PKCtheta in Cancer

Subjects: Biochemistry & Molecular Biology Contributor: Karine Belguise

Protein Kinase C theta (PKC θ) is a serine/threonine kinase that belongs to the novel PKC sub-family. PKC θ has been extensively studied for its role in the immune system where it plays a critical role in T cell activation. Beyond its physiological role in immune responses, increasing evidence implicates PKC θ in the pathology of various diseases, especially autoimmune disorders and cancers. Particularly, in various types of cancers, the high PKC θ expression leads to aberrant cell proliferation, migration and invasion, thereby promoting cancer aggressiveness. The recent development and application of PKC θ inhibitors in the context of auto-immune diseases could benefit the emergence of treatment for cancers in which PKC θ has been implicated.

Keywords: PKCtheta ; cancer ; tumoral function ; mechanisms of action

1. Introduction

The Protein Kinase C (PKC) family is a family of serine/threonine kinases that are involved in various cellular processes for different cell types. The PKC family is classified into three subfamilies: classical (α , β I, β II, γ), novel (δ , ϵ , η , θ) and atypical (ζ , ι/λ) PKC isoforms. This classification is based on their structure and ability to respond to calcium and/or diacylglycerol (DAG) ^[1]. Among this family, the novel PKC θ isoform is different from other PKC isoforms since its physiological expression is limited to a few types of cells, such as T cells, platelets and skeletal muscle cells. This specific expression confers to this isoform a central role in the immune system where PKC θ controls T cell activation, survival and differentiation ^[2]. In skeletal muscle cells, PKC θ regulates muscle cell development, homeostasis and remodeling ^[3]. Beyond its physiological functions, PKC θ is also involved in the pathology of various diseases. In the context of the immune system and skeletal muscle tissue, the dysregulation of PKC θ activity leads to both autoimmune and inflammatory diseases and to insulin resistance and Type 2 diabetes, respectively ^{[3][4]}. In the last decade, growing evidence implicated the PKC θ signaling in the biology of cancer where it controls cancer cell proliferation, migration and invasion at the cytoplasmic or nuclear levels. Here, we discuss this emerging function of PKC θ in cancer by analyzing its diverse modes of action and their consequence on critical biological processes involved in tumorigenesis and cancer progression.

2. PKC0 Structure and Physiological Function

In this section, we provide a brief overview of the PKC θ structure and the PKC θ physiological function mainly in the immune system. For extensive details, the readers can refer to several excellent reviews written by the experts in the field of T cell biology (reviewed in ^{[2][4][5][6][7]}).

2.1. PKC0 Structure

The novel PKC θ isoform is a protein kinase encoded by the *PRKCQ* gene and composed of 706 amino acids with a molecular weight of approximately 82 kDa ^[B]. PKC θ is a DAG-dependent but Ca²⁺-independent, protein kinase whose structure consists of several functional domains that are conserved among the novel PKC subfamily (Figure 1) ^[1]. The N-terminal regulatory domain contains the C2-like domain, the pseudosubstrate region and the DAG-binding domain (C1A/B) while the C-terminal catalytic domain contains the ATP-binding domain (C3) and the substrate-binding domain (C4). The regulatory and catalytic domains are separated by a hinge region, called the V3 motif, which is unique and highly specific to each PKC isoforms.

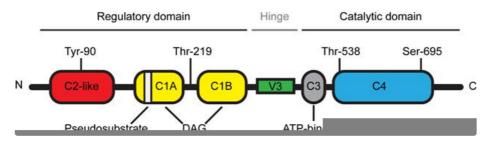


Figure 1. Schematic representation of Protein Kinase C theta (PKC0) structure.

2.2. PKC0 Function in the Immune System

Due to the high expression levels of PKC0 in T lymphocytes, extensive research has studied the biological function of this novel PKC isoform in the immune system. The generation and analysis of PKC0-deficient mice have unraveled the selective role of PKC θ in the T cell immune response [9][10]. While PKC θ is critical for the T helper (Th)2- and Th17mediated responses, the Th1- and cytotoxic T cell-driven responses remain relatively intact in the absence of PKC0^{[4][2]}. However, a few studies reported that some specific Th1 responses were altered in PKC θ deficient mice [11][12]. T lymphocyte activation is a central step of the T cell immune response during which T cell interacts with an antigenpresenting cell (APC) [4]. This cell-cell junction forms a well-organized and dynamic structure called the immunological synapse [13]. Following this T cell-APC interaction, cytoplasmic PKC0 is translocated to the membrane at the immunological synapse ^[6] and this specific and critical relocalization is highly dependent on the unique V3 motif of PKC0 $\frac{14}{2}$. In addition, other events are also required for the proper localization and activation of PKC θ at the immunological synapse. Concerning the PKC0 localization, several studies indicated that the lck-mediated phosphorylation of PKC0 at tyr-90 participated in the PKC0 recruitment to the immunological synapse [14][15] and a report from Thuille et al. suggested that the PKC0 autophosphorylation at thr-219 was required for the cell membrane localization of PKC0 [16]. Moreover, the data from Cartwright et al. suggested that PKC0 required its active kinase domain in order to be maintained at the immunological synapse [17]. More recently, Wang et al. reported that the sumovlation of PKC0 upon T cell activation was involved in the specific localization of PKC0 and in the organization of the immunological synapse [18]. Concerning the PKC0 activation, the phosphorylation at Thr-538 in the activation loop regulates the PKC0 activity by maintaining PKC0 in an active conformation and thus this phosphorylation has been used as a marker reflecting the PKC0 activation ^[19]. GCKlike kinase (GLK, MAP4K3) has been identified as one kinase capable of directly phosphorylating this Thr-538 residue during the T cell activation ^[20]. Moreover, the auto-phosphorylation at Ser-695 induced during T cell activation is also required for the PKC θ kinase activity [19][21].

Once translocated to the immunological synapse, PKC θ integrates various signaling cascades that conduct to the activation of important transcription factors, including Nuclear Factor κB (NF- κB), Activating Protein 1 (AP-1) and, to a lesser extent, Nuclear Factor of Activated T-cells (NFAT) ^[5]. This transcriptional machinery then induces the production of interleukin-2, a cytokine essential for the T cell proliferation ^[5]. Moreover, the PKC θ function is not only limited to the activation of signaling pathways that leads to the transcriptional regulation of gene expression. For example, PKC θ has been involved in the actin cytoskeletal reorganization that occurs during the formation of the immunological synapse and the related polarization of activated T cells ^{[18][22][23]}. PKC θ can also enter the nucleus of activated T cells to directly bind to the chromatin in order to regulate the expression of immune response genes and microRNAs involved in the cytokine regulation ^[24].

2.3. Implication of PKC0 in Immunological Disorders

As a selective regulator of the Th2 and Th17 immune responses, the perturbation of PKC θ expression and activity leads to the development of Th2-driven inflammatory diseases and Th17-mediated autoimmune diseases. Indeed, PKC θ is highly expressed and activated in these immunological disorders ^[4]. Studies from the PKC θ -deficient mice showed that the PKC θ suppression decreased the T cell inflammatory response in autoimmunity, allergy and allograft rejection ^[4]. Therefore, the therapeutic use of specific PKC θ inhibitors could provide an interesting approach for these PKC θ dependent pathologies ^[25]. Clinical studies using sotrastaurin (AEB071) as the PKC θ inhibitor showed some encouraging results in the context of immunosuppressive therapy for autoimmune diseases such as psoriasis and organ transplantation ^{[4][26]}. However, sotrastaurin is not specific to PKC θ and it also shows strong and specific inhibitory activity against PKC α and PKC β and to a lesser extend against PKC δ , PKC ϵ and PKC η . It thus suggests that sotrastaurin would inhibit not only the PKC θ -mediated functions but also the functions from other PKCs ^[27]. Therefore, current research works aim to develop more selective PKC θ inhibitors ^{[28][29]}. These inhibitors are currently tested in mouse models and further studies are needed to validate them in the clinical trials.

References

- 1. Steinberg, S.F. Structural basis of protein kinase C isoform function. Physiol. Rev. 2008, 88, 1341–1378.
- 2. Hayashi; K.; Altman, A. Protein kinase C theta (PKCtheta): A key player in T cell life and death. Pharmacol. Res. 2007, 55, 537–544.
- Marrocco, V.; Fiore, P.; Madaro, L.; Crupi, A.; Lozanoska-Ochser, B.; Bouché, M. Targeting PKCtheta in skeletal muscle and muscle diseases: Good or bad? Biochem. Soc. Trans. 2014, 42, 1550–1555.
- Zhang; Y.E.; Kong, K.F.; Altman, A. The yin and yang of protein kinase C-theta (PKCtheta): A novel drug target for selec tive immunosuppression. Adv. Pharmacol. 2013, 66, 267–312.
- 5. Isakov; N.; Altman, A. Protein kinase C(theta) in T cell activation. Annu. Rev. Immunol. 2002, 20, 761–794.
- Kong; F.K.; Altman, A. In and out of the bull's eye: Protein kinase Cs in the immunological synapse. Trends Immunol. 2 013, 34, 234–342.
- 7. Marsland, J.B.; Kopf, M. T-cell fate and function: PKC-theta and beyond. Trends Immunol. 2008, 29, 179–185.
- Baier, G.; Telford, D.; Giampa, L.; Coggeshall, K.M.; Bitterlich, G.B.; Isakov, N.; Altman, A. Molecular cloning and chara cterization of PKC theta, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hemat opoietic cells. J. Biol. Chem. 1993, 268, 4997–5004.
- Pfeifhofer, C.; Kofler, K.; Gruber, T.; Tabrizi, N.G.; Lutz, C.; Maly, K.; Leitges, M.; Baier, G. Protein kinase C theta affects Ca2+ mobilization and NFAT cell activation in primary mouse T cells. J. Exp. Med. 2003, 197, 1525–1535.
- Sun, Z.; Arendt, C.W.; Ellmeier, W.; Schaeffer, E.M.; Sunshine, M.J.; Gandhi, L.; Annes, J.; Petrzilka, D.; Kupfer, A.; Sch wartzberg, P.L.; et al., PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymp hocytes. Nature 2000, 404, 402–407.
- Nishanth, G.; Burkiewicz, M.S.; Händel, U.; Kliche, S.; Wang, X.; Naumann, M.; Deckert, M.; Schlüter, D. Protective Tox oplasma gondii-specific T-cell responses require T-cell-specific expression of protein kinase C-theta. Infect. Immun. 20 10, 78, 3454–3464.
- Ohayon, A.; Golenser, J.; Sinay, R.; Tamir, A.; Altman, A.; Pollack, Y.; Isakov, N. Protein kinase C theta deficiency increa ses resistance of C57BL/6J mice to Plasmodium berghei infection-induced cerebral malaria. Infect. Immun. 2010, 78, 4 195–4205.
- 13. Grakoui, A.; Bromley, S.K.; Sumen, C.; Davis, M.M.; Shaw, A.S.; Allen, P.M.; Dustin, M.L. The immunological synapse: A molecular machine controlling T cell activation. Science 1999, 285, 221–227.
- Kong, K.O.; Yokosuka, T.; Balancio, A.J.C.; Isakov, N.; Saito, T.; Altman, A. A motif in the V3 domain of the kinase PKC-t heta determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat. I mmunol. 2011, 12, 1105–1112.
- 15. Liu, Y.; Witte, S.; Liu, Y.C.; Doyle, M.; Elly, C.; Altman, A. Regulation of protein kinase Ctheta function during T cell activ ation by Lck-mediated tyrosine phosphorylation. J. Biol. Chem. 2000, 275, 3603–3609.
- Thuille, N.; Heit, I.; Fresser, F.; Krumböck, N.; Bauer, B.; Leuthaeusser, S.; Dammeier, S.; Graham, C.; Copeland, T.D.; Shaw, S.; et al., Critical role of novel Thr-219 autophosphorylation for the cellular function of PKCtheta in T lymphocyte s. EMBO J. 2005, 24, 3869–3880.
- 17. Cartwright; G.N.; Kashyap, A.K.; Schaefer, B.C. An active kinase domain is required for retention of PKCtheta at the T c ell immunological synapse. Mol. Biol. Cell 2011, 22, 3491–3497.
- Wang, X.D.; Gong, Y.; Chen, Z.L.; Gong, B.N.; Xie, J.J.; Zhong, C.Q.; Wang, Q.L.; Diao, L.H.; Xu, A.; Han, J.; et al., TC R-induced sumoylation of the kinase PKC-theta controls T cell synapse organization and T cell activation. Nat. Immuno I. 2015, 16, 1195–1203.
- Liu, Y.; Graham, C.; Li, A.; Fisher, R.J.; Shaw, S. Phosphorylation of the protein kinase C-theta activation loop and hydr ophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-ka ppaB induction. Biochem. J. 2002, 361, 255–265.
- 20. Chuang, H.C.; Lan, J.L.; Chen, d.; Yang, C.Y.; Chen, Y.M.; Li, J.P.; Huang, C.Y.; Liu, P.E.; Wang, X.; Tan, T.H. The kinas e GLK controls autoimmunity and NF-kappaB signaling by activating the kinase PKC-theta in T cells. Nat. Immunol. 20 11, 12, 1113–1118.
- 21. Czerwinski, R.; Aulabaugh, A.; Greco, R.M.; Olland, S.; Malakian, K.; Wolfrom, S.; Lin, L.; Kriz, R.; Stahl, M.; Huang, Y.; et al. Characterization of protein kinase C theta activation loop autophosphorylation and the kinase domain catalytic me chanism. Biochemistry 2005, 44, 9563–9573.

- Britton, G.J.; Ambler, R.; Clark, D.J.; Hill, E.V.; Tunbridge, H.M.; McNally, K.E.; Burton, B.R.; Butterweck, P.; Peyton, C. S.; O'Neil, L.A.H.; et al., PKCtheta links proximal T cell and Notch signaling through localized regulation of the actin cyt oskeleton. Elife 2017, 6, e20003.
- 23. Quann, E.J.; Liu, X.; Bonnet, G.A.; Huse, M. A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat. Immunol. 2011, 12, 647–654.
- 24. Sutcliffe, E.L.; Bunting, K.L.; He, Y.Q.; Li, J.; Phetsouphanh, C.; Seddiki, N.; Zafar, A.; Hindmarsh, E.J.; Parish, C.R.; Ke lleher, A.D.; et al., Chromatin-associated protein kinase C-theta regulates an inducible gene expression program and m icroRNAs in human T lymphocytes. Mol. Cell 2011, 41, 704–719.
- 25. Kwon, M.Y.; Wang, R.; Ma, J.; Sun, Z. PKC-theta is a drug target for prevention of T cell-mediated autoimmunity and all ograft rejection. Endocr. Metab. Immune Disord. Drug Targets 2010, 10, 367–372.
- 26. Sleiman, R.H.; Hamze, A.B.; Reslan, L.; Kobeissy, H.; Dbaibo, G. The Novel PKCtheta from Benchtop to Clinic. J. Imm unol. Res. 2015, 2015, 348798.
- 27. Evenou, J.P.; Wagner, J.; Zenke, G.; Brinkmann, V.; Wagner, K.; Kovarik, J.; Welzenbach, K.A.; Schmidt, G.W.; Gunter mann, C.; Towbin, H.; et al., The potent protein kinase C-selective inhibitor AEB071 (sotrastaurin) represents a new cla ss of immunosuppressive agents affecting early T-cell activation. J. Pharmacol. Exp. Ther. 2009, 330, 792–801.
- 28. Kunikawa, S.; Tanaka, A.; Takasuna, Y.; Tasaki, M.; Chida, N. Discovery of 2,4-diamino-5-cyanopyrimidine derivatives a s protein kinase C theta inhibitors with mitigated time-dependent drug-drug interactions. Bioorg. Med. Chem. 2019, 27, 790–799.
- 29. Wang, J.; Jin, W.; Zhou, X.; Li, J.; Xu, C.; Ma, Z.; Wang, J.; Qin, L.; Zhou, B.; Ding, W.; et al., Identification, Structure-A ctivity Relationships of Marine-Derived Indolocarbazoles, and a Dual PKCtheta/delta Inhibitor with Potent Antipancreati c Cancer Efficacy. J. Med. Chem. 2020, 63, 12978–12991.

Retrieved from https://encyclopedia.pub/entry/history/show/17458