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Adsorption of pesticides onto natural clay mineral relies on the use of adsorbents with minimal treatment beyond their

preparation to provide a narrow size distribution and homoionic form by exchanging the naturally occurring interlamellar

cations (in the case of smectites) by some alkaline (Na+ or K+) or alkaline earth (Ca2+or Mg2+) cation. Additional

modifications include organophilization, intercalation with metal polycations and pillaring.   The adsorption capacity and

strength of pesticides onto homoionic, organophilic and intercalated/pillared clay minerals depend on the chemical nature

of the pesticide, surface area, and pore volume. Electrostatic interactions, hydrogen and coordinative bonds, surface

complexations, and hydrophobic associations are the main interactions between pesticides and clay minerals.
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1. Introduction

The so-called Green Revolution dramatically increased agricultural productivity from the middle of the twentieth century to

the present . However, this increase relied heavily on chemical fertilizers and a wide range of pesticides, especially

herbicides. Consequently, herbicides’ contamination of soils, groundwater, and surface water is a concern of prime

importance due to the severe effects of these compounds on humans, animals, and the ecosystem’s equilibrium 

.

Adsorption is among the most efficient technologies to prevent or remediate pollution from pesticides because it relies on

low-cost materials such as biomaterials, aluminum, and iron oxides, or oxyhydroxides, zeolites, and clay minerals. Clay

minerals exhibit properties such as high superficial area, high adsorption capacity, low cost, and ready availability that are

valuable to the development of herbicide formulations with controlled releasing of active components , cleanup of

contaminated soils, groundwater protection , and water treatment .

Clay minerals have gained interest because they are abundant in nature and are environmentally compatible.

Montmorillonite (Mt), like other smectites, and vermiculite (Vt), have permanent negative charges generated by the

isomorphic substitutions of Si 4+ by Al 3+ in the tetrahedral sheets and of Al 3+ by Mg 2 + in the octahedrons. Cations

such as Na + , Ca 2+ , and Mg 2+ in the interlayer keep the electroneutrality. These permanent negative charges interact

with cationic herbicides such as paraquat and diquat . Additionally, these interlayer cations are easily exchangeable, for

instance, with organic quaternary ammonium salts to produce hydrophobic organoclays suitable for retaining neutral

pesticides . Aluminum, Fe 3+ , Cr 3 + , Ti 4+ , Zr 3+ exchange with the interlayer cations and form polynuclear cationic

species under hydrolysis, increasing the affinity towards anionic species . Alternatively, the suspension of

polycations can be first prepared and then exchanged with the interlayer cation . The exchange of the interlayer cation

by a polynuclear hydroxyl metal cation is a modification process named intercalating. Calcinating the intercalated clay

minerals produces oxide pillars between the layers, increasing the basal spacing d(001), the specific surface area, and

the microporosity, enhancing their adsorption capacity and affinity towards a wide variety of organic molecules, including

the pesticides .

Excellent reviews recently addressed the interactions between organic compounds and clay minerals, aiming to develop

controlled released herbicide formulation and water purification . A straightforward comparison of adsorbent

efficiencies towards various compounds is possible only if parameters such a mass to volume ratio, kinetic, adsorption

isotherms, and thermodynamic constants derived from adsorption experiments are presented.

2. Natural Homoionic Clay Minerals as Pesticide Adsorbents

Cation exchange, for instance, is the primary retention mechanism for cationic pesticides such as paraquat, diquat, and

difenzoquat on natural and modified clays . For instance, adsorption isotherms of terbutryn (basic),

dicamba (anionic), and paraquat on natural and modified clays from Morocco revealed that the natural clay efficiently
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adsorbed paraquat from aqueous solutions ( Table 1 ).

Table 1. Sorbent characterizations and sorption features of pesticides and metabolites onto natural clay minerals.

Clay
Mineral

Characterization
Techniques Compounds

Adsorbent
Concentration
(g L )/Contact
Time (h)

Kinetic
Evaluation

Models for
Equilibrium
Data
Treatment

Removal (%)
or Adsorption
Capacity
(Higher
Results)

Reference

Mt CEC, SSA, XRD

AT, 2,4-D,
paraquat,

metsulfuron
methyl,

glyphosate

0–8.1/6 No Langmuir

Paraquat: 457
μmol g ,

Metsulfuron
methyl: 56

μmol g , 2,4-
D: negligible

Bt, NSC
CEC, SSA, XRD,
TG-DTA, organic

carbon

Terbutryn,
dicamba,
paraquat

10/24 No Langmuir,
Freundlich

Paraquat:
100% (Bt),
47% (NSC),
Dicamba:

30.6% (Bt),
15.2% (NSC),

Terbutryn:
11.3% (Bt),

8.29% (NSC)

Bt CEC, SSA, XRD,
XRF, TGA, FTIR Paraquat 2.0/24 No Langmuir

111 mg g
(403 µmol

g )

Mt

SEM, TGA, XRD,
SSA, FTIR,
elemental

analysis, zeta
potential

Paraquat -/6 No Langmuir 442 μmol g

Bt,
Sepiolite,

Illite

CEC, SSA, XRD,
TGA, organic

carbon
Paraquat 2.0/24 No

Freundlich,
Langmuir,
Dubinin–

Radushkevich

48 μmol g
(sepiolite),

212 μmol g
(illite), 165

μmol g  (Bt)

Mt SEM, FTIR, SSA,
pH Ametryn 1.0/6 Yes

Freundlich,
Langmuir,
Temkin,

188.81 mg g
(831 µmol

g )

Bt CEC, XRD, XRF,
SSA, FTIR

Decis
(deltametrin) 20/4 Yes Freundlich,

Langmuir

36.39–36.74
mg g

(72.0–72.7
µmol g )

Mt, Vt XRD, SSA, CEC,
iron content

AT, DEA, DIA,
HAT 10/24 No Freundlich

AT, DIA, HAT:
> 99.5% (Mt),
DEA: 64-72%
(Mt), HAT: >
90% (Vt), AT,
DIA: ≈10%
(Vt), DEA:

negligible (Vt)

Mt
pH , FTIR,

Mössbauer, XRD,
Na, K, Ca, Mg

Glyphosate 6.0/24 No

Freundlich,
Langmuir,

one/two-sites
Sips

85.64 mg g
(507 µmol

g ) at pH 7.0

Mt

XRD, XPS, SSA,
CEC, SEM,
chemical

composition

Glyphosate 10/24 No Langmuir

4.0 ± 0.2 μmol
m  (2.7 ×

10 ) µmol g
at pH 4.0

CEC: Cation Exchange Capacity, FTIR: Fourier Transform Infrared, pH : pH of zero point of charge, SSA: Specific

Surface Area, SEM: Scanning Electron Microscopy, TGA: Thermogravimetric Analysis, TG-DTA: Thermogravimetric-

Differential Thermal Analysis, XPS: X-ray Photoelectron Spectroscopy, XRD: X-ray Diffraction, XRF: X-ray Fluorescence,

Bt: Bentonite, Mt: Montmorillonite, NSC: Non-swelling clay, Vt: Vermiculite, 2,4-D: 2,4-dichlorophenoxyacetic acid, AT:

Atrazine, DEA: Deethylatrazine, DIA: Deisopropylatrazine, HAT: hydroxyatrazine. 
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3. Organophilic Clay Minerals

Exchange of the inorganic interlayer cations by cationic or zwitterionic surfactants keep apart the aluminosilicate layers,

resulting in increased basal spacing and hydrophobicity, thus enhancing the affinity toward neutral organic compounds

with poor water solubility or high K  values . Examples of organic cations appear in Figure 1, and some relevant

applications to removing pesticides from aqueous media are highlighted in Table 2. Since log K  is pH-dependent,

proper pH control and reporting are mandatory in adsorption studies, especially for interpreting the adsorption behavior of

ionizable pesticides. In their neutral forms, the magnitude of adsorption constants correlates with the K . For instance, in

organophilic kaolinite and bentonite, the distribution coefficient (K ) values increased in the order atrazine (log K  =

2.61) < alachlor (log K  = 3.52) < trifluralin (log K  = 5.34) . The size of the alkyl chain of organic cation and the

amount incorporated into the clay gallery strongly affect the adsorbent’s hydrophobicity, enabling a fine-tuning in the

treatment of the mineral phase to attend to the application needs.

Figure 1. Some examples of organic cations used to produce organoclays: 1—tetramethyl phosphonium chloride; 2—

dodecyltrimethylammonium bromide (DDTMA), 3—hexadecyltrimethylammonium bromide (HDTMA), 4—

didodecyltrimethylammonium bromide (DDDTMA), 5—dodecylamine (DDA), 6—octadecyl amine (ODA), 7—C –C

unsaturated dimethyl dialkyl amine (DDA), 8—Aminopropyltriethoxysilane (APTES).

Table 2. Sorbent characterizations and sorption features of pesticides and metabolites onto organically modified clay

minerals.
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Clay Mineral
Characterization
of the
Adsorbents

Compounds

Adsorbent
Concentration
(g
L )/Contact
Time (h)

Kinetic
Evaluation

Models for
Equilibrium
Data
Treatment

Removal (%)
or Adsorption
Capacities
(Higher
Results)

Reference

Commercial
organophilic

Bt

SEM-EDX, SSA,
TG-DSC, XRF,

FTIR

AT, ametryn,
2,4-D, diuron 5.0/24 Yes

Langmuir,
Freundlich,

Temkin

AT: 10.5,
ametryn: 111,
diuron: 202,

2,4-D: 29 µmol
g

Bt and NSC
modified

with
ODTMA,

TMA, OTMA

CEC, XRD, SSA,
TG-DTA,

Organic carbon

Terbutryn,
dicamba,
paraquat

10/24 No Langmuir,
Freundlich

Paraquat:
100% (TMA-

Bt), 47% (TMA-
NSC),

Dicamba:
76.6%,

(ODTMA-Bt),
35.5%

(ODTMA-NSC),
Terbutryn:

95.4%
(ODTMA-Bt),

86.5%
(ODTMA-NSC)

Mt-Alginate

SEM, TGA, XRD,
SSA, FTIR, Zeta

Potential,
elemental,
analysis

Paraquat -/6 No Langmuir 278 μmol g

−1

−1
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TG-DSC: Thermogravimetric-Differential Scanning Calorimetry, Kt: kaolinite, NSC: Non-swelling clay, DDA:

dodecylammonium, DDTMA: dodecyltrimethylammonium, (DDDMA) didodecyldimethylammonium, DMDA: dimethyl-

dialkylamine, HDTMA: hexadecyltrimethylammonium, NA: nonylammonium, ODA: octadecylamine, ODAAPS:

octadecylamine and aminopropyltriethoxysilane, ODTMA: octadecyltrimethylammonium, OTMA: octyltrimethylammonium,

TMA: tetramethylammonium. All other abbreviations according to the footnote of Table 2.

 

4. Intercalated and Pillared Clay Minerals

Intercalating and pillaring clay minerals consist of exchanging the interlayer cation (K , Na , Ca ) by a polynuclear

hydroxyl metal cation (intercalating), followed by thermal treatment to obtain a series of oxide pillars between the layers of

the clay mineral structure. Relevant applications and the results of using intercalated or pillared clay minerals to remove

pesticides from aqueous media appear in Table 3. There have been papers on the pillarization principles since 1955 ,

and the first reports on the preparation of pillared clays date between the 1970s and 1980s, based on the use of

aluminum polycations for intercalation of smectites, producing pillared materials with high basal spacing and thermal

stability up to 500 °C . Thermal treatments convert the polycations into oxides, preventing structural collapse .

Compared with the raw clay mineral, the pillars provide the acidic sites in the interlayer surfaces and a more porous

structure, besides an increase in the surface area and changes in the charge properties, affording diverse adsorption

mechanisms of organic compounds . The treatment consists of the exchange of the interlayer alkaline or alkaline

earth cations  by the most common Al-Keggin ions (Al ), represented as [AlO Al (OH) (H O) ]   or

[Al O (OH) (H O) ]  . Parameters such as the [OH]:[Al ] ratio, the [Al ] to clay mineral proportion and the aging

temperature have a marked influence on the materials’ stability and efficiency . Not only Al  has been employed in the

pillarization, but also other cations, such as Fe  , Ti  , Zr  , Co , Ni  and Cu

, and Cu  . These works describe the preparation, characterization, and applications for the adsorption or

degradation of different organic compounds since they can support catalysts for photodegradation. Excellent reviews

addressed the theory and the preparation procedures  as well as the removal of organic pollutants from wastewater

Clay Mineral
Characterization
of the
Adsorbents

Compounds

Adsorbent
Concentration
(g
L )/Contact
Time (h)

Kinetic
Evaluation

Models for
Equilibrium
Data
Treatment

Removal (%)
or Adsorption
Capacities
(Higher
Results)

Reference

Bt, Sepiolite
and Illite
modified
with DDA
and NA

CEC, SSA, XRD,
TGA, organic

carbon
Paraquat 2.0/24 No

Freundlich,
Langmuir,
Dubinin–

Radushkevich

95 μmol g
(Illite-DDA),

223 μmol g
(Illite-NA)

Kt-TMA, Bt-
TMA

CEC, SSA, total
organic carbon,

elemental
analysis

AT, alachlor,
trifluralin 25/548 No Freundlich

AT: 69.8% (Bt-
TMA),

Alachlor:
63.0% (Kt-

TMA),
Trifluralin:
65.0% (Kt-

TMA)

Vt-HDTMA

XRD, SSA, iron
content,

elemental
analysis

Fulvic Acid 10/24 No - 74 and 98%

Mt-DDTMA,
Mt-DDDMA,
Mt-HDTMA

XRD, XPS, SSA,
FTIR, TGA AT, imazaquin 2.5 and 5.0/12 Yes Freundlich,

Langmuir,

Imazaquin:
35.3 µmol g
(Mt-DDDMA),
AT: 12.1 µmol

g  (Mt-
HDTMA)

Mt-DDDMA SEM, SSA, FTIR,
XRF, XRD, Fenitrothion 0.4/0.25 No Freundlich,

Langmuir

68.5 ± 1.2 mg
g  (247 ± 4
µmol g )

Mt-ODA, Mt-
DMDA, Mt-
ODAAPS

FTIR, XRD,
SEM-EDX

chlorpyriphos,
p,p′-DDT p,p′-

DDE,
endosulfan

sulphate, α- β-
endosulfan,

alachlor,
metolachlor,

fipronil

10/8 Yes Freundlich

(In µmol g )
p,p′-DDT: 1.47,
p,p′-DDE: 1.19,
Chlorpyriphos:

1.0, α-
endosulfan:

0.84, β-
endosulfan:

0.698,
endosulfan

sulphate: 0.61,
fipronil: 0.62,
alachlor: 0.70,
metolachlor:

0.67

Mt-carboxy
methyl

cellulose-
DMDA

XRD, SEM-EDX,
FTIR

AT,
imidacloprid,

thiamethoxam
10/4 No Freundlich,

Langmuir

Imidacloprid:
8.82,

thiamethoxam:
5.71, AT: 6.63

µmol g
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. The intercalation and pillarization processes produced adsorbent materials for different organic pollutants 

 and catalysts or photocatalysts for pollutants degradation/mineralization . Among the main

applications, the use as adsorbents for pesticides, aiming for water treatment or the preparation of controlled release

formulations, deserve highlighting.

Table 3. Sorbent characterizations and sorption features of pesticides and metabolites onto intercalated or pillared clay

minerals.

Modified Clay
Mineral

Characterization
of the
Adsorbents

Compounds

Adsorbent
Concentration
(g
L )/Contact
Time (h)

Kinetic
Evaluations

Model for
Equilibrium
Data
Treatment

Removal
(%) or
Adsorption
Capacity
(Higher
Results)

Reference

Pillared Mt-Fe XRD, SSA AT 10/24 No Freundlich 62.8-99.1%

Intercalated
Mt-Fe, Vt-Fe

XRD, SSA, CEC,
iron content

AT, DEA, DIA,
HAT 10/24 No Freundlich

AT, DEA,
DIA, HAT:
>94% (Mt-

Fe), AT:
3375% (Fe-

Vt)

Pillared Bt-
Al

XRD, CEC,
chemical

composition
Thiabendazole 0.6–2.5/24 No Freundlich,

Langmuir

141 µmol
g  (aged
12 h at 60

°C)
318 µmol
g  (aged
12 h at 25

°C)

Intercalated
and pillared
Bt-Al , Bt-Zr

XRD, CEC, SSA,
Chemical

composition
AT, 3-CA, 3-CP 20/overnight No Freundlich,

Langmuir

AT: 92–
100%, 67.1
μmol g

(Bt-Al) and
117.6 μmol
g  (Bt-Zr)
3-CA: 14–
100%, 3-
CP: 10–

30%

Intercalated
Mt-Al , Mt-
Fe, Mt-Ti,

modified with
CTAB

XRD, SSA, DTA,
TGA, CEC, FTIR,
surface acidity,
Zeta- potential

Diuron,
DCPMU,

DCPU, DCA
0.05–0.5/24 No Freundlich

Diuron:
15.7,

DCPMU:
14.0,

DCPU:
6.79, DCA:
6.65 µmol

g -
measured
at pH 3.1
and 0.5 g

L
dispersion

Pillared Mt-Fe

XRD, TG-DTA,
SSA, SEM, FTIR,

elemental
analysis,

Mössbauer,
Zeta-potential

Picloram 16/48 No Freundlich,
Langmuir

380 μmol
g  at pH

3.0

Pillared Mt-
Fe-Al

modified with
cyclodextrins

FTIR, XRD, XRF,
SSA Imazaquin 1.6/24 No -

≈65 μmol
g

Pillared Mt-
Fe-Al

modified with
cyclodextrins

XRD, SSA, FTIR,
SEM-EDX Picloram 1.6/24 No Freundlich,

Langmuir
380 μmol

g
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Modified Clay
Mineral

Characterization
of the
Adsorbents

Compounds

Adsorbent
Concentration
(g
L )/Contact
Time (h)

Kinetic
Evaluations

Model for
Equilibrium
Data
Treatment

Removal
(%) or
Adsorption
Capacity
(Higher
Results)

Reference

Pillared Bt-
Al SEM, SSA, XRD

heptachlor
epoxide,
dieldrin,
endrin

1.0/5 Yes Freundlich,
Langmuir

Heptachlor
epoxide:

0.62,
Dieldrin:

0.63,
Endrin:

0.62 µmol
g

3-CA: 3-chloroaniline, 3-CP: 3-chlorophenol, DCPMU: 3-(3,4-Dichlorophenyl)-1-methylurea, DCPU: 1-(3,4-

Dichlorophenyl) urea DCA: 2,4-Dichloroaniline. All other abbreviations according to the footnote/title of Table 2, Table 3.

5. Concluding Remarks

The use of raw or modified clay minerals for elaborating sorbents to environmental cleanup and reducing pesticide spills’

impacts continues to increase. Additionally to the impressive availability of image and analytical techniques for materials

characterization and understanding the interaction mechanisms, the design of adsorbents and adsorption-based

treatments still relies on kinetic and equilibrium experiments. This review proposed some guidelines for the adsorption

experiments and commented on some of the published results. In summary, the analytical technique to measure the free

concentrations must be selective and sensitive, having a wide linear dynamic range to enable reliable measurements

under low and high degrees of site occupation. The adsorbent mass to solution ratio and the sensitivity of the analytical

technique are parameters to consider aiming to obtain reliable measurements of free concentrations in a wide range of

site occupations. Kinetic measurements should precede the construction of adsorption isotherms and thermodynamic

experiments since both of them require measurements under equilibrium conditions. The availability of software packages

favors the fitting of kinetic and adsorption isotherms by nonlinear regression analysis, thus minimizing the errors inherent

to the linearization.

In many cases, the comparison of adsorption constants and capacities does not consider the standard deviations of these

parameters, thus making the comparison subjective and without statistical support. Finally, the experimental conditions

should emulate as much as possible those found in the environment. Thus, the influence of ionic strength, pH,

temperature, and natural organic matter, among others, on the adsorption parameters should be evaluated for each new

clay mineral-based adsorbent proposed.
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