Android Malware Detection Using ML | Encyclopedia.pub

Android Malware Detection Using ML

Subjects: Computer Science, Artificial Intelligence | Computer Science, Software Engineering

Contributor: Janaka Senanayake

This systematic review discussed ML-based Android malware detection techniques. It critically evaluated 106
carefully selected articles and highlighted their strengths and weaknesses as well as potential improvements. The
ML-based methods for detecting source code vulnerabilities were also discussed, because it might be more difficult
to add security after the app is deployed. Therefore, this paper aimed to enable researchers to acquire in-depth

knowledge in the field and to identify potential future research and development directions.

Android security malware detection code vulnerability machine learning

| 1. Introduction

Numerous industrial and academic research has been carried out on ML-based malware detection on Android,
which is the focus of this review paper. The taxinomical classification of the review is presented in Figure 1.
Android users and developers are known to make mistakes that expose them to unnecessary dangers and risks of
infecting their devices with malware. Therefore, in addition to malware detection techniques, methods to identify
these mistakes are important and covered in this paper (see Figure 1). Detecting malware with ML involves two
main phases, which are analysing Android Application Packages (APKs) to derive a suitable set of features and
then training machine and deep learning (DL) methods on derived features to recognize malicious APKs. Hence, a
review of the methods available for APK analysis is included, which consists of static, dynamic, and hybrid
analysis. Similar to malware detection, vulnerability detection in software code involves two main phases, namely
feature generation through code analysis and training ML on derived features to detect vulnerable code segments.

Hence, these two aspects are included in the review’s taxonomy.

https://encyclopedia.pub/entry/12929 1/19

Android Malware Detection Using ML | Encyclopedia.pub

Static

Analy=is

Analyse Dynamic
APKs Amalysis

]r]unl:il'}- User
Mlistakes

Hybrid
ﬂm‘ll_vl.'i.u

Identify
Malware

ML with Static
.-\n.ﬂy:-h

ML with Dyvnamic
Analysis

Reduce Threats Detect Mabware
to Amdroid with MLJ DL

ML with Hybrid
Amnalysis

DL with Analysis

Cirde
ﬂn.al_!r'ﬁi.':

Identify Developer Code Vulnerability
Mistakes Diestection

Dirtect 'v'u|m-r.n1.1i|il!}-
with ML

Figure 1. Taxonomy of the review.

| 2. Background

2.1. Android Architecture

Android is built on top of the Linux Kernel. Linux is chosen because it is open source, verifies the pathway
evidence, provides drivers and mechanisms for networking, and manages virtual memory, device power, and
security [5]. Android has a layered architecture [6]. The layers are arranged from bottom to top. On top of the Linux
Kernal Layer, the Hardware Abstraction Layer, Native C/C++ Libraries and Android Runtime, Java Application
Programming Interface (API) Framework, and System Apps are stacked on top of each. Each layer is responsible
for a particular task. For example, the Java APl Framework provides Java libraries to perform a location awareness

application-related activity such as identifying the latitude and the longitude.

2.2. Threats to Android

While Android has good built-in security measures, there are several design weaknesses and security flaws that
have become threats to its users. Awareness about those threats is also important to perform a proper malware
detection and vulnerability analysis. Many research and technical reports have been published related to the

Android threats [13] and classified Android threats based on the attack methodology. Social engineering attacks,

https://encyclopedia.pub/entry/12929 2/19

Android Malware Detection Using ML | Encyclopedia.pub

physical access retrieving attacks, and network attacks are described under the ways of gaining access to the
device. For the vulnerabilities and exploitation methods, man in the middle attacks, return to libc attacks, JIT-
Spraying attacks, third-party library vulnerabilities, Dalvik vulnerabilities, network architecture vulnerabilities,

virtualization vulnerabilities, and Android debug bridges and kernel vulnerabilities are considered.

2.2.1. Malware Attacks on Android

Malware attacks are the most common case that can be identified as a threat to Android. There are various
definitions for malware given by many researchers depending on the harm they cause. The ultimate meaning of the
malware is any of the malicious application with a piece of malicious code [16] which has an evil intent [17] to
obtain unauthorised access and to perform neither legal nor ethical activities while violating the three main

principles in security: confidentiality, integrity, and availability.

2.2.2. Users and App Developers’ Mistakes

The mistakes can happen knowingly or unknowingly from the developers as well as users. These mistakes may
lead to threats arising to Android OS and its applications. It has been identified that users are responsible for most
security issues [25]. Some common mistakes done by the users will lead to serious threats in an Android
application. At the time of installing Android applications, users will be asked to allow some permissions. However,
all the users may not understand the purpose of each permission. They allow permission to run the application
without considering the severity of it. Fraudulent applications might steal data and perform unintended tasks after
getting the required permissions. It is possible to arise threats to the Android systems due to the mistakes
performed by the app developers at the time of developing applications. In the publishing stage of the Android
apps, Google Play will have only limited control over the code vulnerabilities in the applications. Sometimes
developers are specifying unwanted permissions in the Android manifest file mistakenly, which encourages the
user to grant the permissions if the permissions were categorised as not simple permissions [26]. Though the app
development companies and some of the app stores are advising about following the security guidelines
implemented at the time of development, many developers still fail to write secure codes to build secured mobile

applications [27].

2.3. Machine Learning Process

ML is a branch of artificial intelligence that focuses on developing applications by learning from data without
explicitly programming how the learned tasks are performed. The traditional ML methods make predictions based
on past data. ML process lifecycle consists of multiple sequential steps. They are data extraction, data
preprocessing, feature selection, model training, model evaluation, and model deployment [9]. Supervised learning,
unsupervised learning, semisupervised learning, reinforcement learning, and deep learning are the different
subcategories of ML [28]. The supervised learning approach uses a labelled dataset to train the model to solve
classification and regression problems depend on the output variable type (continuous or discreet). Unsupervised
learning is used to identify the internal structures (clusters), the characteristics of a dataset, and a labelled dataset

is not required to train the model. A mix of both supervised and unsupervised learning techniques are applied in

https://encyclopedia.pub/entry/12929 3/19

Android Malware Detection Using ML | Encyclopedia.pub

semisupervised learning and used in a case of limited labelled data in the used dataset [29]. The learning model
and the data used for training are inferred. The model parameters are updated with the received feedback from the
environment in reinforcement learning where no training data is involved. This ML method proceeds as prediction
and evaluation cycles [30]. DL is defined as learning and improving by analysing algorithms on their own. It works

with models such as artificial neural networks (ANN) and consists of a higher or deeper number of processing
layers [31].

| 3. Methodology

Android was first released in 2008. A few years later, the security concerns were discussed with the increasing
popularity of Android applications [2]. More attention was received towards applying ML for software security in the
last five years because many researchers continuously identify and propose novel ML-based methods [9]. This
review was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis
(PRISMA) model [32]. Based on the objective of this study, first we formulated several research questions. Next, a
search strategy was defined to identify the conducted studies which can be used to answer our research questions.
The database usage and inclusion and exclusion criteria were also defined at this stage. The study selection
criteria were defined to identify the studies aiming to answer the formulated research questions as the third stage.
The fourth stage is defined as data extraction and synthesis, which describes the usage of the collected studies to
analyse for providing answers to the research questions. We reviewed threats to the validity of the review and the
mechanism to reduce the bias and other factors that could have influenced the outcomes of this study as the last

step of the review process. Figure 2 shows a summary of the paper selection method for this systematic review.

https://encyclopedia.pub/entry/12929 4/19

Android Malware Detection Using ML | Encyclopedia.pub

Records found Records found
through databases through other sources
(10 (11)

€
=
g Total records found
& (120
e
Gl
=
5 records excluded
due to duplication of
content
" W
E Records after
E duplicates removed
H (115)
o
Ul
5 records excluded
due to not available in
public
" W
E Total records found
B (110}
|
4 records excluded
due to issues such as
insuffscent thlt_"(uﬂ
W
T
= Final number of
._.: records incduded (106)

Figure 2. PRISMA method: collection of papers for the review.

3.1. Research Questions

This systematic review aims to answer the following research questions.

RQ1: What are the existing reviews conducted in ML/DL based models to detect Android malware
and source code vulnerabilities?

Q2: What are code/APK analysing methods that can be used in malware analysis?4, Related

Q3: What are the ML/DL based methods that can be used to detect malware in Android?\WOrk

RQ4: What are the accuracy, strengths, and limitations of the proposed models related to Android
malware detection?
RQ5: Which techniques can be used to analyse Android source code to detect vulnerabilities?Previous
improve Android security. However, several limitations have been identified in the above works, such as not

covering recent proposals on ML methods to detect malware, narrow scopes, and lack of critical appraisals of

https://encyclopedia.pub/entry/12929 5/19

Android Malware Detection Using ML | Encyclopedia.pub

suggested detection methods. The lack of a thorough analysis of ML/DL-based methods was also identified as a
limitation of existing works. Android malware detection and Android code vulnerability analysis have a lot in
common. ML methods used in one task can be customised for use in the other task. However, as per our
understanding, there are no reviews that cover these two areas together. These shortcomings have been

addressed in this work and therefore our work is unique.

| 5. Machine Learning to Detect Android Malware

Malware detection in Android can be performed in two ways; signature-based detection methods and behaviour-
based detection methods [39]. The signature-based detection method is simple, efficient, and produces low false
positives. The binary code of the application is compared with the signatures using a known malware database.
However, there is no possibility to detect unknown malware using this method. Therefore, the behaviour-
based/anomaly-based detection method is the most commonly used way. This method usually borrows techniques
from machine learning and data science. Many research studies have been conducted to detect Android malware
using traditional ML-based methods such as Decision Trees (DT) and Support Vector Machines (SVM) and novel
DL-based models such as Deep Convolutional Neural Network (Deep-CNN) [40] and Generative adversarial

networks [41]. These studies have shown that ML can be effectively utilised for malware detection in Android [9].

5.1. Static, Dynamic, and Hybrid Analysis

As mentioned earlier, analysing APKs to extract features is required to use some of the proposed ML techniques in
the literature. To this end, three analysis techniques are identified as static, dynamic, and hybrid analysis method
[62,63,64]. Static analysis can be performed by analysing the bytecode and source code (or re-engineered APK)
instead of running it on a mobile device. Dynamic analysis detects malware by analysing the application while it is
running in a simulated or real environment. However, there is a high chance of exposing the risks to a certain
extent to the runtime environment in the dynamic analysis since malicious codes will be executed which can harm

the environment. The hybrid analysis involves methods in both static and dynamic analysis.

5.2. Static Analysis with Machine Learning

Static analysis is the widely used mechanism for detecting Android malware. This is because malicious apps do not

need to be installed on the device as this approach does not use the runtime environment [67].

5.2.1. Manifest Based Static Analysis with ML

Manifest based static analysis is a widely used static analysis technique.

Table 1. Manifest based static Analysis with ML.

Year Study Detection Feature Used ML Selected ML Model Strengths Limitations/Drawbacks
Approach Extraction Datasets Algorithms/Models Algorithms/Models Accuracy

https://encyclopedia.pub/entry/12929 6/19

Android Malware Detection Using ML | Encyclopedia.pub

Method

Developing 3

level data Considered only the

purring Manifest Google High permission analysis
2018 [68] method and Analysis for Pla 9 NB, DT, SVM SVM 90% effectiveness which may lead to omit

applying ML Permissions Y and accuracy other important analysis

models with aspects

SigPID

Analysmg The model was))

permission . Google .) Did not consider other

and training S Play, RF, SVM, Gaussian UL static analysis features

.]) ’ 0, i
2021 [69] the model Analy.5|s. el AndroZoo, NB, K-Means, = G cgmparatlvely such as OpCode, API
o - Permissions . different
with identified AppChina calls, etc.
) datasets

ML algorithm

Reducing

dimension

vector

generation Manifest MLP, NB, Linear Efflc_lenc.y., Hyper-parameter

and based on X AMD, ; applicability and .
2021 [70] Analysis for Regression, KNN, MLP 96% . selections are not made

that perform T APKPure understandability

permissions C.4.5, RF, SMO in the use

malware are ensured

detection

using ML

models

Selecting

feature using Manifest Analysed the

dimensionality e Drebin, RF-98%, features as Did not consider about
2021 [71] reduction VSIS Google RF, NB, GB, AB RF, NB, AB NB-92%, individual other features such as

: permissions
algorithms . Play AB-97% components and API calls, Opcode etc.
. and intents

and using Info not as a whole

Gain method

Feature

weighting with Manifest

join Analysis for Drebin,

optlml|sat|on permission, AMD, JOWM-IO method Improved Correlation between
2021 [72] of weight Intents, Google RF, SVM, LR, KNN) 96% accuracy and features were not

. . o with SVM and LR .)

mapping with Activities Play efficiency considered

proposed and APKPure

JOWMDroid Services

framework

1. Number of Mobile Phone Users Worldwide from 2016 to 2023 (In Billions). Available online:
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on
19 May 2021).

2. Mobile Operating System Market Share Worldwide. Available online:
https://gs.statcounter.com/os-market-share/mobile/worldwide/ (accessed on 19 May 2021).

3. Number of Android Applications on the Google Play Store. Available online:
https://www.appbrain.com/stats/number-of-android-apps/ (accessed on 19 May 2021).

4. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of
malware: Research developments, trends and challenges. J. Netw. Comput. Appl. 2020, 153,
102526.

5.2%0odé BagethStatid AfalgsisovigrMie and Related Security Risks. Asian J. Technol. Manag.
Res. [ISSN: 2249-0892] 2015, 5, 14-18. Available online:

CogrpARGARNAYTIH B GrR/NRBEIINBIRNILAEINI NS SEBICPADETT AR CE R A UMD RAYASOY . ML-

https://encyclopedia.pub/entry/12929 7/19

Android Malware Detection Using ML | Encyclopedia.pub

Talikatf@oddbabie ctatie Adagsablétlonine: https://developer.android.com/guide/platform (accessed on

AN AAa.. "NNAN
. Feature
Detection . Used ML Selected ML Model L
Year | Study Approach '\En);ttl;lag‘t;on Datasets Algorithms/Models Algorithms/Models Accuracy Strengths SinitationsDIawhacks
Transforming
malware
detection
problem to .
matrix model : nic
Ve Code analysis
Wxshall algo eI AP GRS (Gl (Sl L Required to expand the 4 and
and code based Wxshall Wxshall extended Few false .
2016 [78] and . . MalGenome . . 87.75% behaviour model and
. instrumentation algorithm, Wxshall algorithm alarms . .
extracting . improve the efficiency
. for network extended algorithm
Smali codes)
traffic
and
generated
the API call
graph using
Androguard
1 Using the Can identify
combination the
of system instantaneous
functions to attacks. Can
desc.trlbg e . NB, J48 DT, - Judge the Did not consider some
1 application Code analysis Anplication Application source of the imnortant stafic analvsis
2017 [74] behaviours for API calls Google Play PP - functions decision 90% detected P Y
functions decision . features such as
and and Opcodes . algorithm abnormal
. algorithm ; OpCode, API calls, etc.
constructing behaviour
eigenvectors High
and then performance
1 using in model N put
Androidetect execution
Using
TinyDroid
1 framework, Lightweight
n-Gram static Malware samples were
methods detection taken only from few
after getting Code Analysis . NLP, SVM, KNN, RF and AP with 3 system High research studies and
2018 [39] the Opcode for Opcode D NB, RF, AP TinyDroid SZEC performance some organisations
sequence in which lack metamorphic
from .smali classification malware samples
after and detection
1 decompiling rm.
.dex
2018 [73] Analysing Code Analysis Drebin, DT, RF, KNN, NB RF 86.89% Model Other information
Package for API calls Contagio, performs well contained in operands
1 level and Google Play even when were not considered \re and

android analysis techniques. ACM Comput. Surv. (CSUR) 2017, 49, 1-41.

16.

Li, L.; Li, D.; Bissyandé, T.F.; Klein, J.; Le Traon, Y.; Lo, D.; Cavallaro, L. Understanding android

app piggybacking: A systematic study of malicious code grafting. IEEE Trans. Inf. Forensics

17.

18.

19.

Secur. 2017, 12, 1269-1284.

Ashawa, M.A.; Morris, S. Analysis of Android malware detection techniques: A systematic review.
Int. J. Cyber-Secur. Digit. Forensics 2019, 8, 177-187.

Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Ribagorda, A. Evolution, detection and analysis
of malware for smart devices. IEEE Commun. Surv. Tutor. 2013, 16, 961-987.

Mos, A.; Chowdhury, M.M. Mobile Security: A Look into Android. In Proceedings of the 2020 IEEE
International Conference on Electro Information Technology (EIT), Chicago, IL, USA, 31 July-1
August 2020; pp. 638—-642.

https://encyclopedia.pub/entry/12929

8/19

Android Malware Detection Using ML | Encyclopedia.pub

2016 [77]
2
2

2017 [80]
2
2 2010 781

Year Study
2

2017 [81]
2

2017 [82]
2

2018 [84]

information
extracted
from API
calls using
decompiled
Smali files

Using
Deterministic
Symbolic
Automaton
and
Semantic
Modelling of
Android
Attack

Training
Hidden
Markov
Models and
comparing
detection
rates for
models
based on
static data,
dynamic
data, and
hybrid
approaches

Determining
the apps call
graphs as
Markov
chain Then
obtaining

Detection
Approach

Using
customized
method named
Waffle Director

Using a code-
heterogeneity-
analysis
framework to
classify
Android
repackaged
malware by
Smali code
intermediate
representation

Extracting
features and
transforming
into binary
vectors and
training using

373-440.

Information
flow

Code Analysis
for
Opcode/Byte
code

Code analysis
for API calls
and Opcode in
static analysis
and System
call analysis

Code Analysis

Feature
Extraction
Method

Manifest
Analysis for
Sensitive
permissions
and API
calls

Manifest
Analysis for
Intents,
Permissions
and API
calls

Manifest
Analysis for
Permissions
Code
Analysis for
API calls,

. AB, C4.5, NB,

brebin LinearSVM, RF RE

Harebot,

Security

Shield,

Smart HDD, HMM HMM
Winwebsec,

Zbot,

ZeroAccess

Drebin' PE KNIN Q\/M RPE
Used ML Selected ML
Datasets Algorithms/Models Algorithms/Models
Tencent

) ! DT, Neural Network,
Y|ngYoprao, SVM, NB, ELM ELM
Contagio
Genome,)
Virus-Share, RF,KNN, DT, Svm R~ Wwith custom
X model proposed

Benign App
Drebin SVM, DT, RF NBs DT

97%

90.51%

QAO0A

Model
Accuracy

97.06%

FNR-
0.35%,
FPR-
2.96%

97.7%

the length of
the sequence
is short

Use a
combined
approach of
ML and DSA
inclusion

Check the
difference
approaches
available to
detect ML

the system is
trained on

older samples
and

Strengths

Fast Learning
speed and
Minimal
human
intervention

Provide in-
depth and
fine-grained
behavioural
analysis and
classification
on programs

Highly
accurate to
analyse
permission,
API calls,
opcode an

which affect to the d
overall model

or.

Unable to detect new
malware patterns since
this will not perform
complete static analysis

adf

Apps

1ich,
Did not consider other
ML algorithms or other
important features

ich,

yAdnoid
nd,

Requires a high memory

10.

Limitations/Drawbacks

Combination of
permissions and API
calls are not refined

Korea,

ing
arence
17; pp.

Detection issues can
happen when the
malware use coding
techniques like
reflection and cannot
handle if the encryption
techniques used in DEX

Broadcast receivers,
filtered intend, Control
Flow Graph analysis,
deep native code
analysis were not
considered

.09,

30. Alauthman, M.; Aslam, N.; Al-Kasassbeh, M.; Khan, S.; Al-Qerem, A.; Choo, K.K.R. An efficient
reinforcement learning-based Botnet detection approach. J. Netw. Comput. Appl. 2020, 150,
102479.

31. Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access
2019, 7, 53040-53065.

https://encyclopedia.pub/entry/12929

9/19

Android Malware Detection Using ML | Encyclopedia.pub

ML with opcode and native calls
2 a
-~ RanDroid native calls toward thlaﬁy
Framework malware
detection r
Creating the
i Manif .
g;‘;;y'\\/l/ ictor, a:;:;gisst for Characterises
. he static Mechanism will fail if the
o t
~ models, permissions, Google Play, behaviours of malware contains ﬂware
BT — AnZhi apps with encryption, anti
. ’ 0 ’ g -~
2018 [86] D anceCp =N Sislion LenovoMM, SIS S S ensemble of disassembly, or kernel- >ment
the features API calls - -
) Wandoujia string and level features to evade
and their and system .
structural the detection
ensemble calls
. . features.
using analysis
b DroidEnsemble L
~
Extracting
applications Manifest High , 67—
features from Analysis for efficiency, ; .
manifest while permissions, Drebin, KNN, SVM, . Lightweight Pidinotconsiderabott
s - RF with 1000 - the API calls and other
2019 [83] decompiling activities playstore, BayesNet, NB, LR, - 98.7% analysis and .
decision trees important features when
classes.dex and Code Genome J48, RT, RF, AB fully .
o) o ; analysing the DEX. .
2 into jar file and Analysis for automated :t|0n
applying ML Opcode approach
models
Using
3 gz;’i?;g f;rs Manifest Analysed the EVieW_
Y Analysis for functions of Did not consider the
and proposing - - . . .
TFDroid permission Drebin applications improving clustering
2019 [85] and Code ' SVM SVM 93.7% by their techniques and
framework to ; Google Play L S
Analysis for descriptions applicability of other ML
detect malware . .
1 . . information to check the models
< using sensitive
flow data flow.

data flow
analysis

38. Ghaffarian, S.M.; Shahriari, H.R. Software vulnerability analysis and discovery using machine-
learning and data-mining techniques: A survey. ACM Comput. Surv. (CSUR) 2017, 50, 1-36.

39. Chen, T.; Mao, Q.; Yang, Y.; Lv, M.; Zhu, J. TinyDroid: A lightweight and efficient model for Android
malware detection and classification. Mob. Inf. Syst. 2018, 2018.

40. Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.; Damasevicius, R.; Blazauskas, T. Hybrid
malware classification method using segmentation-based fractal texture analysis and deep
convolution neural network features. Appl. Sci. 2020, 10, 4966.

41. Amin, M.; Shah, B.; Sharif, A.; Ali, T.; Kim, K.l.; Anwar, S. Android malware detection through
generative adversarial networks. Trans. Emerg. Telecommun. Technol. 2019, e3675.

42. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and
explainable detection of android malware in your pocket. In Proceedings of the 2014 Network and

%ba%al% R%StFrggeufH%SXWRosl'_ear nSi%rg]; Diego, CA, USA, 23-26 February 2014.

43. Google Play. Available online: https://play.google.com/ (accessed on 19 May 2021).
The second analysis approach is dynamic analysis. Using this approach it is possible to detect malware with ML

4&@%&@%&\/@@Q{%pmig%ﬂmg@pgﬁm@uni.Iu/ (accessed on 19 May 2021).

45. AppChina. Available online: https://tracxn.com/d/companies/appchina.com (accessed on 19 May
Tabiﬁil?ynamic analysis based malware detection approaches.

4 Year Study Detection Feature Used ML Selected ML Model Strengths Limitations/Drawbacks
Approach Extraction Datasets Algorithms/Models Algorithms/Models Accuracy

47. YingYongBao. Avananie online: https://android.myapp.com/ (accessed on 19 May 2021).

https://encyclopedia.pub/entry/12929 10/19

Android Malware Detection Using ML | Encyclopedia.pub

4 Method :./
)
Work with
Extracting the different OS
DNS, HTTP, Network traffic versions, If the malware apps
TCP, Origin analysis for DT, LR, KNN, Detect using encrypted, not .
4 2017 [87] based features network Cenene Bayes Network, RF R SRR unknown possible to detect II‘IgS Of
of the network protocols malware, malware properly
used by apps and infected 2012,
apps
Using Markov .
. Highly
o dChtalnt—.based effective and
~ te EC.IOH t System efficient at Tradeoffs such as
i sl resources detecting frequency accuracy,
NG analysis for Google Markov Chain, NB sensor- battery frequency are
£ 2017 [88] state Y o o Vs 95% e P al-
to) transitions and PTOcess ay ase _ not discussed which can 2
to build reports and alttaclks while affect 'Fhe malware
. sensors yielding detection accuracy
transition inimal
matrix with m|n|r:a d
c 6thSense overnea wn
Using
Dynamic 24th
based Code
permission instrumentation Pvsingh, Need to address the I)p .
analysis using analysis Java Android NB, RF, Simple . . High app crashing issue in
2017 [89] arun-time and classes and Botnet, Logistic, DT K-Star SELs LegEie SEHR Accuracy the selected emulators
detect dynamic DroidKin in dynamic analysis
malware using permissions
[~ ML calculate 202 1)
Y the accuracy B ’
[Using
™ dynamically .
[execution Drebin A \
~ 2019 [90] behaviours of Sysfe”.‘ el and RF, KNN, SVM RF 96.7% acg”r:.aclz’ LT SE bent'g” ydb7/3
applications analysis Malware and hig apps since signature
. efficiency based verification was
and using Genome t applied
ServiceMonitor not app
= framework
o g
2020 [91] Extracting the System call APKPure, RF, SVM RF 91.7% High Impact from features .
features and analysis, Code ~ Genome efficiency like HTTP, DNs, TcP/iP /a@CY 1IN
permissions instrumentation patterns are not
from Android for network considered
app. traffic analysis
Performing and System
E feature resources) May
selection and analysis
PAVV AR
58. Google Playstore Appsin Kaggle. Available online: https://www.kaggle.com/gauthamp10/google-
playstore-apps (accessed on 19 May 2021).
59. CICMaldroid Dataset. Available online: https://www.unb.ca/cic/datasets/maldroid-2020.html
(accessed on 19 May 2021).
60. AZ Dataset. Available online: https://www.azsecure-data.org/other-data.html/ (accessed on 19
May 2021).
61. Github Malware Dataset. Available online: https://github.com/topics/malware-dataset (accessed
on 19 May 2021).
62. Algahtani, E.J.; Zagrouba, R.; Alimuhaideb, A. A Survey on Android Malware Detection Techniques

Using Machine Learning Algorithms. In Proceedings of the 2019 Sixth International Conference
on Software Defined Systems (SDS), Rome, Italy, 10-13 June 2019; pp. 110-117.

https://encyclopedia.pub/entry/12929 11/19

Android Malware Detection Using ML | Encyclopedia.pub

proceed to
E classification ‘thOdS
with DATDroid
1on
Using Considerably
decompilation, increases
model the number
iscover . f trigger
E i(:mtsecgoraiigh and iigﬁimentation ML algorithms used %;Iigigised System calls are not
2021 [92] : . AMD in MEGDroid, MEGDroid 91.6% .
transformation, for java X payloads monitored
B . Monkey, Droidbot .
analysis and classes, intents and n a“cs
transformation, execution
event code
production coverage

65. Kouliaridis, V.; Kambourakis, G. A Comprehensive Survey on Machine Learning Techniques for
Android Malware Detection. Information 2021, 12, 185.

66. Chen, L.; Hou, S.; Ye, Y.; Chen, L. An adversarial machine learning model against android
malware evasion attacks. In Asia-Pacific Web (APWeb) and Web-Age Information Management
(WAIM) Joint Conference on Web and Big Data; Springer. Cham, Switzerland, 2017; pp. 43-55.

67. Lubuva, H.; Huang, Q.; Msonde, G.C. A review of static malware detection for Android apps

54p(§¥19§'s“|10lr\1rbal St géepq%g'rﬂ%geﬁ‘qt 51 %omput Netw. Appl. 2019, 6, 80-91.

aayrid gnayFs is hedRirdApRiogch WHSH- Ny uses, Il MEBARFSLASRIFISLGHEIdeIeGHEAtion for

machine-learning-based android malware detection. IEEE Trans. Ind. Inform. 2018, 14, 3216~
TalgcigsHybrid analysis based malware detection approaches

E . Feature re
Year Study AL Extraction Used s . Selec'ted A Model Strengths Limitations/Drawbacks

Approach Method Datasets algorithms/Models algorithms/Models Accuracy
Using a set of Manifest
Python and . .
Bash scripts analy.3|s. for Consider system call

_ which permissions Model appearance rather than

{ 2017 [96] N ted and System Andrototal NB, DT DT 80% execution is frequency and Lower
;ueoamn:;sis call analygis efficient number of ;amples
AT for dyn_amlc used to train 2021,
data. analysis
Using Binary

- feature vector P

/ — oid
permission Manifest R.F, J.48, NB .
vector analysis for Simple Logistic, Static- C_ompared Accuracy depends on

2018 [95] datasets were permissions Drebin BayesNet TAN, RE 96%, with several the 3rd party tool

- created using and system BayesNet K2, SMO Dynamic- ML (Monkey runner) used .

/ the analysis I Iysi PolyKernel, IBK, 88% algorithms to collect features. g W|th
techniques call analysis SMO NPolyKernel
and was used
with the ML
algorithms

73. Zhang, P.; Cheng, S.; Lou, S.; Jiang, F. A novel Android malware detection approach using
operand sequences. In Proceedings of the 2018 Third International Conference on Security of
Smart Cities, Industrial Control System and Communications (SSIC), Shanghai, China, 18-19
October 2018; pp. 1-5.

74. Wei, L.; Luo, W.; Weng, J.; Zhong, Y.; Zhang, X.; Yan, Z. Machine learning-based malicious
application detection of android. IEEE Access 2017, 5, 25591-25601.

https://encyclopedia.pub/entry/12929 12/19

Android Malware Detection Using ML | Encyclopedia.pub

7 Preparing a)roid:
JSON file
after reverse Dynamic ‘ion)
engineering, Manifest analysis :
decompiling, an?l :IZ o performed
and analysing ysis ; was better)
the APK by permissions, MalGenome, LR for static Stauc; than the Did not perf_orm a

= 2019 [94] running in a Beits . Kaggle, SVM, LR, KNN, RF analysis and RF for 81'03/0,’ static proper hybnq EELEE

{ db analysis for Androguard d . ysi Dynamic- ysi approach to increase on
san_ X API calls [79] ynamic analysis 93% analysis . the overall accuracy
environment and System approach in
and then I ysi terms of
extracting the call analysis detection

- key features accuracy

/ and applied
ML

5 of the
Using import Code
term analysis for Possible to 8—20
extraction, API calls Genatic algorithm, o avoid the . .
2017 99 clustering and and Virus-total, Multiobjective MUIIM;.bJeCtNe 05.15% effects of Dtlg nOtl cotns.lder LI
[99] applying information Google Play evolutionary elvo u_f|.onary e the o ehr cdus €ring

genetic flow and algorithm classitier concealment —

7 algorithm with system call strategies 1
MOCODroid analysis
Extracted 261 Hybrid
combined analysis is

i/ features of having

! the hybrid Manifest higher 21) '

analysis with analysis for MalGenome, accuracy Runtime environment

8 2020 [97] using the permissions Drebin, E\éMM’ESI\(l;gF Bk GB 99.36% comparing and configuration is not

support of and system CICMalDroid ! ! to static considered
datasets and call analysis analysis and 13 1
performed the dynamic y -
ML/DL analysis
models individually

2020 [98] Using Manifest Drebin, TAN TAN 97% Highly Possibility of some
Conditional analysis for AMD, AZ, accurate malwares remain treme
dependencies ~ Permissions, Github, GP undetected
among code '
relevant static ~ analysis for
and dynamic ~ AP! calls /e
features. and system
Then trained ~ call analysis i
hen nputing
regularised
LR classifiers ando’
and modelled
their output

8L. Hiait, IN., ..., —., NNYUCI, D.\J., 1All, \J.; I TllY, \J. TITCLUUII UI ITPYAvRaycu aliuiviu iiainval c W|th
code-heterogeneity features. IEEE Trans. Dependable Secur. Comput. 2017, 17, 64-77.

83. Kabakus, A.T. What static analysis can utmost offer for Android malware detection. Inf. Technol.
Control 2019, 48, 235-249.

84. Koli, J. RanDroid: Android malware detection using random machine learning classifiers. In
Proceedings of the 2018 Technologies for Smart-City Energy Security and Power (ICSESP),
Bhubaneswar, India, 28-30 March 2018; pp. 1-6.

85. Lou, S.; Cheng, S.; Huang, J.; Jiang, F. TFDroid: Android malware detection by topics and
sensitive data flows using machine learning techniques. In Proceedings of the 2019 IEEE 2nd
International Conference on Information and Computer Technologies (ICICT), Kahului, HI, USA,
14-17 March 2019; pp. 30-36.

86. Wang, W.; Gao, Z.; Zhao, M.; Li, Y.; Liu, J.; Zhang, X. DroidEnsemble: Detecting Android

malicious applications with ensemble of string and structural static features. IEEE Access 2018, 6,
31798-31807.

https://encyclopedia.pub/entry/12929 13/19

Android Malware Detection Using ML | Encyclopedia.pub

relationships
as a TAN

Using exploit
static,

visual
features of
apps to
predict the
malicious
apps using
information
fusion and
applied Case
Based
Reasoning
(CBR)

2021 [100]

dynamic, and

Manifest

analysis for
permissions
and System
call analysis

Drebin

CBR, SVM, DT

CBR

95%

Require
limited
memory and
processing
capabilities

t. J.
tor for
Require to present the 17),
knowledge
representation to
address some
limitations .
1nne
rence,

90. Salehi, M.; Amini, M.; Crispo, B. Detecting malicious applications using system services request
behavior. In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, Houston, TX, USA, 12-14 November 2019; pp.

200-2009.

91. Thangavelooa, R.; Jinga, W.W.; Lenga, C.K.; Abdullaha, J. DATDroid: Dynamic Analysis
Technique in Android Malware Detection. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 536-541.

9% sHegsr ot béep Reafhing/BasEd Method®roid: A model-driven event generation framework for
dynamic android malware analysis. Inf. Softw. Technol. 2021, 135, 106569.

It is possible to use deep learning techniques also for detecting Android malware. In MLDroid, a web-based
9/&3 dRaghaql R. O,\/Iathla/]fa an, P, An Exploration of Changes Addressed in the Android Malware
ndroid malwaré’detection ork.

Detection Walkways. In Proceedlngs of the International Conference on Computational

Tad ¥ 8GN RafRED 2B EHINV AR ISPy RfiphalModels, Coimbatore, India, 19-21 December
2019; Springer: Singapore, 2019; pp. 61-84.

Detection

C
o Year Approach

Study

Using n-Gram
methods after
getting the
Opcode
sequence
from .smali
after
dissembling
.apk

2017 104

«

2021 108 Using DL
based method
which uses
Convolution
Neural
Network
based

approach to

L SR AN]

«

0

PNy

Feature
Extraction
Method

Code Analysis for
Opcodes

Code Analysis for
API calls,
Opcode and
Manifest Analysis
for Permission

A vy o

Used
Datasets

Genome,
IntelSecurity,
MacAfee,
Google Play

Drebin, AMD

Ty UL IVAG TeE N

ML/DL
Algorithms/Models

CNN, NLP

CNN

~=

Selected DL
Algorithms/Models

Deep CNN

CNN

I A

Model
Accur:

87%

91% and
81% on

two

datasets

(R

Strengths
acy

Automatically
learn the
feature
indicative of
malware
without hand
engineering

Reduce over
fitting and
possible to
train to
detect new
malware just
by collecting

vvwrr v o7 o

Sy oo

Limitations/Drawbacks

ational
Assumption of all APKs '
are benign in Google
Play dataset while all
are malicious in
malware dataset L

SSP:
Did not compared with
other ML/DL methods

In

—ewweo and

Efficiency Android Malware Detection. In Proceedings of the 2020 International Conference on
Informatics, Multimedia, Cyber and Information System (ICIMCIS), Jakarta, Indonesia, 19—20
November 2020; pp. 8-12.

98. Surendran, R.; Thomas, T.; Emmanuel, S. A TAN based hybrid model for android malware

detection. J. Inf. Secur. Appl. 2020, 54, 102483.

https://encyclopedia.pu

b/entry/12929

14/19

Android Malware Detection Using ML | Encyclopedia.pub

«

1C

1C

1C

1C 2020 106

1C

1C 2021 [101

analyse more sample

features apps ‘ for

Applying .

LSTM on High

semantic CiTEgy

IO Google Pla with average Need to train the model ne
. Code Analysis for 009 b of 0.22 s to regularly to update the

2018 102 bytecode with VirusShare, RNN, LSTM LSTM 97.4% -

2 layers of Opcode/bytecode e the 1st layer training model on new

e and2.42sto malware

validating with Lheeteir:iti:]ayer

DeepRefiner .

P em
Detecting |
Malware .
attributes by stggh
vectorised Able to Y
opcode BiLSTM, RNN, achieve zero
SAEEb Code Analysis for LA SN day malware Did not analyse

1C 2020 [105] the bytecode Oncode Y AMD, Networks, Deep BILSTMs 99.9% fanf" oot ‘t’e Code
of the APKs P VirusShare Convents, Diabolo Withoyul P 4
with one-hot Network model
encoding overhead of /.

i [
before apply previous !
DL training ‘
Techniques ne
Using B USA,
Dynalog to
select and
extract Code Experiments Could have
features from instrumentation were implemented the)
Log files and analysis for java Intel NB, SL, SVM, J48, DL 99.6% performed on intrusion detection part 3tION
using DL- classes, intents, Security PART, RF, DL o7 real devices also to make it more
Droid to and systems High comprehensive malware mput
perform calls accuracy detection tool)
feature
ranking and
apply DL
Selecting
features High
gained by Code Android . 9 . .

. . . farthest first accuracy and Human interaction

feature instrumentation Permissions ; L

. B clustering, Y-MLP, . . easy to would be required in
selection for java classes, Dataset, . DL with methods in .

. nonlinear ensemble . 98.8% retrain the some cases. Can

approaches. permissions, and ~ Computer - MLDroid T .

. . decision tree forest, model to contain issues in the
Applying API calls at the and security DL identify new datasets
ML/DL models runtime dataset i
to detect
malware

10v.

108.

109.

110.

111.

112.

Milar, s.; vcLaugniin, N.; del Kincon, J.\V..; Miller, F. Multi-view deep learning 1or zero-aay
Android malware detection. J. Inf. Secur. Appl. 2021, 58, 102718.

Qaisar, Z.H.; Li, R. Multimodal information fusion for android malware detection using lazy
learning. Multimed. Tools Appl. 2021, 1-15.

Acar, Y.; Stransky, C.; Wermke, D.; Weir, C.; Mazurek, M.L.; Fahl, S. Developers need support,
too: A survey of security advice for software developers. In Proceedings of the 2017 IEEE
Cybersecurity Development (SecDev), Cambridge, MA, USA, 24-26 September 2017; pp. 22-26.

Mohammed, N.M.; Niazi, M.; Alshayeb, M.; Mahmood, S. Exploring software security approaches
in software development lifecycle: A systematic mapping study. Comput. Stand. Interfaces 2017,
50, 107-115.

Weir, C.; Becker, |.; Noble, J.; Blair, L.; Sasse, M.A.; Rashid, A. Interventions for long-term
software security: Creating a lightweight program of assurance techniques for developers. Softw.
Pract. Exp. 2020, 50, 275-298.

Alenezi, M.; Almomani, I. Empirical analysis of static code metrics for predicting risk scores in
android applications. In Proceedings of the 5th International Symposium on Data Mining

https://encyclopedia.pub/entry/12929 15/19

Android Malware Detection Using ML | Encyclopedia.pub

Characterising 34-94.
apps and
treating as

11 images. Then f
constructing Code Analysis for High :
the adjacency API calls . Accuracy Performance s

2021 [107] . N Drebin AMD CNN CNN 98.2% depending on number of

matrix. Then Information flow, and used features
applying CNN and Opcode efficiency
to identify

malware with
AdMat
framework

114. Pustogarov, I.; Wu, Q.; Lie, D. Ex-vivo dynamic analysis framework for Android device drivers. In
Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,
USA, 18-21 May 2020; pp. 1088—-1105.

115. Amin, A.; Eldessouki, A.; Magdy, M.T.; Abdeen, N.; Hindy, H.; Hegazy, |. AndroShield: Automated
android applications vulnerability detection, a hybrid static and dynamic analysis approach.
Information 2019, 10, 326.

11k 6aMachine:l earning Metheodsito Retect.GadeVulnerabijlities::
Developers’ Attitudes, Comprehension, and Ability to Act on Them. In Proceedings of the 2021

HaGKRIP @B M ISEE"BAHURMWRA - adtBY IR RMP R PERUIGLIRR A0SR 289 PS4y Dgsqous

actiﬁgi_ei._'l'lhﬁrefore, it is necessary to find vulnerabilities in Android source code. A code vulnerability of a program

can happen due to a mistake at the designing, development, or configuration time which can be misused to infringe

11dh (ROaRk - (e GG S &R SRAGUHER ORI igh Y- JorBracaEHiIReS RhJe3RtR S RSN reverse-
end MR HRBASORIELENGR A IS RATHRIE SAFNSELRA WaksREPS MR e id¥lbrying the
sec’ﬁ?‘i‘@tﬁﬁuﬁ’ zﬁ%ﬁgﬁn%e&tgégm{n%%%; Jb@e%%Tr%Qhe application [109].

118. Habchi, S.; Blanc, X.; Rouvoy, R. On adopting linters to deal with performance concerns in

6-%ﬁ&?&i&a‘B}SE?‘miﬁr@d%%&f?(&?&%?é‘é%ﬁ&?%‘h‘:“é‘lé’/i‘ém International Conference on Automated

Sin‘i‘quglf% %ﬁa@&ﬁﬂ‘ﬁﬁﬂ@%ﬁ%@aﬁ\é %’3&88&'&%”%?&“8?@ %Tge%\%%egq %%@9?18 ;SBBrc%_c]o%'es. They are static
113nalyeis, dynaimicyangyrismndbrid ABISsiR v Attt gnadssie. Avitigei S xeantttyd ¢cronirerodd e Fow egHaed's
analirpethfy Udritife VGRS IRS Pyeswaliias OF thruRE 1T 4 DENGIREN ebsir bon Poohdadsy ast Syftaariaee

(ASEh{libdlering, Paderborn, Germany, 4-8 September 2017; pp. 672—-682.

The number_of reported false vulnerabilities depends on the accuracy of the generalisation mechanism. The
120. Luo, L.; Dolb'y, J.: Bodden, E. MagpieBridge: A General A,Pgr,oach to Integrat_m% Static Analyses

runtime’ behaviour of the application is monitored While using specific input parametérs in dynamic analysis. The

into IDEs and Editors (Tool Insights Paper). In Proceedings of the 33rd European Conference on
behaviour depends on the selection of input parameters. However, there are possibilities of undetected

Object-Oriented Programming (ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
vulnerabilities [114].
Dagstuhl, Germany, 15-19 July 2019.

120, hekiishanalyxia, Gprevidex thimealearagiesitics. oPeelhysativeniisaiamy. daermfyirtplvalnerlsiitkes ghalyse
the SSUrCpIRdsertifi cafelve Aifieiard AN ioAdRITOdVamesailtiestatidearaptyinmneieiesialy sish0iagss il Edftw.
2020, 167, 110609.

122. Gupta, A.; Suri, B.; Kumar, V.; Jain, P. Extracting rules for vulnerabilities detection with static
6.2NAP Iy Y N6 DeteCESBMEcECdde Wil nerabilities Manag. 2021, 12, 65-76.

123. Kim, S.; Yeom, S.; Oh, H.; Shin, D.; Shin, D. Automatic Malicious Code Classification System
through Static Analysis Using Machine Learning. Symmetry 2021, 13, 35.

https://encyclopedia.pub/entry/12929 16/19

Android Malware Detection Using ML | Encyclopedia.pub

124 hBsl ke nZpy dvesoyh VIMLL nSsolybdncdn Ue doptied, do. aentakljded Katdeatyrk . sVtiines atsiityoRretdocthomiroid
coderonmSabiiteCade Wristgdiaehirechedrming. dertdbcccasisn @ GR0icSarkhRs’ 22ebb@p84 .to analyse the

12%9%55%0é1ﬁ'R.; Kim, L.; Hamilton, L.; Lazovich, T.; Harer, J.; Ozdemir, O.; Ellingwood, P.; McConley,
M. Automated vulnerability detection in source code using deep representation learning. In
Proceedings of the 2018 17th IEEE International Conference on Machine Learning and

Applications (I%MdLA), Orlando, FL, USA, 17-20 December 2018; pp. 757-762.
oade

. _ Used ML/DL ~ Accuracy
126YesHernfudy. VARRYRS MabPrOasrning methods for software ydpe/abibREiRsHgn. IrPf the

Proceedings oMﬁteh ?—dourth ACM International Workshop on Security and Privacy Analyti'c\:ﬂso, N

Tempe, AZ, Uslﬁb\’ngr]h i'(\:ﬂarcbca@l:%dmwa]seaaences of function
2017 [127] yham calls as features. Performed dynamic . CNN-LSTM 83.6%
127. Wu, F.; Wang, 8naleisJ.; Wangs\Wwiieraaitydetection with deep learning. In Proceedings of
the 2017 3rd IEEE International Conference on Computer and Communications (ICCC),

Chengdu, China, 13—-16 DEESATHIILS (E7apipfile Jogiarses

static analysis of the manifest file to

128,paNng, [Ygakue, WPWang, HPEBACHYNPARRTEHIR SEFRESe componenisithrough deep newjal

network. In Pr&%a(laycﬁ'r?gs oP e @51#?%8'%&190;% %:ggﬁtfggence on Deep Learning Technologies,
weré conducted and obtaine system

Chengdu, China, 2—4 JuneidQik7; pp. 6-10.

129. Garg, S.; Baliyan, N. A noyel\pasallel fiRssifighs@gme for vulnerability detection in android.

Comput. Electr. Eng. 2019D&dqdER-R6 manifest files & codes
and extracted meta data from it.

1302&enta[34t ., Plg}g ifiL; Sabestayrs BBzzimid adaasgremont, C. Amaestsbitcurated dataseef fixes

to vulnerabilities of SISen-s@GFE@’é@ﬁW&’é§W9?6‘é’éﬁ%ﬁﬁﬁ*§ of the 2019 IEEE/ACM 16th

International Conference oéi%;ﬂ(@ r@fi@%&%f ref‘p%éi%?i’es (MSR), Montreal, QC, Canada, 26-27
May 2019; pp. 383-387.

Performed intelligent analysis of

131, Namrud, 7.; Kpgigslo, S.; falbiafed ABTTeKEbA RRASKIPTY for Apgloift secdtyrvylaerabilties. In
%oceé ings of\tialy2i9th Adifiea¢nhatevationalCanderence on Competter Science and So?tv(/are

Engineering, Toronto, ON, CAX4AE 28!S November 2019: pp. 64-71.
132. Cui, J.; Wang, L.; Zhao, X S2PRIAGIHNerOwhroRY [rieitiva dnalysis of android vulnerability using

uted detection rules. ldentified

2@1&tist[éé51:ode}%;%fﬁgi@achiﬁgﬁgwnéﬂ%%ll{& mebqlgs. CorAPQCTORfraume\2QRO, 15824 25—

131. created dataset.

133. Zhuo, L.; Zhimin, G.; Cen, & tfseprch-an Angysiddntent security detection based on machine
learning. In Proceedings oftdiistRall fPatthie seeeniétioteal Conference on Information Science and

zﬁlantrqlﬁ‘pgine%ﬁﬂé _EICISég}‘T‘tfﬁlﬁg\:@tﬂ%ﬂr%iﬁ\éf","gg@%?ﬁuly 20EEpPEBANGTSK 92.87%

Retrieved from https://encyclopediechnijaatndbisiasy/ showid 15 Java
Android programs.

2019 [129] Hybrid Decompiled the APK and selected the MLP, SVM, PART, 98.37%
Analysis features and executed the APK and RIDOR, MaxProb,
generated log files with system calls. ProdProb

Generated the vector space and

https://encyclopedia.pub/entry/12929 17/19

Android Malware Detection Using ML | Encyclopedia.pub

trained with ML algorithms as parallel
classifiers.

In static analysis, vulnerabilities of
SSL/TLS certification were identified.
Hybrid Results from static analysis about

2020 [121 : . DCDroid 99.39%
Analysis user interfaces were analysed to
confirm SSL/TLS misuse in dynamic
analysis.
32 supervised ML algorithms were
Static consider(_e.d. for 3 common
2021 [122 Analysis vulnerabilities: Lawofdemeter, J48 96%
BeanMemberShouldSerialize, and
LocalVariablecouldBeFinal
Static Classified malicious code using a PE
2021 [123] Analysis structure and a method for classifying CNN 98.77%

it using a PE structure

| 7. Results and Discussion

Based on the reviewed studies in ML/DL based methods to detect malware, it is identified that 65% of studies
related to malware detection techniques used static analysis, 15% used dynamic analysis, and the remaining 20%
followed the hybrid analysis technique. This high attractiveness of static analysis may be due to the various
advantages associated with it over dynamic analysis, such as ability to detect more vulnerabilities, localising

vulnerabilities, and offering cost benefits.

Many ML/DL based malware detection studies used the code analysis method as the feature extraction method.
Apart from that, manifest analysis and system call analysis methods are the other widely used methods. It is
possible to detect a substantial amount of malware after analysing decompiled source codes rather than analysing

permissions or other features. That may be the reason for the high usage of code analysis in malware detection.

By using the feature extraction methods, permissions, API calls, system calls, and opcodes are the most widely
extracted features. Many hybrid analysis methods extracted permissions as the feature to perform static analysis. It
is easy to analyse permissions when comparing with the other features too. These could be reasons for the high
usage of permissions as the extracted feature. Services and network protocols have low usage in feature

extractions. The reason for this may be it is comparatively not easy to analyse those features.

Drebin was the most widely used dataset in Android Malware Detection, and it was used in 18 reviewed studies.

Google Play, MalGenome, and AMD datasets are the other widely used datasets. The reason for the highest usage

https://encyclopedia.pub/entry/12929 18/19

Android Malware Detection Using ML | Encyclopedia.pub

of the Drebin dataset may be because it provides a comprehensive labelled dataset. Since Google Play is the

official app store of Android, it may be a reason to have high usage for the dataset from Google.

It is identified that the RF, SVM, and NB are at the top of widely studied ML models to detect Android malware. The
reason may be that the resource cost to run RF, SVM, or NB based models is low. Models like CNN, LSTM, and AB
have less usage because to run such advanced models, good computing power is required, and the trend for DL-
based models was also boosted in recent years. Table 12 summarises widely used ML/DL algorithms with their

advantages and disadvantages.

The majority of the studies used hybrid analysis and static analysis as the source code analysis techniques in
vulnerability detection in Android. To perform a highly accurate vulnerability analysis, the source code should be
analysed and executed too. Therefore, this may be the reason to have hybrid analysis and static analysis as the

widely used source code analysis methods to detect vulnerabilities.

| 8. Conclusions and Future Work

Any smartphone is potentially vulnerable to security breaches, but Android devices are more lucrative for attackers.
This is due to its open-source nature and the larger market share compared to other operating systems for mobile
devices. This paper discussed the Android architecture and its security model, as well as potential threat vectors
for the Android operating system. Based upon the available literature, a systematic review of the state-of-the-art
ML-based Android malware detection techniques was carried out, covering the latest research from 2016 to 2021.
It discussed the available ML and DL models and their performance in Android malware detection, code and APK
analysis methods, feature analysis and extraction methods, and strengths and limitations of the proposed methods.
Malware aside, if a developer makes a mistake, it is easier for a hacker to find and exploit these vulnerabilities.
Therefore, methods for the detection of source code vulnerabilities using ML were discussed. The work identified
the potential gaps in previous research and possible future research directions to enhance the security of Android
Os.

Both Android malware and its detection techniques are evolving. Therefore, we believe that similar future reviews
are necessary to cover these emerging threats and their detection methods. As per our findings in this paper, since
DL methods have proven to be more accurate than traditional ML models, it will be beneficial to the research
community if more comprehensive systematic reviews can be performed by focusing only on DL-based malware
detection on Android. The possibility of using reinforcement learning to identify source code vulnerabilities is

another area of interest in which systematic reviews and studies can be carried out.

https://encyclopedia.pub/entry/12929 19/19

