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Mitochondria are clustered around the replication sites of several viruses and decrease the supply routes for energy and

metabolites, resulting in increased viral progeny viruses. In a viral infection, viruses generate cellular stress, which causes

mitochondrial redistribution.
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1. Introduction

The mitochondrial dynamics network involves two cycles, mitochondrial fission and Mitochondrial Fusion, to help maintain

the functional capacity of mitochondria by distribution of mitochondrial contents, energy conductance, and responsiveness

to cellular cues. Thus, mitochondrial dynamics govern their communication and interaction with other cellular organelles.

By balancing between two opposite processes, mitochondrial fission and fusion, mammalian cells maintain the overall

shapes of their mitochondria. The Fis1 protein has a TM domain with the help of the C-terminal of mitochondria anchored

into the mitochondrial outer membrane . Drp1 does not prevent localized mitochondria via the knockdown of Fis1 with

RNA interference . By network lengthening, MFF release the Drp1 foci from the mitochondrial outer membrane,

whereas, with the help of mitochondrial fission and the physical interaction between the mitochondrial fission factor (MFF)

and Drp1, MFF overexpression stimulates mitochondrial fission .

Mitochondrial fission includes Drp1 and Fis1, whereas mitochondrial fusion includes Mfn1, Mfn2, and OPA1. The deletion

of the Drp1 gene causes mitochondrial enlargement, the increased opening of the mitochondrial permeability transition

pore (MPTP), apoptosis, and lethal dilated cardiomyopathy (DCM)  by inhibiting mitochondrial fission, whereas deletion

of Mfn1 and Mfn2 disrupts mitochondrial structure and respiratory chain function . An imbalance between mitochondrial

fusion and fission compromises mitochondrial integrity during aging . Mitochondrial from aged C. elegans is

indicated by a significantly enlarged and swollen ultrastructure, which is accompanied by decreasing O2 consumption,

increasing carbonylated proteins and decreasing mitochondrial SOD activity .

In healthy mitochondria, PINK1 contains a mitochondrial target sequence (MTS), which translocates to mitochondria and

is imported to the IMM by translocase of the outer mitochondrial membrane (OMM) and inner mitochondrial membrane

(TIM). Following this, PINK1 is degraded by downstream proteolytic events.

2. Viruses and Their Effects on Mitochondrial Metabolites

In the host cell, viruses use building blocks such as lipids and amino acids for their virion progeny production, whereas

energy causes processes such as viral assembly and release . Moreover, mitochondria have evolved antiviral

counter measures. Viruses mainly influence two different mitochondrial metabolic pathways such as the β-oxidation of

fatty acids and the Tricarboxylic acid cycle or Krebs Cycle (Figure 1). Mitochondria are clustered around the replication

sites of several viruses and decrease the supply routes for energy and metabolites, resulting in increased viral progeny

viruses. In a viral infection, viruses generate cellular stress, which causes mitochondrial redistribution.
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Figure 1. Relationships between mitochondrial fission and fusion, apoptosis and mitophagy.

Slow-replicating viruses target the mitochondria by maintaining cellular energy homeostasis to ensure efficient replication

and an extended lifecycle, also avoiding programmed cell death. In contrast, fast-replicating viruses easily cope with

cellular metabolic dysfunction.

2.1. Regulation of Ca  Homeostasis by Viruses in Host Cells

Involved in various cellular process, Ca  acts as secondary messenger. Among different mechanisms, Ca  can enter

through voltage-dependent anion channels [VDAC), also known as mitochondrial porins in outer membrane, into the

mitochondrial intermembrane space . This channel regulates Ca  entry and metabolites based on mitochondrial

membrane potential (MMP). Ions such as Na , H , and Ca  exchange across the mitochondrial membrane resulting in

decreased MMP, which depends upon the electron transport chain (ETC). The permeability transition pore (PTP)

regulates Ca  efflux via a “flickering” mechanism. In Ca  overload, the PTP are opened for a longer duration which

causes the destruction of mitochondrial functions. In the inner-mitochondrial membrane, oxidative stress, Ca  overload,

and ATP depletion induce the formation of a non-specific permeability transition pore (PTP), which is also responsible for

damage to the MMP. Moreover, viruses regulate MMP in the host cells. The MMP value varies from species to species

and organ to organ, based on mitochondrial function, protein composition, and the amount of oxidative phosphorylation

activity required in that organ of the body .

At the early stage of virus infection, viruses prevent apoptosis from resulting in the prevention of the host immune

response and promote cell replication. On the opposite side, at a later stage of virus infection, viruses induce apoptosis

and release the progeny virions for dissemination to the surrounding cells.

2.2. Role of Viruses in Modulating Mitochondrial Antiviral Immunity

Viruses attack cells to generate interferon via activating a variety of signal transduction pathways. Pathogen-associated

receptors (PRRs) such as the toll-like receptor (TLRs), nucleotide oligomerization domain (NOD) like receptor [NLRs), and

retinoic acid-inducible gene (RIG-I) like receptor (RLRs), recognize the pathogen-associated molecular atoms (PAMPs) of

viruses which are present inside the cell. PRRs directly activate immune cells .

Mitochondria are associated with RLRs such as the melanoma differentiation-associated gene 5 (Mda-5) and retinoic

acid-inducible gene I [RIG-I), which recognize the dsRNA. RIG-I has two terminuses. The N-terminus contains caspase

activation and recruitment domains (CARDs) and includes proteins such as mitochondrial antiviral signaling (MAVS), IFN-

β promoter stimulator 1 (IPS-1), virus-induced signaling adaptor (VISA), or the CARD adaptor-inducing IFN-β (CARDIF)

protein. On the other hand, the C-terminus includes RNA helicase activity  which binds to unmodified RNA produced by

a viral polymerase in an ATPase-dependent manner, resulting in the exposure of its CARD domain and activating a

downstream effector which leads to the formation of enhanceosome-triggering  NF-kB production.

Mitochondrial Antiviral Signaling (MAVS) contains a proline-rich region on the N terminal CARD and the hydrophobic

transmembrane (TM) on the C-terminal, which targets the protein in the mitochondrial outer membrane . Thus, it plays

an essential role in antiviral defense in the cells. The overexpression of MAVS activates NF-kB and IRF-3, which produce
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type 1 interferon responses. By interacting MAVS with VDAC  preventing apoptosis and the opening of MPTP, the virus

cleaves the MAVS from the mitochondrial outer membrane and reduces interferon response .

For example:

HCV cleaves MAVS in amino acids (508) and paralyzes the host defense against HCV;

The flaviviridae GB virus B, NH3/4A protein cleaves MAVS and prevents any interferon product . MAVS is

associated with RLRs which produce type 1 interferon [IFNs] and pro-inflammatory cytokines  that act against the

pathogen interferon regulatory factor (IRF) and produce type 1 IFN in the cytoplasm . Peroxisomal MAVS are

involved in the induction of IFN-stimulated genes like encoding viperin .

2.3. AMPK Governs Autophagy and Mitochondrial Homeostatsis

The AMP-activated protein kinase (AMPK) complex consists of different subunits including a catalytic α-subunit and two

regulatory subunits, β and γ. The AMPK complex senses low cellular ATP levels to increase growth control nodes and the

phosphorylation of specific enzymes which produce ATP or lower ATP consumption. AMPK plays an important role in

multiple biosynthetic pathways under low cellular energy levels via direct and indirect targeting of the functions of different

protein targets of AMPK (Figure 2).

Figure 2. Viruses’ influence on beta-oxidation and the TCA cycle.

2.4. Role of SRV2 in Mitochondrial Dynamics

Ras val-2 (SRV2) is a pro-fission protein that promotes interaction between Drp1 and mitochondria , then oligomerizes

Drp1 around mitochondria to form a ring and cut the mitochondria into several fragments. Thus, it has a vital role in

mitochondrial shape and fission . The protein SRV2 also increases the expression of F-actin (as stress fiber) and it

provides an adhesive force which helps Drp1 to complete mitochondrial contraction  which facilates mediated

mitochondrial fission . Macro phase stimulating 1 (Mst 1) is a key factor in the Hippo signaling pathway. The loss of Mst

1 maintained mitochondrial homeostasis  by the attenuation of renal ischemia-reperfusion injury as well as in

cardiomyocytes, improving mitochondrial performance by autophagy and enhanced cardiomyocyte viability. Additionally,

Mst 1 has a role in SRV2-related mitochondrial fission.

2.4.1. SRV2 in Various Functions of Mitochondria

Mitochondrial fission is promoted by the LPS-mediated upregulation of SRV2 . Loss of SRV2 attenuates

mitochondrial fission, protects cardiomyocytes against LPS-induced stress, and improves cell survival and sustained

cardiomyocyte function .

SRV2 overexpression promotes mitochondrial fission and leads to cardiomyocyte death and mitochondrial damage .

Thus, the loss of SRV2 exerts an antioxidative effect in cardiomyocytes by inhibiting mitochondrial fission.

With regard to mitochondrial ETC activity, the knockdown of SRV2, LPS, and FCCP have similar effects and decrease

ETC transcription. The inhibition of mitochondrial fission prevents the LPS-induced dysregulation of cardiomyocyte energy

metabolism .

2.4.2. Relationship between Mitochondria, Oxidative Stress, and Inflammation in COVID-19
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The protein ROS increases via inflammatory cytokines, such as TNF-alpha in mitochondria, and directly stimulates a

generation of pro-inflammatory cytokines . The ROS in mitochondria is modulated by IL-6 and IL-10. Mitochondrial

metabolism is altered through intracellular cascades, which are triggered by inflammatory mediators and immune

sentinels. The serum of patients with COVID-19 contains cytokines like TNF- alpha and IL-6, which obstruct mitochondrial

oxidative phosphorylation, ATP production, and produce ROS in the cell . These ROS-altered mitochondrial

dynamics permeabilize the mitochondrial membrane and ultimately cause cell death. Additionally, ROS production and

mitochondrial content (such as mtDNA) are released into the cytosol and the extracellular environment . After this,

ROS activates NLRP3 inflammasomes and produces pro-inflammatory cytokines such as IL-1beta and induces the

production of IL-6 via inflammasome-independent transcriptional regulation . Thus, ROS contributes to

mitochondrial dysfunction (Figure 3 and Figure 4). Cytokines can indicate COVID-19 disease severity. Patients with

COVID-19 have a large number of pro-inflammatory cytokines (CXCL-8, IL-6, CCL3, CCL4, and IL-12) due to human

alveolar epithelial cells with dysfunctional mitochondria . Thus, these cells impair repair responses and reduce

responsiveness to corticosteroid (Figure 4).

Figure 3. AMPK regulates a variety of metabolic processes.

Figure 4. Mitochondria dysfunction in the pathogenesis of COVID-19.

2.5. Different Pathways to Reposition Common Approved Drugs against COVID-19

The World Health Organization reported that most repositioned drugs modulators, under clinical investigation against

COVID-19, act through different pathways such as UPR, autophagy, the NLRP3 inflammasome, and mitochondrial

permeability transition pores [MPTP] (Table 1).

Table 1. List of drugs which targeted SARS- CoV related pathways.
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Therapeutic
Category Mechanism of Action

 
Autophagy UPR stress MPTP NLRP

Inflammas

Activator Modulator Inhibitor Suppressor Modulator Modulator Inhibito

Immunosuppressant
Rapamycin,
Tacrolimus,

Everolimus 
 

Cyclosporin A 
 

Anticancer

Rapamycin,
Tersirolimus,

Everolimus ,
Gefitinib ,

Temozolomide 

 
Bortezomib,

Celecoxib Sunitinib   Thalidom

Antidiabetic Metformin  

Pioglitazone
, Exenatide,

Vildagliptin
, Berberine

Liraglutide   Glyburide

Dietary supplement
Trehalose,

Resveratro l   Curcumin Quercetin  

Antipsychotic

Lithium ,
Fluspirilene,

Trifluperazine,
Pimozide ,
Bromperidol,

Chlorpromazine
, Sertindole,

Olanzapine,
Fluphenazine,

Methotrimeprazine
,

Prochlorperazine

Clozapine  
Haloperidol 

, Etifoxine  

Antiepileptic
Carbamazepine,

Sodium valproate  

Antihypertensive

Verapamil,
Nimodipine,

Nitrendipine ,
Nicardipine,

Amidarone ,
Rilmenidine,
Clonidine ,
Minoxidil 

 

Isoproterenol
, Valsartan,

Lowsartan,
Olmesartan,
Telmisartan

,
Guanabenz
, Bisoprolol,

Propranolol,
Metoprolol 

 

Ifenprodil 
, Diazoxide,

Nicorandil,
Tadalafil,

Perhaxiline,
Carvedilol 

 

Antidiarrheal Loperamide  

Ca  regulator Calcifediol 
 

Anti-infective Nitazoxanide 

Antidepressant Nortriptyline   Clomipramine Trazodone  

AnticholesteremiC
agent Simvastatin   Atorvastatin  

Antiemetic

Chlorpromazine
,

Prochlorperazine  
Haloperidol Thalidom

Minercorticoid
replacement agent

Fludraocortisone  

Antitussive Noscapine  
Carbetapentane,

Dextromethorphan  

Anti-allergic Clemastine 
 

Chelating agent Defeiprone 

Antihelmintic Niclosamide   Quimacrine  
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Therapeutic
Category Mechanism of Action

Skeletal muscle
relaxant   Baclofen  

Gastrointestinal

 

Pantoprazole 

 

Macrolide antibiotic Azithromycin 

Ocular drug Verteporfin 

Antiprotozoal drug

Quimacrine ,
Chloroquine,

Hydroxychloroquine

Urea cycle disorder
agent

 

Thenylbutyrate

 

Hypolipidemic agent
Pravastatin

,
Fenofibrate 

Anti-Alzheimer’s

 

Donepeziol 

 Anti-Parkinsonian Pramipexole 

Neuroprotective
agent; anti-ALS

drug
Edaravone 

Anti-arthritic   Anakinra

Anti-inflammatory
agent   Celecoxib  

Anakinra
Tranilast

Anti-insomia agent   Melatonin  

3. Expert Opinion

Mitochondria are membrane-bound cell organelles which produce energy in the form of adenosine triphosphate (ATP) as

well as regulating various intracellular functions like metabolism, bioenergetics, cell death, innate immune signaling, and

cellular homeostasis. Mitochondria are self-governed by mitochondrial dynamics and mitochondria-selective autophagy or

mitophagy. During infection, viruses altered mitochondrial dynamics in order to modulate mitochondria-mediated antiviral

immune responses via the alteration of mitochondrial events such as autophagy, mitophagy, and cellular metabolism to

facilitate their proliferation.

The pro-fission protein of SRV2 activates mitochondrial fission via the loss of MMP, the ROS-overloading suppression

antioxidant system, the depletion of cellular ATP, the release of the apoptotic factor, the activation of the caspase family,

and NLRP3 inflammasomes. The protein SRV2 also promotes mitochondria-associated cardiomyocyte apoptosis to cause

cardiomyocyte death and mitochondrial damage. The World Health Organization reported that most repositioned drugs

modulators, under clinical investigation against COVID-19, act through different pathways such as UPR, autophagy, the

NLRP3 inflammasome, and mitochondrial permeability transition pores (MPTP) to inhibit SARS-COV2 propagation.

Analysis of the functional significance of mitochondrial dynamics and viral pathogenesis will open up new possibilities for

the therapeutic design of approaches to combat viral infections and associated diseases.
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