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Ethylene-propylene-diene rubbers (EPDM) are one of the most important polyolefin materials widely commercialized and

used in various industries in recent years. The production of EPDM is based solely on catalytic coordination

polymerization processes. The development of new catalysts and processes for the synthesis of EPDM has expanded the

range of products and their manufacturing in terms of energy efficiency, processability, and environmental safety.
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1. Introduction

Ethylene-propylene-diene rubbers (EPDM) are ternary copolymers of ethylene, propylene, and non-conjugated dienes, 5-

ethylidene-2-norbornene (ENB), dicyclopentadiene (DCPD), and 5-vinyl-2-norbornene (VNB). These elastomeric

materials are used as materials showing excellent resistance to heat, air, ozone, and steam .

EPDM isproduced using Ziegler-type ion-coordination polymerization catalysts. Homogeneous catalytic systems

developed in the early 1960s and widely used up to now include a combination of a vanadium precatalyst (VCl , V(acac) ,

more often VOCl ) and an organoaluminum cocatalyst (AlEt Cl, AlEt , Al Et Cl ) in slight excess to the precatalyst

(Al/V~10 mol/mol), as well as chlorine-containing promoters such as ethyltrichloroacetate, n-butylperchlorocrotonate, etc.

. These catalytic systems provide the formation of random, fully amorphous terpolymers with a high ratio of

comonomers incorporation showing very good elastomeric properties and operating in a wide temperature range (−50–

+130 °C). However, these systems show low activity (80–120 kg of copolymer/mol ) and poor catalytic stability even at

20–60 °C. The consequence of low activity is the high residual content of a catalyst and promoters in the polymer, which

ishighly toxic and hasa negative effect on the properties of the copolymer. The presence of undesirable impurities requires

additional technological operations to remove them.

New opportunities in the synthesis of EPDM are opened by single-site catalytic systems based on metallocene,

constrained geometry, half-sandwich, and post-metallocene chelate complexes of Group IVB transition metals. As

compared to vanadium ones, these systems have a number of advantages such as high activity, stability at elevated

temperatures, single-site nature of active sites, which ensures uniformity of molecular weight characteristics, the

microstructure of terpolymers, and, hence, the possibility of creating EPDM with desired properties. It is worth

emphasizing that in recent years, there has been a surge of interest in the world’s main elastomer manufacturers

(ARLANXEO, Dow Elastomers, ExxonMobil, Mitsui Chemicals, etc.) to new-generation single-site catalytic systems,

likelycaused by more stringent requirements for the environmental safety of production and properties of products. A wide

range of EPDM properties produced on these systems by the world’s leading manufacturers can be illustrated in Table 1.

Table 1. EPDM characteristics of leading manufacturers.

EPDM
Manufacturer

Polymer
Grade

Ethylene Content,
wt%

Diene (ENB) Content,
wt%

Mooney
Viscosity
ML1+4(125 °C) 

Polymer
Structures Ref.

ARLANXEO Keltan 44–71 0–11.0 22–92
LCB ,

ND , MD , BD 

DOW Elastomers Nordel 50–85 0–8.5 18–85 ND, MD, BD

ExxonMobil Vistalon 54–77 0–10.0 16–82 LCB,
ND, MD, BD
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EPDM
Manufacturer

Polymer
Grade

Ethylene Content,
wt%

Diene (ENB) Content,
wt%

Mooney
Viscosity
ML1+4(125 °C) 

Polymer
Structures Ref.

Mitsui Chemical Mitsui EPT 41–72 0–14.0 40–78 LCB,
ND, MD, BD

KumhoPolychem KEP 55–71 0–10.0 23–95 No data

 Mooney viscosity is the routine industry standard correlated with molecular weight of EPDM. High Mooney viscosities

are preferred. Abbreviation according to ASTM D1646 is ML 1+4 (125 °C), where M—Mooney units, L—large rotor, 1—the

sample preheat time (min), 4—the sample test time (min) at 125 °C.  Long Chain Branching.  Narrow molecular weight

distribution.  Medium molecular weight distribution.  Broad molecular weight distribution.

2. Single-Site Catalysts

2.1. Metallocene Catalysts

Metallocene catalysts (MC) are a broad class of Group IVB complexes in which a transition metal is bounded by π-bonds

to two cyclopentadienyl rings of substituted or unsubstituted ligands: Cyclopentadienyl (Cp), indenyl (Ind), and fluorenyl

(Flu) .

Promising for producing EPDM are two types of complexes: metallocenes of Cs symmetry  and zirconocenes of

C1 symmetry . The capabilities of Cs symmetry catalysts in the synthesis of EPDM can be demonstrated by the patent

data of Mitsui Chemicals . They claim a new effective class of hafnocene and zirconocene complexes of

type 1 (Figure 1) containing different substituents in both the bridging group and the peripheral positions of the Flu ligand.

When activated with CPh B(C F )  (4 and 10 equiv.), the complexes effectively provide ternary copolymerization of

E/P/ENB at 80–120 °C. Hafnocenes 1 ensure the incorporation of ENB at a level of 7–11 wt% and form elastomers with

high molecular weights (M  = 1000–2000 kDa) . The compounds with R  = 4-MePh, 4-MeOPh, 4-Me NPh and R

= Me show the highest activity up to a 10,000–20,000 kg copolymer/(mol  h atm)). Zirconocenes 1 show high efficiency in

the synthesis of well-vulcanizing VNB terpolymers with a low degree of branching . Such copolymers cannot be

obtained by using conventional vanadium and other metallocene systems. The content of VNB in this EPDM reaches 10

wt%. The molecular weights range from 50 to 600 kDa.

Figure 1. Chemical structures of MCs 1 and 2.

Another promising type of MC catalysts for the synthesis of EPDM is a new group of complexes of type 2 (Figure 1)

developed by Lotte Chemical . Their activity upon activation with MAO in the ternary copolymerization of ethylene,

propylene, and ENB reaches 155,000–190,000 kg copolymer/(mol  h) at 80 °C. Terpolymers with M  = 163–209 kDa,

M /M  = 5.6–9.3, and ENB content up to 7.1–8.5 wt% have been obtained.

In the vast majority of publications, MAO (or modified MAO) and perfluoroaryl borates are reported to be used to activate

metallocene precatalysts in the synthesis of polyolefins , including EPDM .

However, MAO is too expensive, unstable during storage, and is used in large molar excess to the precatalyst. The

borates are extremely sensitive to impurities and demonstrate unstable polymerization kinetics. Thus, the development of

new effective inexpensive activators of MC is an actual task thatshould also be noted.

Among promising alternative activators, the following can be noted. Thus, researchers from the Uniroyal Chemical Comp

successfully employ a mixture of boraryl compounds LiB(C F )  and B(C F ) , which provide higher process stability even

at elevated temperatures . Other new effective activators for the synthesis of EPDM based on isobutylaluminumoxanes
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(-O-Al(Bu )-)  and isobutylaluminum aryl oxides (Al(Bu ) Oar ) have been proposed . These compounds

effectively activate MC precatalysts at low molar excess (200–300 molar equiv.) and, unlike conventional MAO-based

systems, allow the production of copolymers with a low content of propylene blocks, which determines their good

elastomeric properties.

2.2. “Constrained” Geometry Complexes

Special attention in the synthesis of EPDM is paid to bridged monocyclopentadienyl complexes, the so-called

“constrained” geometry complexes (CGCs). CGCs contain h -Cp-ligand linked by a bridging group with a donor ligand

(Don). The bridging group reduces the Cp–M–Don angle by approximately 20–30°as compared to Cp–M–Cp, which

ensures high availability of a transition metal in the active site and, thus, a high degree of comonomer incorporation 

. The donor is linked to the transition metal by a s-bond and ensures high stability of catalysts of this type at elevated

temperatures (up to 160–180 °C).Variations in any part of the CGC ligands as well as the type of transition metal affect

catalytic properties of the complexes, such as activity, the ability to insert comonomer(s), and molecular weight

characteristics of the resulting polymers.

CGCs 3 (Figure 2) were commercialized by DOW in the mid of the 1990s for homogeneous polymerization processes

used for production of linear low-density polyethylene . Complexes of this type are also effective for the

synthesis of EPDM , which allowed DOW to launch a wide range of elastomers (Nordel  IP). CGCs provide

production of EPDM with a wide range of M  (up to 500 kDa), composition (up to 50 wt% ofpropylene and 7.5 wt%

ofENB), and the Mooney viscosity (ML1+4(125°C)=18–85).

Figure 2. Chemical structures of CGCs 3-6.

In recent years, one can note increasing interest to catalysts of this type from several leading EPDM manufacturers. From

the late 1990s to the present, active developments in the field of CGC molecular design have been carried out at

Sumitomo Chemical, KumhoPolychem, and LG Chem, which have made it possible to significantly expand the range of

promising catalysts for the synthesis of EPDM .

2.3. Half-Sandwich Titanium Complexes

Another promising class of catalysts for the synthesis of EPDM are half-sandwich titanocenes 7–11(Figure 3) containing

N-donor ligands . Catalysts are included in the new technology was

called Keltan Advanced Catalyst Elastomer (Keltan ACE™)
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Keltan ACE  catalysts are characterized by high catalytic activity (up to 1200 tons copolymer/(mol  h)) in ternary

copolymerization of olefins and dienes and make it possible to obtain copolymers with a high content of dienes (up to 15

wt% of ENB, 5 wt% ofVNB and 20 wt% ofDCPD). Most of these catalysts are stable in copolymerization processes at

temperatures up to 120°C and form copolymers with high M  values up to 2000 kDa. A variety of developed complexes of

this type makes it possible to obtain EPDM with a wide range of properties .

On the basis of Keltan ACE™ technology, large-scale production of EPDM has been organized at the plants in Geleen,

Netherlands, and Changzhou, China, each with listed annual capacity of 160000 tons, along with 40000 tons per year in

Triunfo, Brazil .

Figure 3. Chemical structures of half-sandwich titanium complexes 7-11.

2.4. Post-MetalloceneChelate Catalysts

The most promising catalysts of this class for the synthesis of EPDM are aryloxyether12 complexes of hafnium and

zirconium (Figure 4). The compounds were discovered using the approaches of Combinatorial Chemistry and High-

Throughput Screening  and have been actively developed by Dow Elastomers for the last 15 years 

.

Figure 4. Chemical structures of aryloxyether12 complexes.

Aryloxyethercomplexes 12 have the most unique catalytic characteristics and by sum of properties surpass many known

classes of catalysts for the production of EPDM . The advantages of the catalysts are the ability

to be effectively activated by low molar amounts of the activator (Al /M=10-200, B /M up to 5 mol/mol), and high

activity in copolymerization processes in high-temperature solution polymerization conditions (120-180°C). The advantage

of a high-temperature process carried out in the solution polymerization (the polymer is soluble in the reaction medium) is

the formation of amorphous copolymers with broad molecular weight distribution. A feature of these systems is also their

ability to form copolymers with high molecular weights (M =100-1000 kDa) and low content of gel fraction . Such

catalysts were used to obtainrubbers with a high content of propylene (up to 50 wt%) and dienecomonomers of various

types (ENB, VNB, DCPD, etc., up to 16 wt%). Aryloxyether complexes are the basis of highly efficient Advanced
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Molecular Catalyst technology (AMC) developed in 2015 for obtaining new Nordel  rubber grades with improved

properties . Based on this technology, a plant with annual capacity of 200 thousand tons of EPDM was launched in

Plakimin (USA) in 2018 .

3. Conclusions

In conclusion, it should be noted that despite the fact that EPDM have being produced by the industry for more than 50

years, there is a high potentialin both improving the technologies for the synthesis of EPDM and expanding the range of

their grades. This potential is ensured by the development of new-generation catalytic systems based on Group IVB

complexes, which are alternatives to low-activity, unstable, and toxic vanadium catalysts. In particular, this is evidenced by

high research activity over the past 10–15 years of the world’s leading manufacturers of EPDM in the development of new

systems and their active commercialization. The main advantage of modern systems compared to vanadium ones is their

environmental safety, higher activity, and thermal stability, with the possibility of producing EPDM with different contents of

comonomers and microstructures, including highly branched and bimodal terpolymers. The use of these catalytic systems

has already made it possible to bring to market new grades of EPDM with a wide range of properties (for example,

Keltan  (ARLANXEO), Nordel  IP (Dow Elastomers), Vistalon  (Exxon), Mitsui EPT  (Mitsui), etc.).

The huge potential for tuning the structures of catalytic systems allows researchers to count on the further creation of new

efficient systems for the synthesis of EPDM and, accordingly, the production of elastomers with a high content of diene(s)

and the creation of new polymer microstructureswith an even wider range of properties.
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