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Hydraulic fracturing has become one of the most popular techniques for exploring sustainable energy sources.

However, friction is associated with the entire fracturing process, presenting significant challenges for

development. 

oil and gas  hydraulic fracturing  friction and lubrication  proppant

1. Introduction

Hydraulic fracturing (fracking) is a key process to the exploitation of oil and gas and plays an important role in

enhancing oil recovery. It consists of four major processes: downhole pressure-out, fracture formation and

extension , proppant filling , and oil/gas channel formation. For each fracturing process, there exists serious

friction challenges to the fracturing machinery.

Fracking not only changes the situation of oil/gas fields but also enhances the production of oil/gas . In practical

applications, the effects of fracturing are often important indicators to evaluate the maturity of the fracturing. In the

last few years, hundreds of fracturing wells  have been installed in the oil/gas fields of the China National

Petroleum Corporation (CNPC). However, the results were not as expected. It is worth noting that all most of those

problems are caused by frictional resistance , which leads to insufficient pressure at the bottom of the well,

reducing the capacity to form fractures. Therefore, the challenge posed by friction are a foundational and

ubiquitous problem in the fracking process.

The use of fracturing fluid imposes a couple side effects. During the formation of rock fractures, it requires breaking

down the forces in the rocks formation, by shearing and relative motion, which induce frictional behaviors and

energy lose . The fracturing fluid could lubricate and reduce drag, but the proppant filling and propping are still

affected by friction, which cause wear and tear. When flowback, the fracturing fluid and proppant of couple are

subjected to friction. On one hand, the fluid reacts with the formation to form residuals and filter caking, increasing

formation blockage and friction loss. It will cause water sensitivity damage to the formation. On the other hand, the

accumulation of proppant particles in the embedded fractures can cause clogging, thereby reducing formation

permeability. At the same time, the proppant can erode the formation surface and clamp surface of downhole tool

at a certain velocity, causing surface erosion wear. Therefore, the challenge is how to reduce friction during

fracturing. Understanding the friction challenges and friction reduction mechanism  is the key to improving

hydraulic fracturing technology and stimulating innovations, as well as boosting the profit of oil/gas production.
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2. Hydraulic Fracturing Basics

Hydraulic fracking is one of the most important technologies for extracting shale oil/gas . Traditionally, fracking

injects fracturing fluid with a high viscosity to create a large displacement at the bottom of the well, in order to

generate the fracture. Subsequently, high conductive proppant is filled to form non-closed or incomplete closed

fractures. Eventually, the mixture of oil/gas flows to the wellhead (Figure 1).

Figure 1. Schematic of the hydraulic fracturing process.

2.1. Mechanism of Hydraulic Fracturing Rock Fracture

Fracking was unsuccessfully tested for the first time in the United Kingdom in 1880s . Decades of research and

improvement of the technology made a successful breakthrough in the United States, which has been applied to

various fields ever since . In comparison, fracking was studied and applied relatively late in China. Through

continuous efforts, the technological gap becomes smaller and smaller; fracking is widely utilized in the oil/gas

fields of China.

Fracture formation and extension is the core technology of fracking, which is related to the distribution of in situ

stresses, the mechanical properties of rocks, the properties of the fracturing fluid and the proppant properties .

According to the Mohr–Coulomb theory, the formation friction is directly related to the formation stress , which

affects the formation and extension of fractures. When the shear stress of the formation is greater than the tensile

stress of the rock, cracks are formed . In general, the stress distribution in the stratum is heterogeneous. At the
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same time, the inhomogeneity of formation stress will make pressure of the string increase, leading to equipment

for high-load work. Hence, during the fracturing process, the homogeneity of the formation stress should be as

close to perfection as possible, which not only reduces chances of friction resistance but also improves the

fracturing effectiveness.

It is well known that in situ stress is mainly composed of stress from the formation fluid and fracture from the rock

skeleton. The direction of the stresses is primarily horizontal and vertical, as shown in Figure 2. There is a

horizontal stress shown in Figure 2a. On the other hand, there is a vertical stress shown in Figure 2b,c, in the X

and Y directions, respectively. In most cases, the horizontal stress in the fracture is 1–3 times larger than the

vertical stress, while the vertical stress is 1.5–3 times larger than the gravitational stress. The crack tips of the

formation are destroyed easily, which bring about energy loss and causes fatigue failure in the fracturing

equipment. It is important that the proper fracking force be used, and it is a critical factor in the success of

technology.

Figure 2. Diagram of crack orientation. (a) Horizontal fracture; (b) vertical fracture in direction σ ; (c) vertical

fracture in direction σ .

2.1.1. The Mechanism of Fracture Formation

After many years of research and analysis by scholars, the mechanism of the fracture formation by hydraulic

fracturing has been well understood. It provides a theoretical basis for hydraulic fracturing tests. Hubberts and

Willis  established the H-W formation stress prediction model and studied the minimum principal stress

perpendicular to the fracture formation. Scott and Williams researched the maximum principal stress of fractures

parallel to the formation and further studied the influence of fractures formed in the formation, as well as the

fractures of the rock itself. Considering the theory of fracture initiation and elongation under multi-factor conditions,

Haimson and Fairhurst  built the H-F model and calculated the pressure required for formation of fracture. Eaton

et al.  set up a model for the relationship between a rock pressure’s gradient and formation depth, for which they

used the formation stress coefficient and formation Poisson’s ratio to perfect the model. Anderson considered the

influence of the formation stress concentration and referred to optimize the H-W model. Bradley  analyzed the
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relationship between shear stress and wall cracks, which demonstrated that shear force is the decisive factor in the

formation of cracks. Yew et al.  utilized a three-dimensional elastic model to describe the impact of stress

distribution around the wellbore on the fractures. Fallahzadeh  studied the influence of the stress distribution

around the casing and cementing sheath around the fractures. Lv et al.  established a mathematical model for

determining crack pressures based on the elastic mechanics theory. Therefore, in order to obtain effective fracture

germination for hydraulic fracturing, it is necessary to overcome the friction between rock layers. Moreover, to avoid

friction between rock layers, we need further carry out fracturing fluid lubrication.

2.1.2. The Mechanism of Fracture Extension

Fracture extension refers to the extension and expansion of the fracture, which signifies the expansion of the high-

pressure region to the low-pressure region and increases the effective area of the fracture. The extending direction

is always perpendicular to the direction of the minimum principal stress, which is influenced by the lithology of the

rock formation , the rock’s fracture surface, and natural fractures. According to the linear elastic fracture

mechanics model, the fracture stress and strain field at the top of the seam are proportional to the stress intensity

factor. Anderson  thought that rock strength was the main factor affecting fracture extension from high strength

to low strength. Warpinski  studied the laws of hydraulic and natural fractures to analyze the mechanism of crack

fracture. In doing so, he calculated the extension direction of hydraulic fractures. Martin  researched the process

of the fracture formation in soft rocks, deriving the mathematical formula for the opening threshold of cracks on the

plastic fracture surface. In brief, the friction of the formation causes different degrees of fracking slips, which are

horizontal slips and shear slips. It is in facing the challenge of friction on the rock surface that the formation of

cracks requires fluid lubrication, which makes it easy to form cracks.

Fracture formation and extension are significant steps in the fracturing process, which are deeply influenced by

downhole friction, fracture fluid filling , and proppant propping . The greater the friction, the more difficult it is

to crack and extend. However, the high viscosity of fracturing fluids can transfer energy to the formation and

extension of cracks. Fracturing fluids carry proppant and maintain conductivity. The high viscosity fracturing fluids

can compensate for the energy dissipation during fracturing and form rock crevices and extensions. Meanwhile,

high-strength proppants sustain the crack, so that it does not close. However, low intensity proppant is more likely

to flowback and accumulate, and crack extension is more difficult.

2.2. Hydraulic Fracturing Fluid

Fracturing fluid  is a high viscosity fluid, which plays a role in lubrication and transportation during fracturing.

Common examples include water-based , oil-based , emulsified, foam , alcohol-based 

acid-based fracturing fluids, and so on. The most widely used is a water-based fracturing fluid , which is shown

in Figure 3.
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Figure 3. Diagram of the water-based fracturing fluid.

Water is mainly used in fracturing fluids  as the dispersion medium. It needs to add water-soluble polymers and

various reagents (thickening agents , cross-linking agents , and gel breaking agents  to form the working

fluid required for the process. Water accounts for 99.2% of the weight percentage. The processing is safe, reliable,

and has low production costs. When compared to oil-based and foam fracturing fluids, the friction resistance of

water-based fracturing fluids is lower. Under atmospheric pressure, the fluid is controlled easily, due to the high

hydrostatic pressure of water-based fracturing fluid.

Water-based fracturing fluid consists of many additives, including thickening agents , cross-linking agents ,

and gel breaking agents . So, the first step involves adding thickening agents, mainly to increase the viscosity,

reduce its filtration performance, reduce its frictional loss, and improve the carrying capacity. The cross-linking

agents can fuse with thickening agents to improve the proppant carrying capacity and reservoir permeability. After

the gel breaking are added, these agents mainly reduce the viscosity of the crosslinking agent to ensure the

dredging ability of the crack and reduce the damage of reservoir. Finally, these fracturing reagents need to be

recycled back to reduce the permeability loss to the reservoir. The classification of thickening agents, cross-linking

agents, and gel breaking agents are shown in Table 1.

According to the apparent viscosity theory , the viscosity of a fracturing fluid is an important factor effecting the

friction. However, viscosity has two effects on friction. On one hand, it can increase the shear stress between the

fluid and the pipe wall, leading to an increase of friction losses. On the other hand, with the increase of the

viscosity, the polymer solution produces a transition delay effect, which inhibits turbulence and reduces friction

loss.

Table 1. Classification of main additives for water-based fracturing fluids.
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Controlling the fluid’s viscosity becomes the key to reducing friction losses (which have an important role in

reducing the suspended sand), fluid friction, and filtration loss. During the pumping stage, the fluid viscosity needs

to be moderated to achieve a state of suspended sand and low friction. During the fracture formation stage, the

fracturing fluid viscosity needs to increase. The increased fracturing fluid has enough fluid pressure to complete the

expansion  and extension of fractures. During the drainage stage, the fluid viscosity needs to be reduced. A low

viscosity fluid can flow back to avoid blockage collapse of the stratigraphic structures.

Type of
Additives

Classification of
Additives Features Case References

Thickeners

Vegetable gum
and its

derivatives

Strong thickening ability,
low price, poor

temperature resistance,
and large residue content

Guanidine gum, sesbania gum,
and coumarin gum

Cellulose and its
derivatives

Good sand suspension,
low filtration loss, high

thermal stability, and high
cost

Carboxymethyl cellulose,
hydroxyethylcellulose, and

carboxymethyl hydroxyethyl
cellulose

Synthetic
polymer

fracturing fluid

Good gel stability, strong
sand suspending ability,

and less formation
damage

AA, AM, and NFT

Cross-
linking
agent

Boron cross-
linking agent

Better delayed cross-
linking and high-

temperature resistance

Inorganic boron/organic boron
cross-linking agent

Transition metal
cross-linking

agent

Higher cross-linking
efficiency, less damage to
the reservoir, lower cost,

and poor shear resistance

Ti /Zr  cross-linking agent

Composite
cross-linking

agent

High shear performance
and good temperature

resistance
YM-A

Nano cross-
linking agent

Improve the cross-linking
efficiency, reduce the
dosage of thickening

agents, and save the cost.

ZrO /TiO  cross-linking agent

Gel
breakers

Acid gel breaker
Low damage to reservoir

permeability
HJD-W

Enzymatic gel
breaker

Specificity and green
environmental protection

β-Mannanase

Oxidized gel
breaker

Easy to flow back, low
price, and high breaking

efficiency

Ammonium persulfate and
Potassium persulfate
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2.3. Hydraulic Fracturing Proppant

Fracturing proppant is an indispensable filler in the fracking process. The proppant  supports fractures and

prevents their closure by forming a highly dredging oil/gas flow channel. The proppant type and particle

characteristics (i.e., size, strength, sphericity, and roundness) determine the flow conductivity of the fractures. The

stronger the flow conductivity, the higher the oil/gas production capacity. However, based on the fitting formula

theory, the proppant particle size and ratio to sand have an impact on the friction. This causes abrasion near the

well and sand blockages in the crack.

In the fracturing process, ideal proppants (Figure 4) have high compressive strengths and a small crushing rate.

Most proppants are spherical particles with uniform size  and smooth surface, which are easy to transport in

fracturing fluid. When the proppant supports the fracture, it does not react with the formation fluid. The origin of the

proppant is river sand, which comes from the Arkansas River in the United States. Until the mid-1950s, natural

quartz sand , which is shown in Figure 4a, was widely used in fracking. After a few decades, ceramic proppants

 were utilized in the fracturing process. Ceramic proppants have the advantages of having high strength, as

well as good corrosion resistance and roundness. From the 1980s till now, coated , biological, and self-

suspending proppants continue to improve proppant performance . Propant transportation schedule is shown in

Figure 4.

Figure 4. Diagram of hydraulic fracturing proppant. (a) natural quartz sand; (b) proppant.

Proppants are carried by the fracturing fluids, also known as sand-carrying fluids. The fluids are transported to the

formation, via coiled tubing, in order to realize the fracturing operation. Unfortunately, walls of coiled tubing suffer

from proppant erosion and wear, causing the structure to fail. In line with Dean’s theory , the flow rate and

viscosity of the fluids correlate with the degree of erosion and wear. As the flow rate and viscosity of the fluid

increases, the erosive and wear of the tubing increases. During the conveying process, the roller will produce

centrifugal forces on the fluid. Under the centrifugal force, the fluid will rotate and float and can increase the friction

of the tubing. Therefore, researchers pay close attention to the friction and erosion of proppants. Carpenter
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proposed that new proppants  need to reduce the concentration of the fluid, in order to reduce friction and

erosion of proppants.

3. Friction Mechanism in Hydraulic Fracturing (Problem)

The impacts of friction in hydraulic fracturing cannot be ignored. Researchers began to pay the attention to the

friction problem in the 1980s. Excessive friction will cause serious pressure loss in the fracturing process, leading

to increase the risk in the fracturing construction. Friction loss in the process is mainly composed of two parts: the

friction along the path and near the wellbore.

3.1. Friction along the Path

Installing coiled tubing is one of the vital steps in the fracturing process. During the process, the coiled tubing

comes into contact with the borehole wall, resulting in frictional resistance along the path. Friction loses becomes

more serious as the depth of tubing increases. The main factors affecting the friction along the path is the coiled

tubing diameter, fracturing fluid viscosity, and proppant concentration.

3.1.1. Coiled Tubing Friction

Coiled tubing is required to be installed to a depth of more than seven kilometers. As the depth increases, the

tubing starts to act like a soft rope in the borewell. As a result, experts build soft rope models to analyze the tubing

stress. Wojtanowicz et al.  studied the effects of a borehole’s friction on the tubing’s stress, in which the high

friction in the wellbore leads to a stress concentration in the tubing, resulting in structural failure of the tubing and

thread seal on the casing. In 1983, Johancsik et al.  first performed a stress analysis on the tubing and

established the micro-element soft rod for structural mechanics model. Sheppard et al.  considered friction and

torque factors when designing and optimizing a borehole’s trajectory. Based on the Sheppard model, Maida’s team

 considered the effect of viscous resistance of a fluid on the friction of the tubing. Daring et al.  established a

two-dimensional model to analyze the deformation of the tubing in the wellbore. His team  built a three-

dimensional model to analyze the force on the tubing in the wellbore. In conclusion, the increase of tubing depth

and friction along the pipeline is a problem that cannot be ignored. In order to further alleviate the oil and gas

pipeline’s structural wear, the main way to prevent damage during drilling is to reduce friction with lubrication.

During the process of tubing friction and wear, the coefficient of friction (COF) also becomes a crucial factor to

determine the stability and reliability of the tubing. Ho et al.  considered the effect of large deformations on the

COF of the borehole. Sheppard used theoretical models to research the influence of borehole geometry on

frictional resistance. Dikken et al.  introduced the effect of pressure gradient along the borehole on the COF.

Landman and Goldthorpe  studied the relationship between uniform flow and the COF, which established the

relevant prediction model. Johancsik et al.  investigated the effects of the type of mud and wellbore conditions

on friction coefficients. When researching the influence of the COF on pipeline wear, not only should the sliding

friction be considered but also the comprehensive friction, including drilling fluid lubrication and rock properties.
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Therefore, the COF usual empirical value is summarized in Table 2. The data in Table 2 are derived from the

measured calculation in the study of the friction coefficient of the string in a large displacement well.

Table 2. Value of borehole friction coefficient (COF).

3.1.2. Fracturing Fluid Viscosity

After the fracturing fluid enters the formation, the balance of forces in the formation breaks, causing different

degrees of shearing damage and energy loss in the formation. The losses are mainly caused by water damage and

water sensitivity damage and are related to the fluid’s viscosity. At certain locations of the pipe the friction becomes

severe.

Water damage of the fracturing fluids mainly occurs in low permeability reservoirs. Some water is locked in the

formation, due to the low permeability and poor porosity of the formation; as a result, this causes water damage in

the formation. Water damage can lead to an increase in the viscosity of the fluid and, as a result, the friction

resistance increases within the well. Bahrami et al.  studied the mechanism of water lock damage, in order to

analyze the factors of increasing viscosity. Ni’s team  used nuclear magnetic resonance to research the water

damage in coal seams. They proposed protective measures for surfactants, in order to reduce the viscosity. Fan et

al.  invented a waterproof sealing agent, used to reduce water damage and decrease the viscosity of the fluid.

Bijeljic’s team  utilized the multi-component porosity model to analyze the effects of water damage on

multiphase oil/gas. Holditch et al.  used the capillary pressure changes of tight sandstone formations to study

the combined effects of hydraulic fracturing intrusive formation permeability damage and relative permeability

damage The greater the pressure, the more severe the water lock damage. Lin et al.  used a combination of

experimental and numerical simulations to research the influence of water lock damage on formations. Therefore,

the phenomenon of water lock damage is a non-negligible phenomenon that causes shale formation damage. To a

certain extent, water lock damage leads to increased formation pressure. The inner surface of downhole devices

and pipelines are eroded and worn down by proppant particles, resulting in surface stress concentrations. Under

the comprehensive stress caused by the pressure of the medium in the pipe, as well as other external forces, it is

feasible to form cracks and expand, which can eventually lead to the collapse of an oil and gas pipeline. In order to

mitigate this damage, the main measures focus on effectively reducing the viscosity of the fluid and friction

between downhole devices, pipes, and borehole walls.

Drilling Fluid System COF in a Casing COF in the Naked Eye

Water-based drilling fluid 0.24 0.29

Oil-based drilling fluid 0.17 0.21

Brine drilling fluid 0.30 0.30
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Besides water lock damage, water sensitivity damage can also cause damage in the formation. Water sensitivity

damage is caused by the chemical reactions between the fracturing fluid and minerals in the formation. This

causes erosion of the formation, which causes the particles in the formation to fall off, accumulate, and increase

the tubing friction along the path. Researchers began to focus on this type of damage in the 1930s. Monaghan et

al.  studied the interactions between the aqueous phase and clay minerals in the reservoir. They found that

water-sensitive damage was severe, but the reservoir permeability decreased. Mungan et al.  analyzed the

fluid’s pH and salinity when the reservoirs were damaged. Tchistiakov et al.  investigated the water sensitivity

damage of the charged particles around clay. Aradeiba et al.  researched the water sensitivity damage of strata

without expansive clay minerals. However, the impact of water sensitivity damage on the formation was not great.

Effective prevention and protection can decrease the friction along the path and, as a result, reduce the impact of

the water sensitivity damage on the formation.

3.1.3. Proppant Concentration

Proppant, like the Great Wall, supports cracks formed by the fracturing fluid. The ability to embed and accumulate

proppant particles can damage the original formation structure, resulting in erosive wear and different degrees of

friction in the cracks . Holditch et al.  studied the effects of different concentrations of proppant in the deep

well formation. They determined that the higher the concentration, the more serious the erosion wear. Lacy’s team

 established a proppant embedment model to research the relationship between the depth of proppant

embedment and degree of formation damage under different formation rocks. Cook et al.  investigated the

relationship between fluid viscosity and the depth in which the proppant embedded itself within complex formations.

Using the shunt loading method, Penny et al.  studied the formation damage caused by proppants. Therefore, it

is inevitable that proppant embedment will cause damage within the formation, resulting in erosion and wear of the

formation and equipment. This is a problem that should be avoided and prevented.

Failure caused by the wear of the downhole device, pipeline surface, and accumulation of metal particles in the

pipeline caused the blockage in the formation. Blockage can cause local formation pressure to be too high and is

the main way to erode and destroy the formations. In the process of proppant filling cracks, the movement of fluid

assists proppants with large diameters to fill the cracks, and some proppants with small diameters will also

accumulate and block. Subsequently, the pressure and friction in the bottom of the well would increase. In the oil-

loosened sandstone formation, Wong et al.  found that proppants are easy to accumulate after the sandstone

particles fall off the multi-layer formation skeleton and damage the formation. Carroll et al.’s  research found that

broken proppants would block the crack even more, reducing its permeability. However, in the clay mineral

formation, the clay would set off the hydration and expansion reaction. Hayatdavoudi et al.’s  research showed

that after the reaction, proppants block the cracks, thereby increasing the friction along the cracks. Khilar and

Fogler  studied the friction loss of salt chemical proppants to the formations. Civan et al.  established the

mathematical model of clay hydration expansion, finding that more serious clay hydration would have more

proppant accumulation and, therefore, more frictional losses in the formation. The damage mechanism of the

proppant is shown in Figure 5. When the proppant first accumulates in the crack (as shown in the figure with a II),

and when the proppant breaks, the proppant accumulates again (shown in the figure as part I). To reduce the
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accumulation of the proppant in the crack, researchers have proposed a mechanism study of the surface

modifications of the proppant.

Figure 5. Friction and damage mechanism of the proppant. (I) second proppant accumulation; (II) first proppant

accumulation.

3.2. Friction near Wellbore

During hydraulic fracturing, the fluid enters the cracks of the formation from the pump through surface lines, coiled

tubing, and perforation holes. The whole process is influenced by frictional resistance, leading to pressure loss.

Excessive friction causes crack length to grow, resulting in serious sand plugging. In the 1980s, near-wellbore

friction refers to the concentration of stress around the perforations and wellbore, which caused near-well friction.

Near-well friction is mainly divided into perforation friction and fracture bending friction.

3.2.1. Perforation Friction

During the fracturing process, an insufficient number of perforations and perforation pollution will give rise to

perforate friction and occur in the perforation hole. The schematic diagram of perforation abrasion is shown in

Figure 6. It can be seen from Figure 6 that the number of perforations is insufficient; as the perforation resistance

increases, proppant will settle faster, leading to blockages. Economides and Nolte  showed from reservoir

stimulations that friction causes pressure loss. Daneshy et al.  performed simulations on perforation

fractures and found physical relationships between perforation friction and the number of perforations. After that,

Crump and Conway  established the friction model for hole perforations and discovered that different

perforation parameters generated different perforation friction types. Cramer et al.  found a linear relationship
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between the hole’s diameter and amount of proppant passing through the hole. Wu’s team  analyzed the

effects of the size of the diameter, as well as the effect that the number of perforations had, with regard to friction.

Lecampion et al.  showed that pressure drop would cause friction from the perforations to decrease. El-

Rabaa and Shah  established a mathematical model of the perforation friction on the hole. This model showed

that an insufficient number of perforations will cause an increase in friction. Therefore, in hydraulic fracturing, the

ideal case is to maintain the number of perforations within a reasonable range.

Figure 6. The schematic diagram of perforation abrasion.

When the number of perforations is insufficient, the friction (as a result of perforations) is larger, resulting in a lower

fracturing rate, in which the solid particles of proppant flushed the surface of the perforation, causing serious

erosive wear of the surface of the perforation. Meanwhile, erosive wear can also generate perforation pollution,

which is the main cause of perforation wear. Long’s team established a perforation wear model to explore the effect

of perforation wear on crack propagation.

3.2.2. Fracture Bending Friction

The friction caused by bend after a fracture is another friction mechanism near the well. In hydraulic fracturing

engineering, bending friction is mainly caused by inclination, the number of fractures, an improper perforation

stage, and other factors. Zhu’s team  established a dynamic frictional torque model for large, deviated wells, in

order to study the influence of inclination of friction resistance on oil/gas well. They determined that the higher the

inclination, the greater the friction wear. According to the Besilianke formula, a mathematical model of friction is

built and can be used to more easily analyze the influence of the inclination on the friction coefficient . All in all,
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we need to further consider the influence of wellbore inclination and friction. In order to reduce the corresponding

frictional resistance, it is necessary for us to reasonably reduce the wellbore inclination.

On the other hand, multiple cracks are a factor that effect the bending friction from fracture. Multiple cracks, caused

by the improper phase of natural fractures and perforations, can result in the increase of bending friction in near-

well friction. Overbuy et al.  confirmed the existence of multiple cracks. Lyle et al.  discussed the causes of

multiple cracks. According to Michael’s theory, the fracture bending friction is related to the total displacement of

the fracturing fluid . McDaniel at al. , Brumley et al. , and Mahrer et al.  observed multi-crack

morphology and found that the greater frictional resistance, the more serious the damage of the construction. Lu

studied the relationship between the crack width and severity of wear (due to friction). Using a numerical model,

Jeffrey et al.  proved that the formation pressure of the second crack was 7% higher than that of the first crack.

As a result, how many cracks would be reasonable is known. More cracks mean more pressure drops and a more

serious friction wear at the formation.
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