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Lung segmentation is a critical task necessary in the majority of lung imaging computer-aided decision (CAD)

systems studies. Despite not being provided to radiologists in real scenarios, an accurate lung mask is absolutely

crucial in the development of clinical support tools, avoiding the inclusion of noise and non-relevant background

information, which also improves the efficiency of the usage of the computational resources. However, the main

challenge to overcome remains the lack of robustness of the developed tools when analyzing lung images with

completely different properties. The large diversity of lung pathological status and biological phenomena

associated with severe imaging manifestations often result in extremely difficult segmentation cases, and models

tend to fail in these scenarios.
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1. Lung Segmentation

Lung segmentation is a critical task necessary in the majority of lung imaging CAD studies. Despite not being

provided to radiologists in real scenarios, an accurate lung mask is absolutely crucial in the development of clinical

support tools, avoiding the inclusion of noise and non-relevant background information, which also improves the

efficiency of the usage of the computational resources. However, the main challenge to overcome remains the lack

of robustness of the developed tools when analyzing lung images with completely different properties. The large

diversity of lung pathological status and biological phenomena associated with severe imaging manifestations often

result in extremely difficult segmentation cases, and models tend to fail in these scenarios.

In the work by Shaziya et al. , a comprehensive review of the state-of-the-art solutions regarding conventional,

machine learning, and deep learning solutions was made, collecting several works from 2001 to 2018. El-Baz et al.

The authors of  also reviewed the most relevant challenges associated with the lung cancer diagnosis research

field, including several works regarding the lung segmentation task. Since these were the only published review

articles found on this subject, the works included in this section were carefully compared to ensure the absence of

overlapping. The search queries selected were (“Lung segmentation”) AND (“CT”) using the IEEE Xplore, Science

Direct, and PubMed databases, which resulted in a total of 26 selected articles. This following content is divided

into conventional and learning methods. The first includes a wide group of fundamental computer vision-based

methodologies from 2014 to 2021. The second comprises a selection of machine and deep learning solutions from

2019 to 2021, considering a large number of recent approaches and the articles already discussed in . 
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2. Conventional Methods

Approaching lung segmentation through conventional computer vision methods often requires manual interventions

for the initialization of the algorithm . Filtering operations, such as histogram-based thresholding , maybe

susceptible to several abnormalities present in lung tissues with higher or lower density values compared with the

rest of the lung. To overcome this, a possible direction was proposed by Shi et al. , consisting of combining the

“weak” and the “strong” from the multiple methods, with the intuition that it would result in an improved

segmentation ability over single-method approaches. Morphological operations were also used as a post-

processing option to fine-tune the predicted masks by eliminating some common mistakes, such as holes inside

the lung tissues .

More complex methodologies based on active contour models , and modifications to the random walker

method  were also recently proposed. These methodologies showed a robustness increase, even in the

presence of tissue abnormalities, also enabling more automatic pipelines at the same time. A multi-atlas

segmentation approach for thoracic organs at risk (OAR) was also proposed by Oliveira et al. , by considering the

spatial relationships between the different thoracic organs to produce a single spatially coherent mask.

Table 1 summarizes the reviewed conventional methodologies for lung segmentation in chronological order.

Table 1. Overview of published works regarding conventional methodologies for the segmentation of lung CT

images (2014–2021).
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Authors Year Dataset Methods Performance
Results (%)

Lai and Wei 2014
Private (10
patients)

Filtering process + morphological
operations (threshold, region filling,

closing)

TPR = 97.0
TNR = 99.0
AAE = 1.58

Li et al. 2015
Private (15
patients)

Edge-based recursive geometric active
contour (GAC) model

OV = 98.0

Shi et al. 2016
Private (23
patients)

Histogram thresholding + region
growing and random walk

OR = 1.87
UR = 2.36
ABD = 0.620 mm

Zhang et al. 2017 LIDC-IDRI
Region- and edge-based GAC

(REGAC) method
DSC = 97.7
HD-95 = 2.50 mm

Rebouças Filho
et al. 

2017
Private (40
patients)

3D ACACM

F-score = 99.2
(ACACM),
97.6 (RG),
97.4 (OsiriX),
97.2 (LSCPM)
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AAE: average area error; ABD: absolute border distance; ACM: active contour method; DSC: Sørensen–Dice

coefficient; LL: left lung; LSCPM: level-set based on coherent propagation method; HD: Hausdorff distance; OR:

over-segmentation rate; OV: overlap volume; RG: region growing; RL: right lung; TPR: true positive rate; TNR: true

negative rate; UR: under-segmentation rate.

 

 

3. Learning Methods

The most recent approaches for CT lung segmentation show a clear predominance of learning algorithms capable

of directly learning the distribution of the data used for training. Methodologies inspired on U-net  cover the

majority of deep learning-based attempts . To increase the complexity of the feature

extraction task, the encoder module could reuse transferred weights from pre-trained networks, as in the works by

Vu et al.  and Jalali et al. , where the VGG-16 and ResNet-34 models were adopted to work as encoder

blocks, respectively. More investigations on improvements in typical convolutional blocks can also be found,

integrating residual blocks , inception modules with dense connections , and squeeze-and-excitation

blocks to target specific thoracic organs at risk . Still, on feature extraction enhancement, adversarial training

approaches were explored in , enabling approximating the predicted masks to the ground-truth by

discriminating between both. More meaningful features can also be extracted by aggregating an auxiliary

classification branch, enriching the information used for backpropagation . Liu et al.  integrated different

feature extraction branches by combining deep, textured, and intensity features, to be classified as part of the lung

mask or background.

In two-stage pipelines, approaches based on lung detection followed by proper segmentation of the cropped input

have been proposed , the Mask R-CNN  architecture was employed and predictions were refined

through combining differently supervised and unsupervised methods. These regularisation techniques confirmed

that, as expected, less noisy inputs would allow to obtain better predictions.

The lack of training data diversity has been recognized as a major barrier to achieve robust segmentation models,

with better results obtained with larger and more heterogeneous private data, even with simple networks .

Table 2  summarizes the reviewed machine/deep learning methodologies for lung segmentation in chronological

order.

Table 2. Overview of published works regarding learning-based methodologies for the segmentation of lung CT

images (2019–2021).

Authors Year Dataset Methods Performance
Results (%)

Oliveira et al. 2018
VISCERAL
Anatomy3

Multi-atlas alignment + label fusion
(voting and statistical selection)

DSC = 97.4 (LL),
97.9 (RL)
HD-95 = 4.65 mm
(LL),
2.81 mm (RL)

Chen et al. 2021
LOLA11 Private

(65 patients)
Random walker

(Private)
DSC = 98.6 (LL),
98.5 (RL)
(LOLA11)
DSC = 97.4
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Authors Year Dataset Methods Performance
Results (%)

Dong et al. 2019 LCTSC
U-net generator with a FCN

discriminator
DSC = 97.0

Feng et al. 2019 LCTSC
Two-stage segmentation
process with 3D U-net

DSC = 97.2 (RL),
97.9 (LL)

Park et al. 2019 LCTSC Private (30 patients) U-net

DSC = 98.8
JSC = 97.7
MSD = 0.270 mm
HSD = 25.5 mm

Hofmanninger
et al. 

2020
LCTSC, LTRC, VISCERAL,
VESSEL12 Private (5300

patients)

U-net, ResUNet, Dilated
residual network-D-22,

DeepLab v3+

(merged dataset)
DSC = 98.0
HD95 = 3.14 mm
MSD = 0.620 mm

Yoo et al. 2020
HUG-ILD Private (203

patients)
2D and 3D U-net

(Private - 2D; 3D)
DSC = 99.6; 99.4
TPR = 99.5; 99.1
PPV = 99.6; 99.7
HD = 17.7 px;
18.7 px
(HUG-ILD - 2D;
3D)
DSC = 98.4; 95.3
TPR = 98.7; 98.0
PPV = 98.1; 92.8
HD = 7.66 px;
15.6 px

Khanna et al.
2020

LUNA16 VESSEL12 2HUG-
ILD

ResUNet + false positive
removal algorithm

(LUNA16)
DSC = 96.6
JI = 93.4
TPR = 97.5
(VESSEL12)
DSC = 98.3
JI = 97.9
TPR = 98.8
(HUG-ILD)
DSC = 98.1
JI = 96.3
TPR = 98.3

Shi et al. 2020 StructSeg 2019 TA-Net

DSC = 96.8 (LL),
97.1 (RL)
HD = 0.188 mm
(LL),
0.171 mm (RL)
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Authors Year Dataset Methods Performance
Results (%)

Nemoto et al.
2020 NSCLC-Radiomics 2D and 3D U-net

DSC = 99.0
(2D/3D U-net)

Zhang et al. 2020

Lung dataset (Kaggle
“Finding and Measuring

Lungs in CT Data”
competition)

Dense-Inception U-net (DIU-
net)

DSC = 98.6
JI = 98.7
ACC = 99.4
TPR = 98.5
TNR = 99.8
F-score = 98.5
AUC = 99.0

Vu et al. 2020 Private (168 patients)
U-net with pre-trained

VGG16

DSC = 97.0 (RL
and LL)
HD-95 = 5.10 mm
(RL),
4.09 mm (LL)

Liu et al. 2020 HUG-ILD
Random forest fusion
classification of deep,

texture and intensity features

DSC = 96.4
JI = 91.1
OR = 5.04
UR = 4.76

Hu et al. 2020 Private (39 patients)
Mask R-CNN + supervised

and unsupervised classifiers

DSC = 97.3
ACC = 97.7
TPR = 96.6
TNR = 97.1

Han et al. 2020 Private
Xception + VGG with SVM-
RBF Detectron2 + contour

fine-tuning

DSC = 97.0
ACC = 99.0
TPR = 96.5
TNR = 99.4

Xu et al. 2021
Private (217 patients)

COVID-19-CT-Seg HUG-ILD
VESSEL12

Boundary-Guided Network
(BG-Net)

DSC = 98.6
(Private),
96.5 (StructSeg),
98.9 (HUG-ILD),
99.5 (VESSEL12)
HD = 2.77 mm
(Private),
1.39 mm
(StructSeg),
0.665 mm (HUD-
ILD),
1.40 mm
(VESSEL12)

Jalali et al. 2021 LIDC-IDRI ResBCDU-Net DSC = 97.1
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ACC: accuracy; AUC: area under the ROC curve; DSC: Sørensen–Dice coefficient; HD: Hausdorff distance; IOU:

intersection over union; JI: Jaccard index; LL: left lung; OR: over-segmentation rate; PPV: positive predictive vale;

RL: right lung; TNR: true negative rate; TPR: true positive rate; UR: under-segmentation rate.

 

3.1 Discussion and Future Work: Lung Segmentation

The use of conventional methods for lung segmentation has, to some extent, achieved satisfactory results for

certain scenarios of data distributions. Image threshold-based algorithms often lack robustness, not being able to

cope with higher variances on the density values of more heterogeneous lung structures. To achieve decent

results, these algorithms require an extensive amount of post-processing work, employing highly data-dependent

fine-tuning methods, which improves the performance by creating tight boundaries on the properties of a specific

dataset. Regarding more dynamic algorithms, such as active contour models (ACM) and their variations, initial

contours are often necessary for method initialization and the energy functions used for mask propagation can be

susceptible to heterogeneous imaging variations in shape or intensity and, therefore, must be extensively tested

over distinct sources of data to be considered clinically reliable.

The majority of the most recent segmentation approaches proposed to incorporate deep learning mechanisms,

allowing the development of completely automatic solutions without the need to design and apply specific

algorithms to solve specific problems. Since the publication of U-net  as a general biomedical image

segmentation network, multiple approaches have been proposed to improve segmentation capabilities by

increasing the complexity of the network. To improve the knowledge obtained in the extracted feature maps, the

inclusion of handcrafted imaging features and auxiliary guided classification branches are examples of some

technical innovations that were proposed, motivated by the chance of increasing the information that could be used

to deal with more heterogeneous tissue patterns.

Authors Year Dataset Methods Performance
Results (%)

Wang et al. 2021

Lung dataset (Kaggle
“Finding and Measuring

Lungs in CT Data”
competition)

HDA-ResUNet
DSC = 97.9
JI = 96.0
ACC = 99.3

Tan et al. 2021
LIDC-IDRI QIN lung CT

dataset
LGAN

(LIDC-IDRI)
IOU = 92.3
HD = 3.38 mm
(QIN)
IOU = 93.8
HD = 2.68 mm

Pawar and
Talbar 

2021 HUG-ILD LungSeg-Net

DSC = 96.3
(Fibrosis),
96.5 (Ground
glass),
91.4
(Reticulation),
97.6
(Consolidation),
97.8
(Emphysema),
99.0 (Nodules)
JI = 93.7
(Fibrosis),
93.9 (Ground
glass),
86.9
(Reticulation),
95.3
(Consolidation),
96.2
(Emphysema),
98.0 (Nodules)

Cao et al. 2021 StructSeg 2019 C-SE-ResUNet
DCS = 97.0 (LL)
96.6 (RL)

[20]

[24]

[25]

[21]
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However, there still exist several issues that have hindered the development of universal segmentation systems

capable of being adopted in clinical routines. The differences in contouring guidelines between databases are a

crucial discussion point when evaluating lung segmentation approaches. Several models are developed with

ground-truth labels that may not be adequate for every context of analysis. In the LOLA11 data description section,

the statement “… lung segmentation images are not intended to be used as the reference standard for any

segmentation study.” alerted the authors for this issue when selecting the data sources for their segmentation

experiments. In several databases with available lung masks, these were often obtained using automatic

segmentation tools or previously developed algorithms. In the cases where the main purpose of the database

publication was not related to the segmentation tasks, the criteria for the included patients were often biased for

specific pathological diagnoses, which made it more difficult to obtain the desired diversity of patients. Moreover,

since lung masks are made available as a supplement, the processes for the contour quality assurance, the

agreement rates of the annotators, and the contouring guidelines are not disclosed in most cases. This problem is

emphasized by the fact that discrepancies related to the inclusion or exclusion of certain regions, such as trachea,

main/secondary bronchi, and tumor regions in training data may create a substantial impact on the quantitative

evaluation and performance comparison of different segmentation models. From the articles reviewed, it is possible

to see that, in general, the models developed using privately collected data achieved higher generalization abilities

in comparison with the ones trained using only public data sources. However, the generalization achieved was still

limited, caused by using data from one single healthcare institution or a single country, which created a significant

bias on the data collected.

Considering these facts, universal segmentation tools are needed for the future where CAD systems are

implemented in the clinical routines. Innovation on the modeling fundamentals should continue to be investigated,

to increase generalization, in order to cope with the large heterogeneity of tissues caused by the pathological

phenomena occurring in the lung structures. Moreover, the implementation of measures to encourage the sharing

of biomedical data for research purposes would automatically push the challenges that researchers face while

addressing such tasks, which would cause a massive improvement in the utility of their outcomes for clinical

practice.
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