially indicative of possible underlying cancer in patients with an
intermediate (10-60%) pre-test risk of LC (91% negative predictive value, NPV). These results suggest that the
NPV of a negative bronchoscopy could be improved if combined with the 23-gene panel, which could potentially
circumvent the need for invasive lung biopsy by monitoring such patients with less invasive tests such as follow up
CT scans 79,

6. Radiomics Signatures of Primary and Secondary
Pulmonary Malighant Lesions

In the past decade, medical imaging has progressed from chiefly being a primary diagnostic tool to acquiring an
important role in providing vital molecular data required for targeted based therapy through the adoption of
advanced hardware, novel imaging agents, streamlined scanning protocols, and improvements in computational
power BY: thus, the researchers will briefly discuss its role here. The technological advances have enabled the
extraction and processing of a large amount of data from quantitative imaging, in a process called radiomics %, By
utilising a characterisation algorithm, radiomics has the potential to unveil disease features that cannot be seen by
the naked eye (81, The process of radiomics involves obtaining sub-visual, yet quantitative, image characteristics in
order to produce usable datasets from radiological films B2, Radiomics data extracted from medical scans (e.g.,
CT and MRI scans) can be utilised to discover diagnostic, predictive, and prognostic data in patients with
malignancy through comparison with objective response criteria such as overall and progression-free survival, and
can also be combined with tumour molecular and genetic profile (genotype); the latter is referred to as
radiogenomics 83, The process of converting medical imaging into meaningful data typically involves four steps:
(a) image acquisition and reconstruction, (b) region of interest segmentation, (c) feature extraction and

guantification, and (d) building predictive and prognostic models, as illustrated in Figure 1.
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Figure 1. Radiomics workflow that involved four stages, Lambin et al. [81],

As a new technology, radiomics is in its infancy; therefore, its clinical application is still limited. In the context of
primary LC, a significant interest in using radiomics to predict the histological and molecular characteristics,
response to treatment, and overall prognosis is raised. Several studies have been able to identify specific
radiomics signatures that differentiate NSCLC from other benign and pre-invasive lesions, including the prediction
of EGFR status and response to treatment with TK| [B4IESIEEIBTIBEIBABARIL 55 \yell as histological subtype. For
example, a retrospective study of 148 patients with histologically confirmed NSCLC found thirteen radiomics
features that predict histological subtype (ALC vs. SqCLC) with AUCs of 0.819 and 0.824, respectively 02 several
studies of radiomics signatures have reported features distinguishing benign from cancerous lung pathologies and

are shown in Table 2.

Table 2. Summary table showing studies of radiomics signatures to distinguish benign from cancerous lung

pathologies.
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Name of Number of CT
Study Scans
Data extracted
from NLST:
6630 benign
Ardila et al. 86 malignant
(93] Independent
validation set:
1112 benign
27 malignant
Chen, et al. 33 benign
(24] 42 malignant
72 pulmonary
Choi et al. nodules,
[95] 31 benign and 41
malignant
Delzell et 90 benign
al. (28 110 malignant
Data extracted
Hawkins et from NLST:
al. 328 benign
170 malignant
Data extracted
Peikert et from NLST:
al. (8 318 benign

To conclude, radiomics offers a tangible opportunity for even wider use of medical imaging in oncology, especially

408 malignant

Radiomics Feature

1024 radiomics features were assessed
and validated by expert radiologists.

Support vector machine (SVM) was used
as the
classifier.

76 out of 750 characteristics were
appreciably distinctive between benign and
malignant nodules.

Accuracy for the selected
4-feature signature (SFS) was the
maximum.

103 radiomic signatures were tested.

416 radiomic signatures.
Combinations of the 6 feature selection
methods
and 12 classifiers were
examined by applying a
10-fold repeated
cross-validation framework with 5 repeats.

219 radiomic signature with best model
finding 23 stable signatures.
J48, JRIP (RIPPER),
Naive Bayes, support vector machines
(SVMs), and random forest(s) classifiers
tested.

LASSO logistic regression model
implemented.
8 out of 57 radiomic
signatures utilised.

Statistical Tool Used to
Assess Performance

AUC of training dataset:

0.944

AUC of validation dataset:

0.955

SFS:
Accuracy: 84%
SN: 92.85%
SP: 72.73%

Accuracy: 84.6%
AUC: 0.89

AUC: 0.747
SN: 61.6%
SP: 72.9%

Accuracy: 80%
AUC: 0.83

AUC: 0.939

in difficult to access lesions or lesions in patients in whom invasive lung biopsy could be detrimental.
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