Metal Hydrides

Subjects: Engineering, Mechanical

Contributor: Vamsi Krishna Kukkapalli , Sunwoo Kim , Seth A. Thomas

A metal hydride is a compound formed between a metal and hydrogen, in which the hydrogen atoms are bonded to the metal atoms through chemical bonds. Metal hydrides have a wide range of applications as energy storage materials, catalysts, and structural materials.

metal hydride reactor heat transfer thermal management

1. Introduction

A metal hydride is a compound formed between a metal and hydrogen, in which the hydrogen atoms are bonded to the metal atoms through chemical bonds. Metal hydrides have a wide range of applications as energy storage materials, catalysts, and structural materials. There are various types of metal hydrides, each with their own unique properties and challenges. These include interstitial, substitutional, and complex types. Interstitial hydrides are those in which the hydrogen atoms are located between the metal atoms in the crystal lattice, while substitutional hydrides are those in which the hydrogen atoms replace metal atoms in the crystal lattice. In complex hydrides, the hydrogen atoms form covalent bonds with the metal atoms, resulting in a compound with a more complex chemical structure. Some of the most well-known metal hydrides include sodium aluminum hydride (NaAlH₄), magnesium hydride (MgH₂), and titanium hydride (TiH₂). These hydrides can store and release large amounts of hydrogen in a relatively safe and controlled manner, making them ideal for energy storage applications.

2. Metal Hydrides

One of their main characteristics is the ability to absorb and release hydrogen gas through processes known as hydriding and dehydriding, respectively ^[1]. This property makes them attractive for use as hydrogen storage materials, as they can store large amounts of hydrogen at relatively low pressures ^[2]. Metal hydrides can also be used as catalysts in chemical reactions and as structural materials due to their high strength and low density.

There are several advantages to using metal hydrides for hydrogen storage:

High capacity: Metal hydrides have a high hydrogen storage capacity, meaning that they can store large amounts of hydrogen in a relatively small volume. This makes them a compact and efficient storage option.

Safe: Metal hydrides are generally considered to be a safe storage option because they do not release hydrogen gas unless they are subjected to specific conditions, such as high temperatures or pressures. This reduces the risk

of explosions or fires.

Stable: Metal hydrides are stable and do not react with other materials, making them a safe and reliable storage option.

Reusable: Metal hydrides can be used to store and release hydrogen multiple times, making them a reusable and environmentally friendly storage option.

Lightweight: Metal hydrides are typically lightweight, making them a suitable storage option for applications where weight is a concern, such as in vehicles.

Some of the applications of metal hydrides are provided in Table 1.

Table 1. Some applications where metal hydrides are used.

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
^[3] —Krane et al., 2022	Energy Storage	Two-reactor metal hydride system	 High energy density Non-toxic and non-flammable suitable for long-term storage. Can be cycled without degradation in capacity Can operate at a wide range of temperatures and pressures and pressures and low environmental impact 	 Slow charging Limited number of experimental validations to support the dynamic model 	MgH ₂ , TiFeH ₂ , LaNi ₅ H ₆
^[4] —Zhang et al., 2023	Catalysis	Ammonia synthesis	 High catalytic activity and 	 Limited understanding 	Lanthanum hydride

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
			selectivity for ammonia synthesis • Lanthanum hydride species improves the catalytic performance	of the mechanism behind the improved catalytic performance • Potential deactivation of the catalyst over time	
^[5] —Lv, Y. et al., 2023	Energy storage	Magnesium hydride conversion electrode	 High energy density Abundant raw materials and detailed understanding of ion diffusion and hysteresis in magnesium hydride conversion electrodes 	 Slow reaction kinetics Low cycling stability Challenges in improving ion diffusion and charge transfer kinetics Limited practical application due to the need for high operating temperatures 	Magnesium hydride
^[6] —Zhou et al., 2023	Fuel cells	Hydrogen feeding system	 Comprehensive comparison of RE-based and Ti-based multicomponent metal hydrides 	 Limited on long-term stability 	RE-based and Ti-based multicomponent metal hydrides

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
^[2] —Tiwari and Sharma, 2023	Energy storage	Metal hydride reactor and thermocline- based heat storage system	 Proposed a hybrid energy storage system using metal hydrides and thermocline heat storage Efficient thermal energy storage and release 	 Limited discussion on real-world implementation and system optimization Limited experimental validation 	MgH ₂
^[8] —Alok Kumar, P. Muthukumar, 2022	Hydrogen storage and purification		 Methane poisoning characteristics studied experimentally 	 Limited discussion on the impact of methane poisoning on system performance 	La _{0.9} Ce _{0.1} Ni ₅
9 Krishnamoorthy et al., 2023	Battery modeling	Lithium–ion and nickel– metal hydride batteries	 Provides efficient battery models for performance studies 		Nickel-metal hydride battery
^{[<u>10]</u>_Zhang et al., 2022}	Chemicals	CO ₂ capture	 Insight into CO₂ capture by nickel hydride complexes 	 Limited discussion of practical applications Further optimization of the nickel hydride 	Nickel hydride complexes

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
				complexes is	
				enhance	
				performance	
				ponomianoo	
[11]—Brestovič, T. et al. 2022	Metal Hydride Compressors	Heat pump- based compression system	 Improved heat transfer efficiency due to the integration of a heat pump with a metal hydride compressor Utilization of low- temperature heat sources Increased COP values up to 2.2 in comparison to conventional heat pumps 	 The use of metal hydride beds for compression may cause a decrease in the COP Additional heating of the gas after compression may be required Low heat transfer rates in the metalhydride bed may result in higher operating temperatures, which may negatively impact the overall 	LaNis
				performance of	
				the system	
				Limited	
				scalability due	

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
				to material properties	
[12]—Massaro et al., 2023	On-board hydrogen storage technologies	Fuel cell systems for aircraft electrification	 High energy density of hydrogen, which provides high specific energy and range for aircraft On-board hydrogen storage technologies, such as metal hydrides, offer high storage capacity and low weight Fuel cell systems provide high efficiency and low noise emissions 	 Low volumetric energy density of hydrogen, which requires large storage volumes Safety concerns due to the high flammability and explosiveness of hydrogen Limited availability of hydrogen infrastructure 	
^[13] —Nguyen and Shabani, 2022	Metal hydride hydrogen storage	Standalone solar hydrogen systems	 High volumetric and gravimetric hydrogen storage capacity of metal hydrides The ability to use renewable 	 High cost of metal hydride materials Slow kinetics for hydrogen uptake and release 	

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
			 energy sources, such as solar energy, to power the metal hydride system Improved thermal management using phase change materials can enhance system performance 	 Limited cycle life due to material degradation 	
[14]_Eadi et al., 2023	Hydrogen gas sensing	Pd-Ni alloy thin films	 Pd-Ni alloy thin films exhibit high sensitivity and selectivity towards hydrogen gas detection The sensing performance of Pd-Ni alloy thin films can be improved by optimizing the deposition parameters Pd-Ni alloy thin films are a promising candidate for 	 Pd-Ni alloy thin films can be sensitive to other gases, such as CO and H₂S, which can interfere with hydrogen gas detection The sensing performance of Pd-Ni alloy thin films can be affected by environmental factors, such as temperature and humidity 	

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
			practical hydrogen sensing applications due to their low cost and ease of fabrication	 Pd-Ni alloy thin films may require periodic calibration to maintain accurate hydrogen gas detection 	
^[15] —Kumar et al., 2022	Metal hydride- based hydrogen storage	Standalone microgrids	 Metal hydride- based hydrogen storage systems can provide a reliable and efficient means of energy storage for standalone microgrids Metal hydride systems have the potential for high energy density storage compared to other energy storage technologies Metal hydride systems are environmentally friendly and have no 	 Metal hydride systems can be expensive to manufacture and maintain The hydrogen uptake and release kinetics of metal hydride systems can be slow, leading to reduced system performance Metal hydride systems can be affected by temperature and humidity changes, which can reduce system 	MgH ₂ , TiFeH ₂ , LaNi _{4.8} Al _{0.2} H _{11.3}

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
			harmful emissions		
[16]Tian et al., 2022	Hybrid rocket propulsion	Solid-fuel additives	 Addition of metal and metalloid solid- fuel additives can improve the combustion performance of hydroxy- terminated polybutadiene- based hybrid rocket motors Metal and metalloid additives can increase the density and specific impulse of the rocket motor Additives can also reduce the nozzle ablation rate, which can extend the lifetime of the motor 	 The effect of the additives on the mechanical properties of the motor is not well understood The production and processing of the solid-fuel additives can be expensive and difficult The use of metal and metalloid additives may require additional safety measures due to the potential for increased reactivity and flammability 	
[<mark>17]</mark> —Lee et al., 2022	Hydrogen storage	Magnesium hydrogen tank	 The two-in-one flexible high- temperature micro-sensor 	 The study focuses solely on the development 	MgH ₂

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides
			 developed in this study can provide real- time monitoring of surface temperature and strain of magnesium hydrogen tanks The sensor is low-cost, lightweight, and can be easily integrated into existing tank designs Real-time monitoring of tank conditions can improve safety and performance in hydrogen storage systems 	 and testing of the micro- sensor and does not address other aspects of hydrogen storage technology The use of magnesium as a hydrogen storage material has some drawbacks, including low hydrogen storage capacity and high reactivity with air and moisture 	
^[18] —Sezgin et al., 2022	Hydrogen energy systems	Underwater applications	 Hydrogen fuel cells are a promising power source for underwater applications due to their high efficiency, low noise, and zero emissions 	 The high cost and complexity of hydrogen systems may limit their adoption in some applications 	TiFe, LaNi ₅ , AB ₂ (MmNi _{3.6} Co _{0.7} Mn _{0.4} Al _{0.3}), MgH ₂ , LiBH ₄

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides	
			 Hydrogen can be stored in metal hydride tanks, which have high energy density and can operate at low pressures Hydrogen systems can provide longer endurance and greater range than traditional battery- powered systems 	• The need for refueling infrastructure and the limited availability of hydrogen fuel may also be barriers to adoption		a more
^[19] —Kailiang Ren, Jiajia Miao, et al., 2022	Electrochemical energy storage	Batteries	 LaFeO₃ coated with C/Ni exhibited superior electrochemical performance at high temperatures compared to bare LaFeO₃ The coating with C/Ni helps to increase the conductivity of the material 	 The preparation of the C/Ni-coated LaFeO₃ requires additional processing steps The long-term stability of the coating is ^[24] unknown 	NIMH	ions: (A ropertie
5		5	and improves	2		nost we

known for hydrogen absorption (such as Mn_2Zn). The AB_5 group has excellent hydrogenation ability at ambient temperature. However, its hydrogen capacity is typically in the range of 1 to 1.5 wt%. Metal hydrides based on magnesium (Mg and Mg₂Ni) display unacceptably slow rates of hydrogenation and dehydrogenation even after significant activation at 673 K (400 °C) ^[25].

References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides	
			its electrochemical properties			/erla
^[20] —Dinesh Dashbabu, E. Anil Kumar, I.P. Jain, 2022	Hydrogen compression	Metal hydride hydrogen compressor	 Metal hydride hydrogen compressor with Al- substituted LaNi5 hydride can effectively compress hydrogen Study provides a comprehensive thermodynamic analysis of the compressor 	 The performance of the compressor decreases at higher operating temperatures The thermal conductivity of the metal hydride decreases with increasing Al content 	LaNi5H6-xAlx	n and Jm 2023 Sion, nol.
[21]—Sayantan Jana et al., 2022	Heating and cooling	Embedded cooling tube type metal hydride reactor	 High thermal conductivity Energy-efficiency Rapid heating/cooling Absence of moving parts Long life cycle 	 Limited by heat transfer efficiency Relatively low hydrogen storage capacity Higher cost compared to conventional systems 	Mg ₂ NiH ₄ , Top of Form bottom of form	Sive 3, 33, Storag Energ Al- Is for
^[22] —Singh et al., 2022	Renewable energy	Reversible SOFC, hydrogen	 Novel energy storage system 	 Need for further testing 	LaNi _{4.8} Al _{0.2} , MgH ₂ , Ni- MH alloy, CaH ₂	kel

- 11. Brestovič, T.; Jasminská, N.; Lázár, M. Measurements of Operating Parameters of a Metal Hydride Compressor with a Heat Pump. Appl. Sci. 2022, 12, 3302.
- Massaro, M.C.; Biga, R.; Kolisnichenko, A.; Marocco, P.; Monteverde, A.H.A.; Santarelli, M. Potential and Technical Challenges of On-Board Hydrogen Storage Technologies Coupled with Fuel Cell Systems for Aircraft Electrification. J. Power Sources 2023, 555, 232397.

1	References	Technology Area	Engineering System	Pros	Cons	Suggested Hydrides	g
1			storage, rankine cycle, absorption refrigeration	design based on multiple technologies	and optimization		J, \$
1				 Proposed a new sandwich reaction bed for hydrogen and thermal storage 	• No	nin Films. Int. J. Hyd J. Thermal Analysis Irogen Storage. Sus	roç ar taiı
L	^[23] —H. Chang, Y.B. Tao, H. Ye, 2023	Hydrogen and thermal storage	Sandwich reaction bed filled with metal hydride and thermochemical material	Conducted numerical simulations to investigate the performance of	experimental validation of the numerical results was conducted	શnd Metalloid Solid-F ed Polybutadiene Ba	=ue ise
1				the system under different operating conditions		nitoring of Surface ade Two-In-One Fle	xib

- 16. Sezgin, B., Devnin, T., Oziark, T., Erogia, I. Hydrogen Energy Systems for Underwater Applications. Int. J. Hydrogen Energy 2022, 47, 19780–19796.
- Ren, K.; Miao, J.; Shen, W.; Su, H.; Pan, Y.; Zhao, J.; Pan, X.; Li, Y.; Fu, Y.; Zhang, L.; et al. High Temperature Electrochemical Discharge Performance of LaFeO3 Coated with C/Ni as Anode Material for NiMH Batteries. Prog. Nat. Sci. Mater. Int. 2022, 32, 684–692.
- 20. Dashbabu, D.; Kumar, E.A.; Jain, I.P. Thermodynamic Analysis of a Metal Hydride Hydrogen Compressor with Aluminium Substituted LaNi5 Hydrides. Int. J. Hydrogen Energy 2022.
- 21. Jana, S.; Raju, N.N.; Muthukumar, P. Performance Tests on Embedded Cooling Tube Type Metal Hydride Reactor for Heating and Cooling Applications. Therm. Sci. Eng. Prog. 2022, 33, 101349.
- Raj Singh, U.; Sai Kaushik, A.; Sekhar Bhogilla, S. A Novel Renewable Energy Storage System Based on Reversible SOFC, Hydrogen Storage, Rankine Cycle and Absorption Refrigeration System. Sustain. Energy Technol. Assess. 2022, 51, 101978.
- 23. Chang, H.; Tao, Y.B.; Ye, H. Numerical Study on Hydrogen and Thermal Storage Performance of a Sandwich Reaction Bed Filled with Metal Hydride and Thermochemical Material. Int. J. Hydrogen Energy 2023.
- Lototskyy, M.; Satya Sekhar, B.; Muthukumar, P.; Linkov, V.; Pollet, B.G. Niche Applications of Metal Hydrides and Related Thermal Management Issues. J. Alloys Compd. 2015, 645, S117– S122.

25. Sandrock, G. Hydride Storage. In Handbook of Fuel Cells; John Wiley & Sons, Ltd.: Chichester, UK, 2010.

Retrieved from https://encyclopedia.pub/entry/history/show/97848