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We introduce finite-differences derivatives intended to be exact when applied to the real exponential function. We

want to recover the known results of continuous calculus with our finite differences derivatives but in a discrete

form. The purpose of this work is to have a discrete momentum operator suitable for use as an operator in discrete

quantum mechanics theory.

discrete derivative  discrete symmetric operator,  discrete quantum mechanics

Introduction

The subject of finite differences is an old, but  useful method with wide application in science and engineering. The

story starts with Newton and Leibnitz themselves with the very  definition of the derivative of a function; the limit

when the differences become zero, as is well known. The formal definition of the derivative  of some

function  of a single variable , at , is obtained from the limit  of any of the following ratios of

differences

      

These ratios are known as backward and forward differences, respectively.

The limit of vanishing finite differences involves variables which are continuous. However, many times it is not

possible to perform such limit  at all. A situation like that appears when doing numerical simulations in a computer

due to the limit in how small a number can be represented in the computer. Another situation in which it is not

possible to take the infinitesimal difference limit is when the independent variable is a discrete variable by nature,

as is the case found in Quantum Mechanics theory regarding the spectrum of quantum operators.

Finite differences are necessary in numerical computations to approximate several quantities like derivatives and

integrals of functions, as well as, differential and integral equations. Their use as a numerical tool is a well

developed subject, see for instance the series of books Numerical Recipes.  An interesting development is the

use of a complex finite differences to evaluate the real derivative of a function.

On the other hand, the reader can learn about the calculus of finite differences  from the classical works of Kopal ,

Boole . Jordan , Richardson , for instance. 

f ′(x0)

f(x) x x0 x → x0

f ′(x0) := lim
x→x−

0

f(x0) − f(x)

x0 − x
, f ′(x0) := lim

x→x+
0

f(x) − f(x0)

x − x0
.

[1]

[2]

[3]

[4] [5] [6]
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Another branch of the finite differences tree, is known as the exact finite differences technique. That scheme was

developed by researchers like Potts,  Ronald E. Mickens  with the purpose of obtaining exact finite differences

representations of continuous differential equations and of their solutions.

Another use of finite differences was developed by Armando Martínez-Pérez and Gabino Torres-Vega  with the

intention of obtaining discrete operators for use in Quantum Mechanics theory. It is common that a quantum

operator has a discrete spectrum and a derivative with respect to the spectrum is necessary some times. The aim

is to obtain discrete operators which comply with discrete versions of the properties that a quantum operator must

have.

The explicit form of the exact finite difference derivative depends on the functions that we want to consider. In this

article, we discuss the use of an exact finite differences derivative when its eigenfunction is the real exponential

function. This will provide with a momentum operator to be used in discrete Quantum Mechanics.

 

The partition

Let  be a  points partition of the real interval , that is

          

The separations between mesh points are

          

These separations can or cannot be equal and are finite. The discrete variable $q_j$ is the independent variable

with respect to we will calculate the derivative of a function.

The exact finite differences derivative

For a given  , backward and forward finite differences   derivatives, of a vector

, at , defined on the partition, are

         

          

where the denominators are defined as

[7][8] [9]

[10]

{qi}
N
i=−N N + 1 [−a, a]

−a = q−N < q−N+1 < ⋯ < qN−1 < qN = a.

Δj = qj+1 − qj, j = −N , … ,N − 1.

v ∈ R

g = (g−N , g−N+1, … , gN−1, gN)T qj

(Dbg)j =
gj − gj−1

ηj
,

(Dfg)j =
gj+1 − gj

χj

,
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The discrete variable  is the independent variable with respect to which we will calculate the derivative of a

function. The functions in the denominators of these expressions, the functions  and , makes sure that the real

exponential function  be, exactly, an eigenfunction of the discrete derivative operation with real eigenvalue ,

          

which is the same property as the continuous variable derivative has.

When  and  are less than some small , our method and the usual finite-differences derivative

give similar results for any vector defined on the mesh. Note that the denominators  and  become  when

.

 

Properties of the finite-differences derivative

Some properties of the exact finite-differences derivative are

The connection between forward and backward discrete derivatives. The equality  implies that

          

The summation of the derivative. The finite differences versions of  are

and

where < . The summation term at the right hand side of these equalities involve asymmetry terms that vanish

when the separation between mesh points is the same.

ηj =
2

v
e−vΔj−1/2 sinh(

v

2
Δj−1) = Δj−1 +

v

2
Δ2

j−1 + O(Δ3
j),

χj =
2

v
evΔj/2 sinh(

v

2
Δj) = Δj +

v

2
Δ2

j + O(Δ3
j).

qj

ηj χj

evq v

(Dbe
vq)j = (Dfe

vq)j = v evqj ,

|ηj − Δj| |χj − Δj| ϵ

ηj χj Δj

v = 0

ηj+1 = e−vΔjχj

(Dfg)j = e−vΔj (Dbg)j+1.

∫
x

a

dy g′(y) = g(x) − g(a)

n

∑
j=−N

Δj(Dfg)j = −
Δ−N

χ−N

g−N +
n

∑
j=−N+1

(
Δj−1

χj−1
−

Δj

χj

)gj +
Δn

χn

gn+1,

n

∑
j=−N+1

Δj−1(Dbg)j = −
Δ−N

η−N+1
g−N +

n−1

∑
j=−N+1

(
Δj−1

ηj
−

Δj

ηj+1
)gj +

Δn−1

ηn
gn,

n N
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The eigenfunction of the summation. The finite differences versions of   are

and

where < < .

The derivative of a constant function . 

          

The derivatives of .

These derivatives will approach to one in the limit of small . In particular, both  and  are equal to

one when .

The chain rule. For the forward scheme this rule turns to be

          

where

          

For the backward finite differences we have

        

where

          

The derivative of a product of vectors. There are four equalities

         

         

∫
x

a

dx v evx = evx − eva

n

∑
j=−N

Δjv e
vqj =

n

∑
j=−N

Δj(Df e
vq)j = −

Δ−N

χ−N

evq−N +
n

∑
−N+1

(
Δj−1

χj−1
−

Δj

χj

)evqj +
Δn

χn

evqn+1 ,

n

∑
j=−N+1

Δj−1v e
vqj =

n

∑
j=−N+1

Δj−1(Db e
vq)j = −

Δ−N

η−N+1
evq−N +

n−1

∑
j=−N+1

(
Δj−1

ηj
−

Δj

ηj+1
)evqj +

Δn−1

ηn
evqn ,

−N n N

c

(Df c)j = 0, and (Db c)j = 0.

q

(Df q)j =
qj+1 − qj

χj

=
Δj

χj

, and (Db q)j =
qj − qj−1

ηj
=

Δj−1

ηj
.

Δj (Df q)j (Db q)j

v = 0

(Dfg(h(q)))j = (Dfg(h))j (Dfh)j,

(Dfg(h))j =
g(h(qj+1)) − g(h(qj))

h(qj+1) − h(qj)
.

(Dbg(h(q)))j = (Dbg(h))j (Dbh)j,

(Dbg(h))j =
g(h(qj)) − g(h(qj−1))

h(qj) − h(qj−1)
.

(Df gh)j = gj+1(Dfh)j + (Dfg)jhj. ,

(Df gh)j = (Dfg)jhj+1 + gj(Dfh)j,
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The derivative of a vector of inverses.

         

provided .

The derivative of a vector of ratios. There are four versions of this property

          

          

          

        

Summation by parts.

          

where         The

terms in the summation vanish when , i.e. when the separation between the mesh points is the same. But

we can chose the vectors  and  is such a way that the last sum vanishes. Also

          

          

(Db gh)j = gj(Dbh)j + (Dbg)jhj−1,

(Db gh)j = (Dbg)jhj + gj−1(Dbh)j.

(Df

1

h
)

j

= −
(Dfh)j

hjhj+1
, and (Db

1

h
)

j

= −
(Dbh)j

hjhj−1
,

hj,hj±1 ≠ 0

(Df

g

h
)
j

=
(Df g)j

hj

−
(Dfh)j

hjhj+1
gj+1,

(Df

g

h
)
j

=
(Df g)j
hj+1

−
(Dfh)j
hjhj+1

gj,

(Db

g

h
)
j

=
(Db g)j

hj−1
−

(Dbh)j

hjhj−1
gj,

(Db

g

h
)
j

=
(Db g)j
hj

−
(Dbh)j
hjhj−1

gj−1.

N−1

∑
j=−N

Δjgj+1(Dfh)j +
N−1

∑
j=−N

Δj(Dfg)jhj = I1,

I1 =
N−1

∑
j=−N

Δj(Df gh)j = −
Δ−N

χ−N

g−Nh−N +
N−1

∑
−N+1

(
Δj−1

χj−1
−

Δj

χj

)hjgj +
ΔN−1

χN−1
hNgN .

Δj → 0

h g

n

∑
j=−N+1

Δj−1gj(Dbh)j +
n

∑
j=−N+1

Δj−1(Dbg)jhj−1 = I2,

I2 = −
Δ−N

χb,−N+1

g−Nh−N +

N −1

∑
j=−N+1

(
Δj−1

χb,j

−
Δj

χb,j+1

)gjhj +
ΔN −1

χb,N

gNhN .
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The commutator between  and . The discrete version of the relationship 

becomes

          

          

Translation of the exponential function. The discrete derivative is the generator of translations of the exponential

function

          

We will need of the bounded Fourier transform of a given function  which is defined as

          

on the mesh.

We also need of the discrete Fourier transform of a vector  which is defined as

          

These transformations preserve the norm of vectors and functions. In the equidistant case in which

 these transforms can be identified with the usual Fourier transform on 

and with the Fourier series, respectively.

The adjoint of . Consider the equality               

Then, there is the relationship

          

provided that the asymmetry term

          

vanishes.

q D
d

dq
qh(q) − q

d

dq
h(q) = h(q)

(Df qh)j − qj+1(Df h)j =
Δj

χj

qj,

(Db qh)j − qj(Db h)j =
Δj

ηj
qj−1.

(es Db,fevq)j = ev(qj+s).

g(v)

~gj = (Fg)j =
1

√V
∫

V/2

−V/2
eivqjg(v)dv,

hj

~
h(v) = (Fh)(v) =

N−1

∑
j=−N

√ Δj

V
e−ivqjhj.

qj+1 − qj = 2π/(N − 1) [−V, V]

D

v(Fh)j =
N−1

∑
j=−N

√ Δj

V
e−ivqj+1(−iDfh)j + i

N

∑
j=−N

√ Δj

V
(Dfe

−ivqh)j.

p ↔ e−ivΔj(−iDfh)j, j = −N , … ,N − 1,

N−1

∑
j=−N

√ Δj

V
(Dfe

−ivqh)j,
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The conjugate of . The relationship 

          

indicates that

          

provided boundary term

          

 vanish.

Eigenvetors of the coordinate operator

The normalized eigenvector of the coordinate operator with eigenvalue  in the  representation is

          

These functions are orthonormal in a discrete sense, i.e. 

          

Now, the conjugate to the coordinate eigenvector  is

and the orthonormality between these vectors reads

a result which becomes the Kronecker delta  when .

Eigenvectors of the derivative operator

Now, the normalized eigenvector of the discrete derivative with eigenvalue  in the coordinate representation is

          

qj

qj
~gj = i

1

√V
∫

V/2

−V/2
eivqj

d g(v)

dv
dv − i

1

√V
eivqjg(v)

V/2

v=−V/2∣qj
~gj = i

1

√V
∫

V/2

−V/2
eivqj

d g(v)

dv
dv − i

1

√V
eivqjg(v)

V/2

v=−V/2∣i

√V
eivqjg(v)

V/2

v=−V/2∣ qn v

eqn(v) =
e−ivqn

√V
.

∫
V/2

−V/2
dv e∗

qm
(v)eqn(v) = sinc [

V

2
(qm − qn)]

eqn(v)

eqn(m) =
1

√V
∫

V/2

−V/2
eivqm

e−ivqn

√V
dv = √ V

2a
sinc [

V

2
(qm − qn)],

N

∑
m=−N

Δme
∗
qj

(m)eqn(m) =
N

∑
m=−N

sinc [
V

2
(qm − qj)] sinc [

V

2
(qm − qn)],

δjn V → ∞

v

ev(n) =
eivqn

√Δn(2N + 1)
,
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and the orthogonality for these states reads

(31)          

The conjugate function to  is

          

This function approximates  a delta function with small noise in it.

Concluding remarks

This is a step more in the theory of discrete operators. It shows that it is possible to have discrete operators very

similar to the usual operator of continuous variable theory. We will explore more things about this operator,  Things

like its inverse, its use in obtaining self-adjoint extensions, for instance.

We have discussed a local approach to the finite differences first derivative. Another point of view is obtained by

collecting the finite differences at each point of the mesh in a single matrix, the subject of another a future work.
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∑
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Δne
∗
v′(n)ev(n) =

1
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N
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