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The histopathological image is widely considered as the gold standard for the diagnosis and prognosis of human cancers.

Recently, deep learning technology has been extremely successful in the field of computer vision, which has also boosted

considerable interest in digital pathology analysis. Deep learning and its extensions have opened several avenues to

tackle many challenging histopathological image analysis problems including color normalization, image segmentation,

and the diagnosis/prognosis of human cancers.
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1. Pathology Image Segmentation

The segmentation task, which aims at assigning a class label to each pixel of an image, is a common task in pathology

image analysis . The segmentation task on histopathological images can be divided into two categories, nuclei

segmentation, and tissue segmentation. The nuclei segmentation task focuses on exploring the nuclei features, such as

morphological appearances in histopathological images, which are widely recognized as the most frequently used

biomarkers for cancer histology diagnosis. On the other hand, the tissue segmentation task takes the histopathology

image as input and segments the tissues that are composed of a group of cells in the input image with certain

characteristics and structures (i.e., gland, tumor-infiltrating lymphocytes, etc.). These quantitatively measured tissues are

also a crucial indicator for the diagnosis and prognosis of human cancers .

Due to the heterogenous patterns in WSI, the accurate segmentation of nuclei and tissues in the histopathological images

is with huge challenges. First, there are variations on nucleus/tissue sizes and shape, requiring a segmentation model

with a strong generalization ability. Second, nuclei/cells are often clustered into clumps so that they might partially overlap

or touch one another, which will lead to the under-segmentation of histopathological images. Third, in some malignant

cases, such as moderately and poorly differentially adenocarcinomas, the structure of the tissues (such as the glands) are

heavily degenerated, making them difficult to discriminate .

In view of these challenges, numerous deep learning-based approaches have been proposed to extract high-level

features from WSI that can achieve enhanced segmentation performance. Here,  the researchers first review the deep

learning-based nuclei segmentation algorithm. Then, the researchers summarize the development of deep learning

algorithms on tissue-level segmentation tasks. The researchers show the overview of papers using deep learning for

nuclei/tissue segmentation in Figure 1.
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Figure 1. Overview of papers using deep learning for nuclei/tissue segmentation in histopathological images 

.

1.1. Nuclei-Level Segmentation

Cellular object segmentation is a prerequisite step for the assessment of human cancers . For example, the counting of

mitoses is one of the most prognostic factors in breast cancer requiring the assistance of nuclei segmentation . In the

diagnosis of cervical cytology, nuclei segmentation is necessary to discover all types of cytological abnormalities . The

traditional nuclei segmentation algorithms are based on morphological processing methods , clustering algorithms ,

level set methods , and their variants , whose performance are largely determined by the designed features

requiring the domain knowledge of experts. Recently, deep learning approaches have been widely applied without the

efforts of designing hand-crafted features .

Generally, the deep learning-based nuclei segmentation algorithms can be divided into two categories, the pixel-wise

classification methods  and the fully convolutional network (FCN)-based methods . Pixel-wise

classification methods convert the segmentation task into the classification task, by which the label of each pixel is

predicted from raw pixel values in a square window centered on it . For example, Cireşan et al.  first densely

sampled the squared windows from the WSI, followed by classifying the centered pixels via utilizing the rich context

information within the sampled windows. Moreover, Zhou et al.  learned a bank of convolutional filters and a sparse

linear regressor to produce the likelihood for each pixel being nuclear or background regions. By considering the windows

of different sizes can extract helpful complementary information for the nuclei segmentation, a multiscale convolutional

network and graph-partitioning–based method  were proposed for the task of nuclei segmentation. In addition, Xing et

al.  firstly learned a CNN model to generate a probability map of each image. According to the probability map, each

pixel is then assigned a probability belonging to the nucleus. Finally, an iterative region merging algorithm was used to

accomplish the segmentation task. Nesma et al.  also presented an optimized pixel-based classification model by the

cooperation of region growing strategy that could successfully obtain nucleus and cytoplasm segmentation results.

Additionally, Liu et al.  proposed a panoptic segmentation model which incorporates an auxiliary semantic

segmentation branch with the instance branch to integrate global and local features for nuclei segmentation.

Although the above pixel-wise classification methods have shown more promising performance over the traditional

segmentation algorithms, obvious limitations can also be found. First, they are quite slow since the densely selected

patches increase the calculation burden for neural network training . Second, the extracted patches cannot fully reveal

the rich context information within the whole input image for nuclei segmentation. Accordingly, a more elegant architecture

called “fully convolutional network” is proposed . FCN can use the full image rather than the densely extracted patches

as the input, which can produce a more accurate and efficient nuclei segmentation result. In addition to FCN, U-Net is

another powerful nuclei segmentation tool . In comparison with FCN, U-Net uses skip connections between

downsampling and upsampling paths that can stabilize gradient updates for deep model training. Based on the U-Net

structure, Zhao et al.  proposed a Triple U-Net architecture for nuclei segmentation without the necessity of color

normalization and achieved state-of-the-art nuclei segmentation performance (Figure 2). To split touching nuclei that are

hard to segment, Yang et al.  used a hybrid network consisting of U-Net and region proposal networks, followed by a

watershed step to separate them into individual ones. Amirreza et al.  proposed a two-stage U-Net–based model for

touching cell segmentation, where the first stage used the U-Net to separate nuclei from the background while the second

stage applied the U-Net to regress the distance map of each nucleus for the final touching cell segmentation. To explicitly

mimic how human pathologists combine multi-scale information, Schmitz et al.  introduced a family of multi-encoder

FCN with deep fusion for nuclei segmentation. Other U-Net–based studies include  proposed deep contour-aware

networks that integrate multilevel contextual features to accurately detect and segment nuclei from histopathological

images, which could also effectively improve the final segmentation performance.
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Figure 2. Triple U-Net: hematoxylin-aware nuclei segmentation with progressive dense feature aggregation.

1.2. Tissue-Level Segmentation

Besides nuclei segmentation, computerized segmentation of specific tissues in histopathological images is another core

operation to study the tumor biology system. For instance, the segmentation of tumor-infiltrating lymphocytes and

characterizing their spatial correlation on WSI have become crucial in diagnosis, prognosis, and treatment response

prediction for different cancers . Moreover, gland segmentation is one prerequisite step for quantitatively measuring

glandular formation, which is also an important indicator for exploring the degree of differentiation .

The automatic segmentation of tissues in histology images has been explored by many studies . Traditional tissue

segmentation methods usually relied on the extraction of handcrafted features, the design of conventional classifiers .

Recently, deep learning has become popular in computer vision and image-processing tasks due to its outstanding

performance, and some studies also applied deep learning methods for the segmentation of different types of tissues from

WSI . Among the existing deep learning segmentation algorithms, the U-Net-based neural network is still most

widely used. For example, Saltz et al.  applied the U-Net network to present mappings of tumor-infiltrating lymphocytes

on H&E images from 13 TCGA (The Cancer Genome Atlas) tumor types. Based on U-Net, Raza et al.  presented a

minimal information loss dilated network for gland instance segmentation in colon histology images. Chen et al. 

presented a deep contour-aware network by formulating an explicit contour loss function in the training process and

achieved the best performance during the 2015 MICCAI Gland Segmentation (Glas) on-site challenge. Lu et al. 

proposed BrcaSeg, a WSI processing pipeline that utilized deep learning to perform automatic segmentation and

quantification of epithelial and stromal tissues for breast cancer WSI from TCGA. Besides the U-Net structure, Zhao 

proposed a deep neural network, SCAU-Net, with spatial and channel attention for gland segmentation. SCAU-Net could

effectively capture the nonlinear relationship between spatial-wise and channel-wise features, and achieve state-of-the-art

gland segmentation performance. Moreover, with the help of the DeeplabV3 model, Musulin  developed an enhanced

histopathology analysis tool that could accurately segment epithelial and stromal tissue for oral squamous cell carcinoma.

Considering that the boundary of the gland is difficult to discriminate, Yan et al.  proposed a shape-aware adversarial

deep learning framework, which had better tolerance to boundary uncertainty and was more effective for boundary

detection. In addition, due to the fixed encoder-decoder structure, U-Net is not suitable for processing texture WSIs, Wen

et al.  utilized a Gabor-based module to extract texture information at different scales and directions for tissue

segmentation. Rojthoven et al.  proposed HookNet, a semantic segmentation model combining context information in

WSIs via multiple branches of encoder-decoder CNN, for tissue segmentation.

Although much progress has been achieved, the superior performance of previous deep neural network-based methods

mainly depends on the substantial number of training images with pixel-wise annotation, which are difficult to obtain due

to the requirements of tremendous labeling efforts for experts. In order to reduce the overall labelling cost, several weakly

supervised tissue segmentation algorithms have also been proposed . For instance, Mahapatra  proposed a

deep active learning framework that could actively select valuable samples from the unlabeled data for annotation, which

significantly reduced the annotation efforts while still achieving comparable gland segmentation performance. Lai et al. 

proposed a semi-supervised active learning framework with a region-based selection criterion. This framework iteratively

selects regions for annotation queries to quickly expand the diversity and volume of the labeled set. Besides, Xie et al. 

proposed a pairwise relation-based semi-supervised model for gland segmentation on histology images, which could

produce considerable improvement in learning accuracy with limited labeled images and amounts of unlabeled images.

Other studies include  having proposed a multiscale conditional GAN for epithelial region segmentation that could be

[37]

[38][39]

[40][41]

[42]

[9][43][44]

[10]

[9]

[43]

[8]

[45]

[44]

[46]

[47]

[48]

[6][49][50] [49]

[50]

[7]

[6]



used to compensate for the lack of labeled data in the training dataset. Moreover, Gupta et al.  introduced the idea of

‘image enrichment’ whereby the information content of images based on GAN is increased in order to enhance

segmentation accuracy.

2. Cancer Diagnosis and Prognosis

Cancer is an aggressive disease with a low median survival rate. Ironically, the treatment process is long and very costly

due to its high recurrence and mortality rates. Accurate early diagnosis and prognosis prediction of cancer is essential to

enhance the patient’s survival rate . It is now widely recognized that histopathological images are regarded as

golden standards for the diagnosis and prognosis of human cancers . Previous studies on histopathology image

classification and prediction mainly focused on manual feature design. For instance, Cheng et al.  extracted a 150-

dimensional handcrafted feature to describe each WSI, followed by the traditional classifiers to distinguish different types

of renal cell carcinoma. Yu et al.  extracted 9879 quantitative features from each image tile and used regularized

machine-learning methods to select the top features and to distinguish shorter-term survivors from longer-term survivors

with adenocarcinoma or squamous cell carcinoma. Recently, with the success of deep learning in various computer vision

tasks, training end-to-end deep learning models for various histopathological image analysis tasks without manually

extracting features has drawn much attention .

Generally, the main challenge for applying deep learning algorithms for WSI classification and prediction is the large size

of the WSI (e.g., 100,000 × 100,000 pixels), and it is impossible to directly feed these large images into the deep neural

network for model training . To address this challenge, there are two main lines of approaches, the patch-based and

WSI-based methods (which are summarized in Figure 3).

Figure 3. Overview of papers using deep learning for diagnosis and prognosis of the disease in histopathology images 

.

2.1. Patch-Level Methods

In connection with the large size of WSI, the patch-based methods required the pathologist to select the region of interests

from WSI that are representative, then the selected regions were split into patches with a significantly smaller size for

deep model training . For instance, Zhu et al.  developed a deep CNN for survival analysis (DeepConvSurv)

with the pathological patches derived from the WSI. They demonstrated that the end-to-end learning algorithm,

DeepConvSurv, outperformed the standard Cox proportional hazard model. Cheng et al.  applied a deep autoencoder

to aggregate the extracted patches into different groups and then learn topological features from the clusters to

characterize cell distributions of different cell types for survival prediction.

By considering that training a model from scratch requires a very large dataset and takes a long time to train. Some patch-

based methods also adopted the transfer learning model (TL) to speed up the training procedure, as well as improve the

classification performance. TL provides an effective solution for feasibly and fast customized accurate models by

transferring and fine-tuning the learned knowledge of pre-trained models over large datasets. For instance, Xu et al. 

exploited CNN activation features to achieve region-level classification results. Specifically, they first over-segmented

each preselected region into a set of overlapping patches. A TL strategy was then explored by pretraining CNN with

ImageNet. Finally, an SVM classifier was adopted for classification. Similarly, Källénet et al.  extracted features from the

divided patches via the pre-trained OverFeat network. The RF classifier was applied to discriminate the subtypes in

prostatic adenocarcinoma. Moreover, in , the pre-trained VGG-16 network was first applied to extract descriptors from

the preselected patches. Then, the feature representation of WSI was computed by the average pooling of the feature

representations of its associated patches.

[51]

[52][53]

[54][55]

[56]

[57]

[58][59][60]

[61][62]

[63]

[64][65][66][67][68][69][70][71]

[63][64][72] [63]

[64]

[72]

[65]

[66]



2.2. WSI-Level Methods

Although much progress has been achieved, the abovementioned patch-level prediction methods still have several

inherent drawbacks. First, the patch-based methods required labor-sensitive patch-level annotation, which would increase

the workload for the pathologist . Second, most of the existing patch-based methods usually assumed that the

diagnosis or survival information with each randomly selected patch was the same as its corresponding WSI, which

neglected the fact that WSI usually had large heterogenous patterns and thus the patch-level label would not always

match the WSI-level label .

In view of these challenges, building diagnosis/prognosis models only relying on WSI-level annotation has been widely

investigated . Among the WSI-based methods, the multi-instance learning (MIL) framework was a simple but

most effective tool. For example, Shao et al.  considered the ordinal characteristic of the survival process by adding a

ranking-based regularization term on the Cox model and used the average pooling strategies to aggregate the instance-

level results to the WSI-level prediction results (Figure 4). Similarly, Iizuka et al.  first trained a CNN model using

millions of tiles extracted from the WSI. Then, a max-pooling strategy combined with the recurrent neural network was

adopted to fuse the patch-level results into WSI-level prediction results. However, by considering the simple decision

fusion approaches (e.g., average pooling and max pooling) were insufficiently robust to make the right WSI-level

prediction, Yao et al.  proposed an attention-guided deep multiple instance learning network (DeepAttnMISL) for

survival prediction from WSI. In comparison with the traditional pooling strategies, attention-based aggregation is more

flexible and adaptive for survival prediction. In addition, Chikontwe et al.  presented a novel MIL framework for

histopathology slide classification. The proposed framework could be applied for both instance and bag level learning with

a center loss that minimized intraclass distances in the embedding space. The experimental results also suggested that

the proposed method could achieve overall improved performance over recent state-of-the-art methods. Moreover, Wang

et al.  first extracted the spatial contextual features from each patch. Then, a globally holistic region descriptor was

calculated after aggregating the features from multiple representative instances for WSI-level classification.

Figure 4. Weakly-supervised deep ordinal Cox model (BDOCOX) for survival prediction from WSI.

Although CNN-based MIL frameworks have shown impressive performance in the field of histopathology analysis, they

are unable to capture complex neighborhood information as they analyze local areas determined by the convolutional

kernel to extract interaction information between objects. Recently, some researchers have also applied the graph

convolutional network (GCN) to analyze histopathological images for the diagnosis and prognosis of human cancers 

, which are becoming increasingly useful for medical diagnosis and prognosis. For instance, Chen et al.  presented a

context-aware graph convolutional network that hierarchically aggregates instance-level histology features to model local-

and global-level topological structures in the tumor microenvironment. Li et al.  proposed to model WSI as a graph and

then develop a graph convolutional neural network with attention learning that better serves the survival prediction by

rendering the optimal graph representations of WSIs. Moreover, the study in  presented a patch relevance-enhanced

graph convolutional network (RGCN) to explicitly model the correlations of different patches in WSI, which can

approximately estimate the diagnosis-related regions in WSI. Extensive experiments on real lung and brain carcinoma

WSIs have demonstrated their effectiveness since GCNs can better exploit and preserve neighboring relations compared

with CNN-based models. Besides, some researchers have noticed the relation between genes and images. Chen et al.

 presented a multimodal co-attention transformer (MCAT) framework that learns an interpretable, dense co-attention

mapping between WSI and genomic features formulated in an embedding space.
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