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Cubosomes are soft biocontinuous nanoparticles whose 3D geometry can be engineered to render the structures

responsive to pH variations, which is of large interest to the production of efficient drug delivery materials. We have

reviewed the literature to provide a state of the art in this regard and shed lights on prominent perspectives and

strategies for pH-sensitive cubosomes development, taking advantage of the pH changes of the biological media at

targeted application sites.
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1. Introduction

Lipid nanoparticle-mediated drug delivery experiences rapid developments in the field of liquid crystalline colloidal

carriers, e.g., cubosomes, spongosomes, hexosomes and vesicles . In addition to the expansion of

liposomes as advanced drug delivery systems , a plethora of research has been dedicated to diverse

mesoporous liquid crystalline materials and nanostructures intended as drug delivery devices .

Lipid-based cubic mesophases are increasingly implemented in noninvasive drug delivery applications .

The liquid crystalline structure of cubosomes, consisting of well-defined networks of aqueous channels and lipid

bilayer membranes, organized in periodic 3D topologies, presents advantages over other delivery systems .

Scientific and technological advances have been achieved in the fabrication of biocompatible systems for

encapsulation of natural and synthetic lipophilic, hydrophilic and hydrophobic drug molecules, a variety of

macromolecular drugs (peptides, proteins, DNA, siRNA, etc.) and imaging agents 

. Complex cubic lattice networks of high surface areas provide enhanced protection of the

incorporated payload from degradation as well as the prolonged and sustained release of the entrapped bioactive

molecules .

Current demands for improved performance and specificity of drug delivery carriers require the use of intelligent

materials, which respond to various environmental stimuli . In this context, the cubosome assemblies present

further advantages because the transformations between the different liquid crystalline organizations, e.g., Pn3m,

Im3m and Ia3d, besides the inverted hexagonal phases (Figure 1), can be tuned and controlled by changes in

temperature, ionic strength or pH of the environment of the targeted application sites .
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2. Recent advances

In the present work, we review recent advances in cubosome nanocarriers and bulk cubic mesophases with a

particular emphasis on the pH effects on the structures and topologies of the designed drug delivery systems. This

interest is motivated by the fact that pH represents an inherent physiological condition of all biological organisms

and that pathological (inflamed or infected) areas can embed target sites for pH-sensitive nanomedicines. This has

led to the emergence of pH-responsive drug delivery carriers and nanomaterials, some of which are reviewed here

below.

Acidic compartments of the cells are the endosomes (pH 5–6) and the lysosomes (pH 5). Depending on the

application site, pH changes of the biological medium may comprise a profitable condition to boost the target

release of encapsulated drugs from the pH-responsive nanocarriers. In this context, lipid-based pH-sensitive

cubosomes have been produced by the assembly of traditional cubic-phase-forming amphiphiles monoolein or

phytantriol with charged or ionizable lipids . Incorporation of drugs like doxorubicin, for which

the redox process (Figure 1) provokes pH-dependent structural changes, may also lead to pH-responsiveness of

the host cubic phase carriers. Furthermore, the association of lipids with polyelectrolytes and charged surfactants

was employed as a means to generate highly pH-sensitive cubosomes and other types of nanocarriers 

. A summary of the published works, exploiting small-angle X-ray scattering (SAXS) analyses of liquid crystalline

nanostructures and nanoparticles, is presented in Table 1 below.

Figure 1. Chemical structures and redox process of the anticancer drug doxorubicin, from left to right: initial,

oxidized and reduced forms of doxorubicin (top panel). Scheme of oral drug administration indicating the microvilli

of the intestinal membrane, for which bioadhesive positively charged cubosome particles (modified by

polyelectrolyte shells) interact with the negative charges of the mucin layer over the mucosal membrane (bottom
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panel). Either the biocompatible polyelectrolyte shells or the lipids, constituting the cubosome nanocarriers, are pH-

sensitive.

Table 1. Summary of reported compositions and main characteristics of self-assembled pH-responsive liquid

crystalline mesophases and nanoparticles derived thereof.

Lipids Additives Preparation
Methodology

Studied
pH

Values

Liquid
Crystalline

Phases

Perspective for
Application Refs.

Monoolein
Oleic acid

Brucea javanica
oil

Pluronic F127
PBS

Doxorubicin

Melting 60 °C
Stirring

High-pressure
homogenization

7.4
6.8
5.3

H
Pn3m, Im3m

microemulsion

Dual-drug (BJO,
DOX)

delivery/cancer
inhibition

(in vitro tested)

Monoolein
Oleic acid

Pluronic F127
PBS

Heating 80 °C
Homogenization
High pressure

6.0
7.0

H
Im3m

Drug delivery
(perspective)

Monolinolein
Linoleic acid

Phloroglucinol
Hydration
Heating

Vortex mixing

2.0
7.0

H
Im3m

Oral drug
delivery

(perspective)

Monolinolein
Pyridinylmethyl

linoleate
Doxorubicin

Hydration
Heating

Vortex mixing

5.5
7.4

Pn3m
H

Tumor-targeted
delivery

(in vitro tested)

Monoolein
2-hydroxyoleic

Acid

Pluronic F127
PBS

Ultrasonication

2.0;
3.0
3.5;
4.0;
4.5
5.0;
6.0;
7.4

Pn3m, H
Pn3m, Im3m

Lamellar

Tumor-targeted
delivery

(perspective)

Monoolein
Phytantriol

“Lipid 1”
Doxorubicin

Melting
Hydration

Centrifugation

5.8
7.5
9.0

Pn3m
Pn3m
Pn3m

Drug delivery
(perspective)

Monoolein
DOPS

-
Hydration

Vortex mixing
Centrifugation

6.7
2.75
2.55

L
H

Im3m

Drug delivery
(perspective)

Monoolein
N-Oleoyl-
glycine
N-(2-

Doxorubicin Melting
Hydration
Centrifuge

mixing

5.5
7.5

Pn3m
Pn3m

Drug delivery
(perspective)

II
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Lipids Additives Preparation
Methodology

Studied
pH

Values

Liquid
Crystalline

Phases

Perspective for
Application Refs.

aminoethyl)-
oleamide

Monoolein
Oleic acid

Vaccenic acid
Gondoic acid
Erucic acid

Nervonic acid

Pluronic F127
PBS

Hydration
Ultrasonication

4.9
7.0

Fd3m
H

Drug delivery
(perspective)

Monoolein
“Lipid 3”

Methylene green
zinc chloride
double salt

Hydration
Centrifugation

2.5
3.0
5.0
7.0

Pn3m
Pn3m
Pn3m
Pn3m

Drug delivery
(perspective)

Monoolein
Nicergoline

Pluronic F108
Ultrasonication

3.3;
5.6;
5.9;
6.7
7.2
8.4

Im3m
Im3m

Pn3m, Im3m
Pn3m, H

Drug delivery
(perspective)

Monolinolein
“Outer membrane

protein F”
Heating 45 °C
Vortex mixing

4.8
7.4

Pn3m
Pn3m

Drug delivery
(perspective)

Monoolein
Monolinolein

Bupivacaine
Caprylic acid
Capric acid

Heating 50 °C
Hydration

Heating 60 °C
Vortex mixing

Incubation at 37
°C (1–2 weeks)

6.0
7.4

Pn3m
H

Drug delivery
(perspective)

Phytantriol
Pluronic F127

Decyl betainate
chloride

Ultrasonication

3.9;
5.5
7.4;
8.5

Pn3m, L
Im3m, H

Oral drug
delivery

(perspective)

DOPE

DNA
N,N-

dimethyldodecyl-
amine-N-oxide

Hydration
Vortex mixing
Freeze–thaw

7.2
4.8

H , L, Pn3m
H , L

Genetic and
drug delivery
(perspective)

Monoolein
PP50 

Pluronic F127

Hydration
Sonication

Stabilization
with surfactant

7.5
5.5

Im3m
Im3m, swollen

Drug delivery
(perspective)

Monoolein
Phytantriol

Poloxamer P407
PDMAEMA-b-

Hydration
Ultrasonication

4.2
6.0

Im3m, L
Im3m, L

Drug delivery
(perspective)

II
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 PP50: poly(L-lysine-iso-phthalimide) chain grafted with L-phenylalanine.

Oral delivery of peptides, recombinant proteins and other nanomedicines is of a primary therapeutic interest 

. The oral drug administration represents several challenges. One of the most prominent is the

considerable pH variation in the gastrointestinal tract (Figure 1, bottom panel). With this concern in mind, we

discuss the perspectives of cubosomes development in oral drug delivery applications with special attention to

composite nanocarriers, i.e., cubosomes with pH-responsive characteristics provided by polyelectrolyte shells 

. The latter may ensure the structural stability of the carriers in adverse media, for instance under the strong

acidic condition of the stomach.

Increased oral drug bioavailability can be expected due to the mucoadhesive features of the cubic-phase forming

lipids. Prolonged-release mucoadhesive formulations have been obtained thanks to the fusogenic properties of

monoolein enabling permeation enhancer activity of the nanocarriers . The mucoadhesive controlled

release formulations interact with the mucosal components such as mucin (Figure 1, bottom panel). The enhanced

adsorption on the intestinal epithelia ideally promotes a sustained drug release.

Salentinig et al. have emphasized that the hydrolysis of monoolein in the zones of the gastrointestinal tract will

produce oleic acid , the ionization state of which determines the structural properties of the carriers, through the

lipid packing, and hence their fusion dynamics with the membranes .

pH-responsive lyotropic liquid crystalline phases and nanoparticles have received tremendous interest in view of

applications in anticancer nanomedicine . Although the pH of normal tissues and blood is around

7.4, the tumor environment exhibits acidic pH owing to the metabolic production of lactic acid under the conditions

of fast cell growth and deficiency of oxygen and nutrients. The use of pH-sensitive cubosomes as drug delivery

systems for cancer treatments presents an advantage of the pH difference between the tumor environment and the

normal physiological condition ,. In chemotherapy, pH-responsive drug delivery nanocarriers have been

shown to accumulate in the tumor tissue via the enhanced permeability and retention (EPR) effect . The release

of anticancer drugs may be triggered in response to extracellular or intracellular chemical stimuli including pH-

stimuli .
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Lipids Additives Preparation
Methodology
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pH

Values

Liquid
Crystalline

Phases

Perspective for
Application Refs.

PLMA 7.4 Im3m, L

Monoolein

Aspartic acid-
leucine peptide

Poly-lysine
FITC–dextran

Melting 65 °C
Hydration

3.0;
5.0;
7.0;
8.5

Not identified
Drug delivery
(perspective)

Monoolein

Modified alginate
Modified silk

fibroin
FITC–dextran

Melting 60 °C
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4.0;
4.5;
5.0;
7.0;
9.0

Not identified
Drug delivery
(perspective)

DMPC
DMPE

N,N-dimethyl-
dodecylamine- N-

oxide
Poly(acrylic acid)

Hydration
Repeated

heating 60 °C,
vortex mixing,

ice bath cooling

<2
3.8
6.8
9.8

L (swollen)
L (swollen +

collap)
L (collap +

multiL)
Im3m, L
(collap)

Therapeutic
agent

(perspective)
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