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This systematic review discussed ML-based Android malware detection techniques. It critically evaluated 106
carefully selected articles and highlighted their strengths and weaknesses as well as potential improvements. The
ML-based methods for detecting source code vulnerabilities were also discussed, because it might be more difficult
to add security after the app is deployed. Therefore, this paper aimed to enable researchers to acquire in-depth

knowledge in the field and to identify potential future research and development directions.

Android security malware detection code vulnerability machine learning

| 1. Introduction

Numerous industrial and academic research has been carried out on ML-based malware detection on Android,
which is the focus of this review paper. The taxinomical classification of the review is presented in Figure 1.
Android users and developers are known to make mistakes that expose them to unnecessary dangers and risks of
infecting their devices with malware. Therefore, in addition to malware detection techniques, methods to identify
these mistakes are important and covered in this paper (see Figure 1). Detecting malware with ML involves two
main phases, which are analysing Android Application Packages (APKs) to derive a suitable set of features and
then training machine and deep learning (DL) methods on derived features to recognize malicious APKs. Hence, a
review of the methods available for APK analysis is included, which consists of static, dynamic, and hybrid
analysis. Similar to malware detection, vulnerability detection in software code involves two main phases, namely
feature generation through code analysis and training ML on derived features to detect vulnerable code segments.

Hence, these two aspects are included in the review’s taxonomy.
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Figure 1. Taxonomy of the review.

| 2. Background

2.1. Android Architecture

Android is built on top of the Linux Kernel. Linux is chosen because it is open source, verifies the pathway
evidence, provides drivers and mechanisms for networking, and manages virtual memory, device power, and
security [5]. Android has a layered architecture [6]. The layers are arranged from bottom to top. On top of the Linux
Kernal Layer, the Hardware Abstraction Layer, Native C/C++ Libraries and Android Runtime, Java Application
Programming Interface (API) Framework, and System Apps are stacked on top of each. Each layer is responsible
for a particular task. For example, the Java APl Framework provides Java libraries to perform a location awareness

application-related activity such as identifying the latitude and the longitude.

2.2. Threats to Android

While Android has good built-in security measures, there are several design weaknesses and security flaws that
have become threats to its users. Awareness about those threats is also important to perform a proper malware
detection and vulnerability analysis. Many research and technical reports have been published related to the

Android threats [13] and classified Android threats based on the attack methodology. Social engineering attacks,
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physical access retrieving attacks, and network attacks are described under the ways of gaining access to the
device. For the vulnerabilities and exploitation methods, man in the middle attacks, return to libc attacks, JIT-
Spraying attacks, third-party library vulnerabilities, Dalvik vulnerabilities, network architecture vulnerabilities,

virtualization vulnerabilities, and Android debug bridges and kernel vulnerabilities are considered.

2.2.1. Malware Attacks on Android

Malware attacks are the most common case that can be identified as a threat to Android. There are various
definitions for malware given by many researchers depending on the harm they cause. The ultimate meaning of the
malware is any of the malicious application with a piece of malicious code [16] which has an evil intent [17] to
obtain unauthorised access and to perform neither legal nor ethical activities while violating the three main

principles in security: confidentiality, integrity, and availability.

2.2.2. Users and App Developers’ Mistakes

The mistakes can happen knowingly or unknowingly from the developers as well as users. These mistakes may
lead to threats arising to Android OS and its applications. It has been identified that users are responsible for most
security issues [25]. Some common mistakes done by the users will lead to serious threats in an Android
application. At the time of installing Android applications, users will be asked to allow some permissions. However,
all the users may not understand the purpose of each permission. They allow permission to run the application
without considering the severity of it. Fraudulent applications might steal data and perform unintended tasks after
getting the required permissions. It is possible to arise threats to the Android systems due to the mistakes
performed by the app developers at the time of developing applications. In the publishing stage of the Android
apps, Google Play will have only limited control over the code vulnerabilities in the applications. Sometimes
developers are specifying unwanted permissions in the Android manifest file mistakenly, which encourages the
user to grant the permissions if the permissions were categorised as not simple permissions [26]. Though the app
development companies and some of the app stores are advising about following the security guidelines
implemented at the time of development, many developers still fail to write secure codes to build secured mobile

applications [27].

2.3. Machine Learning Process

ML is a branch of artificial intelligence that focuses on developing applications by learning from data without
explicitly programming how the learned tasks are performed. The traditional ML methods make predictions based
on past data. ML process lifecycle consists of multiple sequential steps. They are data extraction, data
preprocessing, feature selection, model training, model evaluation, and model deployment [9]. Supervised learning,
unsupervised learning, semisupervised learning, reinforcement learning, and deep learning are the different
subcategories of ML [28]. The supervised learning approach uses a labelled dataset to train the model to solve
classification and regression problems depend on the output variable type (continuous or discreet). Unsupervised
learning is used to identify the internal structures (clusters), the characteristics of a dataset, and a labelled dataset

is not required to train the model. A mix of both supervised and unsupervised learning techniques are applied in
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semisupervised learning and used in a case of limited labelled data in the used dataset [29]. The learning model
and the data used for training are inferred. The model parameters are updated with the received feedback from the
environment in reinforcement learning where no training data is involved. This ML method proceeds as prediction
and evaluation cycles [30]. DL is defined as learning and improving by analysing algorithms on their own. It works

with models such as artificial neural networks (ANN) and consists of a higher or deeper number of processing
layers [31].

| 3. Methodology

Android was first released in 2008. A few years later, the security concerns were discussed with the increasing
popularity of Android applications [2]. More attention was received towards applying ML for software security in the
last five years because many researchers continuously identify and propose novel ML-based methods [9]. This
review was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis
(PRISMA) model [32]. Based on the objective of this study, first we formulated several research questions. Next, a
search strategy was defined to identify the conducted studies which can be used to answer our research questions.
The database usage and inclusion and exclusion criteria were also defined at this stage. The study selection
criteria were defined to identify the studies aiming to answer the formulated research questions as the third stage.
The fourth stage is defined as data extraction and synthesis, which describes the usage of the collected studies to
analyse for providing answers to the research questions. We reviewed threats to the validity of the review and the
mechanism to reduce the bias and other factors that could have influenced the outcomes of this study as the last

step of the review process. Figure 2 shows a summary of the paper selection method for this systematic review.
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Figure 2. PRISMA method: collection of papers for the review.

3.1. Research Questions

This systematic review aims to answer the following research questions.

RQ1: What are the existing reviews conducted in ML/DL based models to detect Android malware
and source code vulnerabilities?

Q2: What are code/APK analysing methods that can be used in malware analysis?4, Related

Q3: What are the ML/DL based methods that can be used to detect malware in Android?\WOrk

RQ4: What are the accuracy, strengths, and limitations of the proposed models related to Android
malware detection?
RQ5: Which techniques can be used to analyse Android source code to detect vulnerabilities?Previous
improve Android security. However, several limitations have been identified in the above works, such as not

covering recent proposals on ML methods to detect malware, narrow scopes, and lack of critical appraisals of
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suggested detection methods. The lack of a thorough analysis of ML/DL-based methods was also identified as a
limitation of existing works. Android malware detection and Android code vulnerability analysis have a lot in
common. ML methods used in one task can be customised for use in the other task. However, as per our
understanding, there are no reviews that cover these two areas together. These shortcomings have been

addressed in this work and therefore our work is unique.

| 5. Machine Learning to Detect Android Malware

Malware detection in Android can be performed in two ways; signature-based detection methods and behaviour-
based detection methods [39]. The signature-based detection method is simple, efficient, and produces low false
positives. The binary code of the application is compared with the signatures using a known malware database.
However, there is no possibility to detect unknown malware using this method. Therefore, the behaviour-
based/anomaly-based detection method is the most commonly used way. This method usually borrows techniques
from machine learning and data science. Many research studies have been conducted to detect Android malware
using traditional ML-based methods such as Decision Trees (DT) and Support Vector Machines (SVM) and novel
DL-based models such as Deep Convolutional Neural Network (Deep-CNN) [40] and Generative adversarial

networks [41]. These studies have shown that ML can be effectively utilised for malware detection in Android [9].

5.1. Static, Dynamic, and Hybrid Analysis

As mentioned earlier, analysing APKs to extract features is required to use some of the proposed ML techniques in
the literature. To this end, three analysis techniques are identified as static, dynamic, and hybrid analysis method
[62,63,64]. Static analysis can be performed by analysing the bytecode and source code (or re-engineered APK)
instead of running it on a mobile device. Dynamic analysis detects malware by analysing the application while it is
running in a simulated or real environment. However, there is a high chance of exposing the risks to a certain
extent to the runtime environment in the dynamic analysis since malicious codes will be executed which can harm

the environment. The hybrid analysis involves methods in both static and dynamic analysis.

5.2. Static Analysis with Machine Learning

Static analysis is the widely used mechanism for detecting Android malware. This is because malicious apps do not

need to be installed on the device as this approach does not use the runtime environment [67].

5.2.1. Manifest Based Static Analysis with ML

Manifest based static analysis is a widely used static analysis technique.

Table 1. Manifest based static Analysis with ML.

Year Study Detection Feature Used ML Selected ML Model Strengths Limitations/Drawbacks
Approach Extraction Datasets Algorithms/Models  Algorithms/Models  Accuracy
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| 7. Results and Discussion

Based on the reviewed studies in ML/DL based methods to detect malware, it is identified that 65% of studies
related to malware detection techniques used static analysis, 15% used dynamic analysis, and the remaining 20%
followed the hybrid analysis technique. This high attractiveness of static analysis may be due to the various
advantages associated with it over dynamic analysis, such as ability to detect more vulnerabilities, localising

vulnerabilities, and offering cost benefits.

Many ML/DL based malware detection studies used the code analysis method as the feature extraction method.
Apart from that, manifest analysis and system call analysis methods are the other widely used methods. It is
possible to detect a substantial amount of malware after analysing decompiled source codes rather than analysing

permissions or other features. That may be the reason for the high usage of code analysis in malware detection.

By using the feature extraction methods, permissions, API calls, system calls, and opcodes are the most widely
extracted features. Many hybrid analysis methods extracted permissions as the feature to perform static analysis. It
is easy to analyse permissions when comparing with the other features too. These could be reasons for the high
usage of permissions as the extracted feature. Services and network protocols have low usage in feature

extractions. The reason for this may be it is comparatively not easy to analyse those features.

Drebin was the most widely used dataset in Android Malware Detection, and it was used in 18 reviewed studies.

Google Play, MalGenome, and AMD datasets are the other widely used datasets. The reason for the highest usage
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of the Drebin dataset may be because it provides a comprehensive labelled dataset. Since Google Play is the

official app store of Android, it may be a reason to have high usage for the dataset from Google.

It is identified that the RF, SVM, and NB are at the top of widely studied ML models to detect Android malware. The
reason may be that the resource cost to run RF, SVM, or NB based models is low. Models like CNN, LSTM, and AB
have less usage because to run such advanced models, good computing power is required, and the trend for DL-
based models was also boosted in recent years. Table 12 summarises widely used ML/DL algorithms with their

advantages and disadvantages.

The majority of the studies used hybrid analysis and static analysis as the source code analysis techniques in
vulnerability detection in Android. To perform a highly accurate vulnerability analysis, the source code should be
analysed and executed too. Therefore, this may be the reason to have hybrid analysis and static analysis as the

widely used source code analysis methods to detect vulnerabilities.

| 8. Conclusions and Future Work

Any smartphone is potentially vulnerable to security breaches, but Android devices are more lucrative for attackers.
This is due to its open-source nature and the larger market share compared to other operating systems for mobile
devices. This paper discussed the Android architecture and its security model, as well as potential threat vectors
for the Android operating system. Based upon the available literature, a systematic review of the state-of-the-art
ML-based Android malware detection techniques was carried out, covering the latest research from 2016 to 2021.
It discussed the available ML and DL models and their performance in Android malware detection, code and APK
analysis methods, feature analysis and extraction methods, and strengths and limitations of the proposed methods.
Malware aside, if a developer makes a mistake, it is easier for a hacker to find and exploit these vulnerabilities.
Therefore, methods for the detection of source code vulnerabilities using ML were discussed. The work identified
the potential gaps in previous research and possible future research directions to enhance the security of Android
Os.

Both Android malware and its detection techniques are evolving. Therefore, we believe that similar future reviews
are necessary to cover these emerging threats and their detection methods. As per our findings in this paper, since
DL methods have proven to be more accurate than traditional ML models, it will be beneficial to the research
community if more comprehensive systematic reviews can be performed by focusing only on DL-based malware
detection on Android. The possibility of using reinforcement learning to identify source code vulnerabilities is

another area of interest in which systematic reviews and studies can be carried out.
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