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Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous
neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to
ALS development and many emerging gene mutations have been discovered in recent years. Over the decades
since 1990, several animal models have been generated to study ALS pathology including both vertebrates and
invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates.
Although these models show different peculiarities, they are all useful and complementary to dissect the
pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the

development of new promising therapeutics.

amyotrophic lateral sclerosis genetic animal models

| 1. Introduction

Amyotrophic lateral sclerosis (ALS), also known as Charcot's or Lou Gehrig’'s disease, is a multisystem
neurodegenerative disease, characterized by heterogeneity at the genetic, neuropathological, and clinical levels [,
The progressive degeneration of upper and lower motoneurons (MNs) occurs during disease progression and
affects pyramidal cells in the cortex, the corticospinal tract, and spinal motoneurons, usually sparing the extraocular
and sphincter muscles WI2E] The effects of MN loss evolve in muscle weakness, fasciculations, atrophy, spasticity,
and hyperreflexia, eventually leading to paralysis, and patients typically die due to respiratory failure within three to
five years from diagnosis . Early pathogenic processes involve axonal degeneration and impairment of nerve

terminal function, anticipating MN loss, and the onset of clinical symptoms [,

Several causes have been proposed as the basis of the disease onset and progression, such as excessive calcium
and glutamate excitotoxicity BRI oxidative stress L2IL8IL7  axonal damage and transport
dysfunction [18IAA0N21] - heyroinflammation 22231 proteins misfolding and aggregation 241231 proteasome
impairment (28127 endoplasmic reticulum stress 281291 mjtochondrial dysfunction and insufficient energy supply B9
[B132] and altered RNA processing [B3I34], |njtially, ALS has been considered mostly as a MN disorder, but to date,
much evidence confirms that ALS is a non-cell-autonomous disease, involving astrocytes, oligodendrocytes,
microglia, and blood-derived immune cells BIB8IB7 Moreover, ALS forms a neurodegenerative disease continuum
with frontotemporal dementia (FTD), and up to 50% of ALS patients concomitantly develop cognitive impairment or
behavioral changes [28l,
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Most ALS cases are sporadic (SALS), and up to 10% have been classified as familial ALS (fALS) 2. Currently,
fALS-associated mutations have been found in approximately 50 genes, and more than 30 of them are thought to
be causative “941 The most common mutated genes are superoxide dismutase-1 (SOD1), chromosome 9 open
reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP) 42, Moreover, a
significant fraction (about 20%) of sporadic cases carried a confirmed or likely pathogenic mutation, and almost all
had no family history of ALS. This occurrence establishes the importance of routinely performing the genetic

sequencing on ALS patients to improve disease subclassification, patient stratification, and clinical care 431,

| 2. Genes Involved in ALS

Mutations of the gene encoding for Cu/Zn SOD1 are among the most frequent ones in ALS ¥l Since SOD1
catalyzes the dismutation of superoxide anion in oxygen and hydrogen peroxide, the different mutations result in

the decrease of free radicals detoxication (loss of function, LoF), but also in a toxic gain of function (GoF; 44]),

Mutations related the TARDBP gene, encoding the TAR DNA binding protein 43 (TDP-43), have been also
identified in ALS 421, Mutated TDP43 is indeed the main protein found in protein aggregates in the cytoplasm of
MNs [461471148] " contributing to the alteration of several cellular processes in ALS 49,

Other gene mutations involved in ALS are those related to the FUS/TLS gene, encoding for the RNA-binding
protein FUS BYBL, This protein is physiologically located in the nucleus but, when mutated, it aggregates in the

cytoplasm of neurons 4752 |eading to cell death 48],

More recently, the repeated expression of hexanucleotide “GGGGCC” (G4C2) in the C9orf72 gene’s non-coding
region has been identified in ALS and demonstrated to alter critical cellular processes, including autophagy,
membrane trafficking, immune response 23IB4BSI56] |t js not yet clear why some patients with C90rf72 repeat
expansion manifest ALS phenotype, while others only FTD or both. Moreover, there is no apparent correlation
between repeat size and disease severity 7. To date, three different hypothetic mechanisms by which this genetic
mutation may induce ALS have been hypothesized and none of them are exclusive B8l The first hypothesis
sustains that the repeat expansion may cause C9orf72 LoF, which contributes to neurodegeneration by yet
unknown mechanisms. The second hypothesis is related to an RNA toxicity generated by G4C2 repeat-containing
RNA foci that accumulate in the nucleus and induce the concomitant entrapment of other RNA-binding proteins that
can no longer exert their physiological role. The third possibility deals with the accumulation of sense and

antisense repeat proteins in the form of aggregation-prone dipeptide repeats.

All the above gene mutations contribute to ALS development and progression by triggering different toxic
processes B9 such as oxidative damage and intracellular protein aggregates LABAGLI62I63]64]  axonal transport
impairment 28 mitochondrial dysfunction 62 RNA metabolism impairment 88, and excitotoxicity ERIL2 |t should
also be considered that genetic factors not only affect MNs, but also actively contribute to the degeneration or the
activation of other CNS cells such as astrocytes and microglia, leading to neuroinflammation and other pathological

phenomena &7,
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Yet, there are other less frequent protein mutations involved in familial ALS form, such as: VAMP-associated
protein B (VABP), Optineurin (OPTN), Valosin Containing Protein (VCP), Ubiquilin-2 (UBQLNZ2), Matrin 3 (MATR3),
TANK-Binding Kinase-1 (TBK1), NIMA-related Kinase-1NEK1, and C21orf2 mutations (681691,

Finally, it is important to consider also the interplay between environmental factors and genetic mutations that

contributes to further complicate the multifactorial scenario of ALS [Z9l71],

| 3. Modelling Human ALS in Living Organisms

Following the continuous identification of mutated genes, many animal models have been developed to unravel the
pathological mechanisms that are crucial to MN degeneration. Indeed, the cellular alterations in ALS are likely the
result of many different interacting mechanisms leading to a larger network disruption. Modeling ALS as human
neurodegenerative disorder into any other species, especially in mammals, is certainly a hard task in terms of face,
construct, and predictive validity, and ALS is no exception. Even though the obvious limitations of animal models,
and possibly for this very reason, their number is still growing in the attempt to obtain further items to identify
adequate targets for the development of effective therapies, which this very complex disease urgently needs [Z2I73]
[74][z5]

The purpose is to provide a comprehensive and up-to-date overview of the available ALS animal models, with the
aim of offering details, including pros and cons, useful to design and optimize preclinical studies to investigate ALS.
The researchers examined a variety of experimental models of the disease, from the most used to the least
common, based on the ALS genetic mutations and the different organisms in which they have been reproduced. In
addition, the researchers have also included some very interesting non-genetic models in which MNs injury is

based on autoimmune mechanisms or on the exposure to possible ALS environmental risk factors

| 4. Conclusions

Although more than 50 disease-modifying drugs with different mechanisms of action have been studied in the last
decades, there is an urgent need of effective therapies for ALS. Following the initial discovery of mutations in fALS
patients, it was possible to model the human disease in living organisms to elucidate the mechanisms underlying
MN death in ALS.

Similarly to human studies, accurate preclinical guidelines for phase-based efficacy evaluation of innovative
therapeutic approaches and more transparency in reporting the experiments involving animals 877 would
produce more reliable results than the majority of the current studies present in the literature. Indeed, the rationale
for the choice of a specific ALS model, experimental design details, and access to the data obtained can be very
useful to better interpret the results, particularly by clinicians who try to translate into clinical trials the most

promising preclinical data.
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Here, the researchers provide an overview of the different experimental models, from yeast to non-human
primates, to investigate ALS pathophysiology. The researchers clustered these models on a genetic mutation
criterion, highlighting the peculiarities and the ALS-related molecular, cellular, and clinical symptoms, also focusing
on pros and cons that need to be considered when approaching the study of ALS pathogenesis or new
experimental therapies (Figure 1). Clearly, the main advantage of in vivo over in vitro studies is the higher chance
to clarify the multifaced pathological mechanisms that characterize the human pathology during disease
progression. Although a comparative analysis of these models is required to choose the best one(s) required for
the planned investigation, if we want to better understand the causes of ALS, we should never forget their

limitations.
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Figure 1. Pros and cons of available ALS animal models.
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